• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microstructure and pitting corrosion of shielded metal arc welded highnitrogen stainless steelRAFFI MOHAMMEDa, G. MADHUSUDHAN REDDYb, K. SRINIVASA RAOa,*

    2015-07-02 06:14:08DeprtmentofMetllurgiclEngineeringAndhrUniversityViskhptnmIndiDefenceMetllurgiclReserchLortoryHyderdIndiReceived17Mrch2015revised20April2015ccepted21April2015Avilleonline22My2015
    Defence Technology 2015年3期

    Deprtment of Metllurgicl Engineering, Andhr University, Viskhptnm, IndiDefence Metllurgicl Reserch Lortory, Hyderd, IndiReceived 17 Mrch 2015; revised 20 April 2015; ccepted 21 April 2015 Aville online 22 My 2015

    Microstructure and pitting corrosion of shielded metal arc welded high
    nitrogen stainless steel
    RAFFI MOHAMMEDa, G. MADHUSUDHAN REDDYb, K. SRINIVASA RAOa,*

    aDepartment of Metallurgical Engineering, Andhra University, Visakhapatnam, IndiabDefence Metallurgical Research Laboratory, Hyderabad, India
    Received 17 March 2015; revised 20 April 2015; accepted 21 April 2015 Available online 22 May 2015

    Abstract

    The present work is aimed at studying the microstructure and pitting corrosion behaviour of shielded metal arc welded high nitrogen steel made of Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microscopic studies were carried out using optical microscopy (OM) and field emission scanning electron microscopy (FESEM). Energy back scattered diffraction (EBSD) method was used to determine the phase analysis, grain size and orientation image mapping. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance in aerated 3.5% NaCl environment using a GillAC electrochemical system. The investigation results showed that the selected Cr—Mn—N type electrode resulted in a maximum reduction in delta-ferrite and improvement in pitting corrosion resistance of the weld zone was attributed to the coarse austenite grains owing to the reduction in active sites of the austenite/delta ferrite interface and the decrease in galvanic interaction between austenite and delta-ferrite.

    Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    Keywords:High nitrogen austenitic stainless steels (HNSs); Shielded metal arc welding (SMAW); Cromang—N (Cr—Mn—N); Field emission scanning electron microscopy (FESEM); Energy back scattered diffraction (EBSD)

    E-mail addresses: raffia.u@gmail.com ( RAFFI MOHAMMED), gmreddy_dmrl@yahoo.com (G. MADHUSUDHAN REDDY), arunaraok@ yahoo.com (K. SRINIVASA RAO).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2015.04.002

    2214-9147/Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    1. Introduction

    Austenitic stainless steels are generally used where excellent corrosion resistance and good formability are required. The development of austenitic stainless steel with improved properties was initiated in 1960s and became widespread in the 1980s [1]. In general austenitic stainless steels contain nickel as an alloying element to stabilize the austenitic phase and provide corrosion resistance to some extent [2]. Earlier improvements were related to the increase in chromium, molybdenum and nickel contents [3]. Recently much interest has been expressed in raising the level of dissolved nitrogen in the steel. The later development of the so-called high nitrogen austenitic stainless steel (HNS) with nitrogen levels sometimes exceeding 0.5 wt% has resulted in austenitic stainless steel with an exceptional combination of strength, toughness and corrosion resistance. Nitrogen is one of the alloying elements which may be used to replace the Ni addition and has the additional benefits to increase the pitting corrosion resistance and enhance the strength levels of the steel.

    In fabricating the structural non magnetic material, welding is one of the most commonly used technique for joining high nitrogen austenitic stainless steels. During welding, it is essential to avoid nitrogen losses which could result in loss of mechanical properties and corrosion resistance. In order to reduce the risk of nitrogen induced porosity, the solubility of nitrogen in the weld metal has to be high enough to accommodate any increase in nitrogen concentration. The defects like porosity and solidification cracking can be overcome by the use of suitable filler wire which produces required amountof delta ferrite in the weld metal. Due to the high nitrogen content, welding requires special care to ensure that the nitrogen remains in the metal during welding [4]. Depending on service requirement, delta-ferrite content in stainless steel welds is often specified to ensure that weld metal contains a desired minimum and/or maximum ferrite level [5]. Nitrogen diffusion into the weld metal from the base metal (adjacent to the fusion line) at the elevated temperatures encountered during the weld thermal cycle could also play a role. If the nitrogen level exceeds the limit of solubility at any time during or prior to solidification in welding, the nitrogen bubbles can form in the liquid, thereby increasing the likelihood for nitrogen induced porosity [6]. In order to reduce the risk of nitrogen-induced porosity, the solubility of nitrogen in the weld metal has to be high enough to accommodate any increase in nitrogen concentration. As chromium and manganese are known to increase the solubility limit of nitrogen in austenitic stainless steel, the high levels of these elements are desired in the weld metal when filler wires for welding are selected. Another problem existing in welding a highly alloyed austenitic stainless steel is hot cracking. As a measure to minimize the hot cracking risk, one needs to choose a filler material with low impurity levels (e.g. S, P) in addition to focus on the least degree of segregation of the major alloying elements and the minimization of the level of intermetallic phase in the weld metal [7]. Nitrogen alloying can also play an important role in retarding the precipitation of intermetallic compounds [8], raising the ferrite/austenite transformation temperature and assisting the formation of austenite phase in heat affected zone of a weldment No matching filler wire is commercially available similar to the composition of the base metal (HNS). In the present work authors made an attempt to study the shielded metal arc welds of high nitrogen austenitic stainless steel using a nearest matching electrode of Cr-Mn-N type as it is presently available. Most of the researchers discussed the pitting corrosion resistance of this type of alloy, but the studies related to the welds are scarce. In view of the above, authors made an attempt to investigate the microstructural changes on pitting corrosion behaviour of weld metals of the high nitrogen stainless steel arc welds in 3.5% NaCl solution and to compare with that of the base metal, namely high nitrogen stainless steel (HNS).

    2. Materials and methods

    High nitrogen austenitic stainless steel (HNS) plates in cold worked condition are used in the present study. Schematic diagram of joint geometry and plate dimensions are given in Fig. 1. A set of plates with single-V butt joint welded using shielded metal arc welding (SMAW) and an electrode of Cromang-N steel (17Cr—17Mn—0.36N) was chosen in present study, as shown in Fig. 2. The compositions of base metal and electrode are given in the Table 1. The welding parameters, such as welding current and welding speed, were optimized through many welding trials. The optimized welding parameters are given in Table 2. Metallographic examination of samples was performed. The specimen were cut into pieces, which covers fusion zone, partially melted zone and heat affected zone of welds were cut, polished and etched using aqua regia reagent (HCl—75 vol% and HNO3—25 vol%). Microstructures were recorded using an optical microscope and a field emission scanning electron microscopy (FESEM) was used to examine the structural morphologies. Phases were analyse using X-Ray diffraction technique. Orientation imaging microscope (OIM) studies were done to find the orientation of the grains and the amount of different phases in the various zones of weldment using Energy back-scattered diffraction (EBSD) method. The pitting corrosion resistances of base metal and welds in an electrolyte of 3.5% NaCl were tested using a software based GillAC electrochemical system. The exposure area for these experiments was 0.3 mm2.

    Fig. 1. Schematic diagram of joint geometry and plate dimensions.

    Fig. 2. Weld joint of high nitrogen steel.

    3. Results and discussion

    Addition of Chromium and Manganese increase the solubility of nitrogen whereas nickel reduces the solubility of nitrogen. Therefore the nitrogen content in Fe—Cr—Ni alloys is much lower than that in Fe—Cr—Mn alloys with comparableconcentrations of Cr. Other alloying elements like Ti, V, Nb and Zr enhance the solubility of nitrogen due to their high affinity for nitrogen, which results in nitride formation. Nitride formation has also been put forward as a possible mechanism for synergy between nitrogen and molybdenum to control the localized corrosion. Nitrogen is beneficial for pitting resistance. Like molybdenum, nitrogen also shows a strong concentration gradient in the passive film. The important requirement for welding of high nitrogen steel is the solubility of nitrogen in the weld metal. It is likely that the nitrogen content of the weld metal will decrease during welding as a result of dilution with the high nitrogen base metal. The solubility of nitrogen in binary steel at 1600°c and 1 atm. nitrogen pressure is illustrated in Fig. 3.

    Table 1Compositions of base metal and electrode.

    Table 2Optimized parameters for welding using shielded metal arc welding machine.

    Welded plates of high nitrogen austenitic stainless steels are shown in Fig. 2 The weldment was examined using non destructive testing to identify the surface or sub surface defects. Welds were tested visually and non-destructively using dyepenetrant testing and radiography testing. Visual examination and penetrant testing of the welds revealed no visible surface defects whereas x-ray radiographs revealed no significant defects and observed to be a sound weld as shown in Fig. 4.

    Fig. 5 shows the XRD results of base metal and weldment. It can be seen from the XRD pattern that there are numerous sharp peaks that correspond to the presence of austenite. Only the single phase of austenite was identified in the base metal and the presence of austenite and delta ferrite in the welds are observed which is very beneficial to avoid the cracking tendency.

    The optical microstructure of the high nitrogen stainless steel in cold worked condition is observed to have fine equiaxed grains of austenite and annealing twins as shown in Fig. 6.

    The microstructure of weld metal is fully austenitic and consists of coarse columnar austenite grains growing from the fusion boundary towards the weld centerline attributed to the high amount of chromium and manganese which helps to improve the solubility of nitrogen as shown in Fig. 7(c). At the weld interface, along the fusion boundary towards the base metal transition of coarse grains to fine grains are observed as shown in Fig. 7(b) and having maximum austenite structure due to the dilution of adjacent base metal which is having nitrogen which is completely soluble in the solid solution.

    The reduction of delta-ferrite in the microstructure of Cr—Mn—N weld during solidification and in the room temperature was attributed to the presence of relatively higher amount of nitrogen and completely soluble due to the higher level of manganese content. Higher manganese level of this electrode may relieve the cracking tendency of the weld metal by combining with harmful elements such as sulphur to form inclusions.Nocracks were observedin the interface oftheweld joints as shown in Fig. 7(b). Scanning electron micrographs tostudy the microstructure at higher magnification are supportive to the optical micrograph are shown in Fig. 8.

    Fig. 3. Comparision of nitrogen solubilities of Ni free and Ni containing steels (Feictinger, 1988).

    Fig. 4. X-ray radiograph of Cr—Mn—N electrode SMA weld.

    Fig. 5. XRD analysis peaks of high nitrogen steel (base metal) and SMAwelds.

    Fig. 6. Optical micrograph of high nitrogen steel (base metal).

    Figs. 9—11 show the grain orientation maps and phase analysis maps of the base metal, fusion zone and weld interface of the high nitrogen stainless steel. The observations from the colour codes obtained from the orientation of grains with mis-orientation angle of 46°and OIM maps in the base metal (Fig. 9) and the orientation of coarse grains with misorientation angle of 28°in the fusion zone (Fig. 10)were random. The coarse grains were observed at weld interface, and the fine grains are transited from fusion zone to base metal with mis-orientation angle of 37°(Fig. 11). Different phases were analysed using phase maps, the percentage of delta ferrite and austenite were recorded, and also the distribution ofthe ferrite in the matrix was determined. It can be seen from Figs. 9—11 that the delta ferrite is distributed as discontinuous network. Percentage of ferrite, grain size, mis-orientation angle of high nitrogen steel & its welds are shown in the Table 3.

    Fig. 7. Optical micrographs of high nitrogen steel welds: (a) Weld interface, (b) Heat affected zone and (c) Fusion zone.

    Fig. 8. SEM images of high nitrogen steel welds: (a) Base metal, (b) Fusion zone, (c) Weld interface and (d) Heat affected zone.

    Fig. 9. Grain orientation, OIM maps and phase analysis of high nitrogen steel (base metal).

    Fig. 10. Grain orientation, OIM maps and phase analysis of high nitrogen steel fusion zone.

    Nitrogen is a strong austenite stabilizer and its presence can lead to solid solution strengthening, resulting in an increase in strength of high nitrogen stainless steel attributed to the complete solubility of nitrogen. The high hardness values are observed compared to the weld zone in high nitrogen austenitic stainless steelasshownin the Table 4.Thegrainrefinementand high strengthening effects in base metal of nitrogen steel could be attributed to solid solution and grain boundary strengthening mechanisms.Howeverthe formation ofcoarsegrainintheweld zone resulted in lower hardness values.

    High nitrogen stainless steel generally exhibits better localized corrosion resistance in the 3.5% NaCl solution. However, in alkaline solution, it is only varied with cold work level. The reduction in corrosion resistance was more obvious for larger prior cold worked specimens due to an enhanced precipitation process after cold working [9,10]. The cold workdependent corrosion resistance for the High Nitrogen Stainless Steel (HNSS) in the 3.5% NaCl solution was much different from that for the N-bearing stainless steel [10]. Potentiodynamic polarization curves shown in Fig. 12 for the cold workedHNS base metal were analysed to study the critical pitting potential and compared with those of the HNS welds made using Cr—Mn—N electrode in 3.5% NaCl solution using a basic electrochemical cell. Repeated damages of the dislocations on the slip plane would lead to the formation of a slip band on the surface which will disturb the passive film on the surface to expose the bare material to the working environment, and chloride will start attacking and leads to the dissolution of base metal. The heterogeneities of the weld metal and the reduction ofdelta ferriteare beneficialtothe pittingresistanceandgreater amounts deteriorate the pitting corrosion resistance significantly. Pit formation was observed in Fig. 13. Pitting potential values are shown in the Table 5. The composition of the alloy, grain size and corrosion potential relativeto the adjacent matrix affects the corrosion behaviour. The pitting potential (Epit) of the Cr—Mn—N weld metal is observed to be more positive. The Cr—Mn—N weld metal has better corrosion resistance compared to base metal, which is attributed to the improvement in nitrogen and the reduction in delta ferrite. The lower pitting corrosion resistance of the weld metal interface is because of 3.7% delta ferrite in it. The potential difference between ferrite and austenite and the distribution of ferrite as continuous networkare owingtothegalvanic interaction betweenaustenite and delta ferrite interface.

    Fig. 11. Grain orientation, OIM maps and phase analysis of high nitrogen steel (weld interface).

    Table 3Percentage of ferrite, grain size, mis-orientation angle of high nitrogen steel & its welds.

    Table 4Vickers hardness values of different zones of weldment.

    Fig. 12. Potentio-dynamic polarization of High nitrogen steel & its welds.

    Fig. 13. Pit formation of high nitrogen stainless steel weld.

    4. Conclusions

    1) Use of Cromang-N electrode in shielded metal arc welding of high nitrogen steel resulted in maximum solubility of nitrogen and a defect free weld was observed.

    2) Microstructure of the high nitrogen steel has complete austenite grain structure with annealing twins at the boundaries as nitrogen acts as an austenitic stabilizer. The fusion zone of high nitrogen steel was observed to be solidified as austenite coarse grains and the delta ferrite was observed.

    3) Grain orientation and phase analysis maps clearly shows the distribution of grains and percentage of austenite and delta ferrite in the fusion zone, weld interface and base metal

    4) Improvement in pitting corrosion resistance of the fusion zone compared to base metal is attributed to the coarse austenite grains owing to the reduction in active sites of the austenite/delta ferrite interface and the decrease in galvanic interaction between austenite and delta-ferrite.

    Table 5Pitting potential values of different zones of weldment.

    Acknowledgements

    The authors would like to thank Director, Defence Metallurgical Research Laboratory and Hyderabad, India for his continued encouragement and permission to publish this work.

    References

    [1] Garner FA, Brager HR, Gelles DS, Mc JM. Carthy J Nucl Mater 1987;148:294—301.

    [2] Hosoi Y, Okazaki Y, Wade N, Mytyabara K. J Nucl Mater 1989;169:257—62.

    [3] Sarvanan Pandurangan, Raja VS. J Steel Relate Mater 2011;9:194—8.

    [4] du Tolt Madeleine. J Mater Eng Perf 2002;11:306—12.

    [5] Raj Baldev, Shankar P, Jayakumar T. Advances in stainless steel. 2010. p. 342.

    [6] Kotecki DJ, Sievert TA. Weld J 1992:171—8.

    [7] Hazra Mrityunjoy, Rao Kotipalli Srinivasa, Reddy Gankidi Madhusudhan. J Mat Res Technol 2014;1:90—100.

    [8] Talha Mohd, Behera CK, Sinha OP. J materials Science Eng C 2013;7:3563—75.

    [9] Parvathavarthini N, Dayal RK, Seshadri SK, Gnanamoorthy JB. J Nucl Mater 1989;2:83—8.

    [10] Fu Yao, Wu Xinqiang, Han En-hou, Ke Wei, Yang Ke, Jiang Zhouhua. J. Electrochemical Acta 2009:1618—29.

    * Corresponding author.

    国产av一区在线观看免费| 人人妻,人人澡人人爽秒播| 久久久久久亚洲精品国产蜜桃av| 国产99白浆流出| 亚洲欧美日韩高清在线视频| 桃色一区二区三区在线观看| 国产一卡二卡三卡精品| 无遮挡黄片免费观看| 亚洲精华国产精华精| 久久人人爽av亚洲精品天堂| 成年人黄色毛片网站| 亚洲aⅴ乱码一区二区在线播放 | 亚洲一码二码三码区别大吗| 91精品三级在线观看| 欧美激情 高清一区二区三区| 一a级毛片在线观看| 亚洲狠狠婷婷综合久久图片| 久久久久久亚洲精品国产蜜桃av| 真人做人爱边吃奶动态| 国产99白浆流出| 欧美黑人精品巨大| 一夜夜www| 无人区码免费观看不卡| 99精品在免费线老司机午夜| 18禁观看日本| 国产一区二区激情短视频| 真人一进一出gif抽搐免费| 久久午夜综合久久蜜桃| 一级a爱视频在线免费观看| 国内久久婷婷六月综合欲色啪| ponron亚洲| av电影中文网址| 日韩国内少妇激情av| 亚洲欧美精品综合一区二区三区| 一级a爱视频在线免费观看| 757午夜福利合集在线观看| 人人妻人人澡欧美一区二区 | 女人精品久久久久毛片| 国产免费男女视频| 在线观看免费视频网站a站| 大陆偷拍与自拍| 亚洲成av人片免费观看| 亚洲欧美日韩高清在线视频| 一进一出抽搐gif免费好疼| www.999成人在线观看| 一区二区三区精品91| 国产日韩一区二区三区精品不卡| 成人av一区二区三区在线看| 久久久精品欧美日韩精品| 久久这里只有精品19| 黄色a级毛片大全视频| 亚洲熟女毛片儿| 亚洲成人国产一区在线观看| 香蕉国产在线看| 我的亚洲天堂| 久久久久久人人人人人| or卡值多少钱| 一卡2卡三卡四卡精品乱码亚洲| www日本在线高清视频| 国产成人系列免费观看| 老鸭窝网址在线观看| 免费久久久久久久精品成人欧美视频| 亚洲欧美激情在线| 久久中文看片网| 亚洲人成电影观看| 制服人妻中文乱码| 国产精品综合久久久久久久免费 | 正在播放国产对白刺激| 老司机靠b影院| 黄色视频不卡| 亚洲成a人片在线一区二区| 黑人操中国人逼视频| 人人妻人人澡欧美一区二区 | 亚洲中文字幕日韩| 琪琪午夜伦伦电影理论片6080| 精品熟女少妇八av免费久了| 精品卡一卡二卡四卡免费| 此物有八面人人有两片| 国产亚洲精品久久久久5区| 免费在线观看亚洲国产| 日韩精品中文字幕看吧| 亚洲,欧美精品.| 国产成人影院久久av| 两个人看的免费小视频| 午夜视频精品福利| 香蕉丝袜av| 真人做人爱边吃奶动态| 999久久久精品免费观看国产| 男女做爰动态图高潮gif福利片 | 亚洲国产精品合色在线| 欧美老熟妇乱子伦牲交| 两性夫妻黄色片| 可以在线观看毛片的网站| 久久人人97超碰香蕉20202| 亚洲中文av在线| 亚洲人成伊人成综合网2020| 激情在线观看视频在线高清| www.999成人在线观看| 一进一出抽搐动态| 欧美激情久久久久久爽电影 | 国产精品电影一区二区三区| 人人妻人人澡欧美一区二区 | 亚洲中文字幕一区二区三区有码在线看 | 日本 欧美在线| av天堂久久9| 亚洲中文字幕一区二区三区有码在线看 | 日本三级黄在线观看| 在线观看免费视频日本深夜| 琪琪午夜伦伦电影理论片6080| 后天国语完整版免费观看| 非洲黑人性xxxx精品又粗又长| 国产精品亚洲美女久久久| 成人欧美大片| 搞女人的毛片| 欧美日韩黄片免| 国产又色又爽无遮挡免费看| 亚洲av电影在线进入| 亚洲一卡2卡3卡4卡5卡精品中文| 性少妇av在线| 脱女人内裤的视频| 亚洲专区国产一区二区| 久久人人精品亚洲av| 他把我摸到了高潮在线观看| 丝袜美腿诱惑在线| 精品欧美国产一区二区三| 久久伊人香网站| 亚洲最大成人中文| 亚洲精品美女久久久久99蜜臀| 欧美日韩福利视频一区二区| 女性被躁到高潮视频| 午夜福利一区二区在线看| 香蕉国产在线看| 丝袜美足系列| 1024香蕉在线观看| 日本撒尿小便嘘嘘汇集6| 一边摸一边抽搐一进一出视频| 亚洲视频免费观看视频| 夜夜夜夜夜久久久久| 女性被躁到高潮视频| 国产欧美日韩一区二区三| 99精品久久久久人妻精品| 波多野结衣巨乳人妻| 无遮挡黄片免费观看| 麻豆av在线久日| 黄色a级毛片大全视频| 波多野结衣高清无吗| 欧美激情高清一区二区三区| 黑人欧美特级aaaaaa片| 波多野结衣av一区二区av| a级毛片在线看网站| 夜夜躁狠狠躁天天躁| 久久久久亚洲av毛片大全| 美女高潮喷水抽搐中文字幕| 99国产极品粉嫩在线观看| 精品久久久久久成人av| 欧洲精品卡2卡3卡4卡5卡区| 成人欧美大片| 国产99白浆流出| 免费在线观看完整版高清| 一个人观看的视频www高清免费观看 | 国产xxxxx性猛交| 琪琪午夜伦伦电影理论片6080| 亚洲色图 男人天堂 中文字幕| 天堂影院成人在线观看| 一级a爱视频在线免费观看| 国产野战对白在线观看| 国产成人影院久久av| 精品高清国产在线一区| 精品国产美女av久久久久小说| 国产欧美日韩一区二区精品| 9热在线视频观看99| 亚洲成av片中文字幕在线观看| 老司机午夜十八禁免费视频| 日韩中文字幕欧美一区二区| 搡老妇女老女人老熟妇| 夜夜躁狠狠躁天天躁| 久久人人精品亚洲av| 久久精品成人免费网站| 久久精品亚洲精品国产色婷小说| 国产一区二区三区综合在线观看| 日本vs欧美在线观看视频| 欧美不卡视频在线免费观看 | 他把我摸到了高潮在线观看| 性欧美人与动物交配| 亚洲熟女毛片儿| 天天添夜夜摸| 人妻丰满熟妇av一区二区三区| 精品人妻1区二区| 国产精品久久视频播放| 国产亚洲精品一区二区www| 日韩欧美一区二区三区在线观看| 如日韩欧美国产精品一区二区三区| 久久精品国产综合久久久| 少妇被粗大的猛进出69影院| 国产区一区二久久| 悠悠久久av| 欧美成人性av电影在线观看| 一区二区三区国产精品乱码| 在线免费观看的www视频| 国产区一区二久久| 国产欧美日韩一区二区三区在线| 在线观看午夜福利视频| 少妇熟女aⅴ在线视频| 人人妻人人爽人人添夜夜欢视频| 欧美另类亚洲清纯唯美| 日本免费一区二区三区高清不卡 | 黄色 视频免费看| а√天堂www在线а√下载| 怎么达到女性高潮| 亚洲激情在线av| 久久这里只有精品19| 变态另类成人亚洲欧美熟女 | 国产精品1区2区在线观看.| 国产黄a三级三级三级人| 欧美日韩亚洲国产一区二区在线观看| 午夜日韩欧美国产| 亚洲久久久国产精品| a在线观看视频网站| 精品第一国产精品| 国产精品久久久av美女十八| 黄色片一级片一级黄色片| 一二三四在线观看免费中文在| 久久久久久国产a免费观看| 久久伊人香网站| 亚洲伊人色综图| 99riav亚洲国产免费| 国产精品亚洲美女久久久| 日本精品一区二区三区蜜桃| 色尼玛亚洲综合影院| 嫩草影视91久久| 国产成人影院久久av| 又黄又粗又硬又大视频| 琪琪午夜伦伦电影理论片6080| 国产精品永久免费网站| 日本欧美视频一区| 国内精品久久久久久久电影| 12—13女人毛片做爰片一| 人成视频在线观看免费观看| 久久精品国产综合久久久| 欧美黄色片欧美黄色片| 色综合欧美亚洲国产小说| 每晚都被弄得嗷嗷叫到高潮| 又大又爽又粗| 国语自产精品视频在线第100页| videosex国产| 精品国内亚洲2022精品成人| 18禁国产床啪视频网站| 精品久久久久久成人av| 成人三级黄色视频| 久久性视频一级片| 中文字幕av电影在线播放| 国产免费男女视频| 免费久久久久久久精品成人欧美视频| 国产亚洲精品一区二区www| 99久久久亚洲精品蜜臀av| av有码第一页| 精品一区二区三区四区五区乱码| 好看av亚洲va欧美ⅴa在| 欧美日本亚洲视频在线播放| 51午夜福利影视在线观看| 美女扒开内裤让男人捅视频| 侵犯人妻中文字幕一二三四区| 国产精品,欧美在线| 精品欧美国产一区二区三| 99国产精品99久久久久| www.自偷自拍.com| 免费观看人在逋| 人妻久久中文字幕网| 侵犯人妻中文字幕一二三四区| 国产精品二区激情视频| 午夜老司机福利片| 免费在线观看影片大全网站| 午夜福利视频1000在线观看 | 黄频高清免费视频| 波多野结衣巨乳人妻| 欧美午夜高清在线| 久9热在线精品视频| 国产片内射在线| 中亚洲国语对白在线视频| 国产av又大| 9191精品国产免费久久| 精品国产美女av久久久久小说| 99香蕉大伊视频| 美女国产高潮福利片在线看| 91成人精品电影| 免费人成视频x8x8入口观看| 91大片在线观看| 精品电影一区二区在线| 免费女性裸体啪啪无遮挡网站| 好男人在线观看高清免费视频 | 亚洲在线自拍视频| 国产成人欧美| 国产一区二区三区在线臀色熟女| 久99久视频精品免费| 一边摸一边抽搐一进一出视频| 国产欧美日韩精品亚洲av| 国产成人av教育| 成人永久免费在线观看视频| 日韩精品免费视频一区二区三区| 18美女黄网站色大片免费观看| 免费一级毛片在线播放高清视频 | √禁漫天堂资源中文www| 日韩免费av在线播放| 丝袜美腿诱惑在线| 久久久久久亚洲精品国产蜜桃av| 欧美激情久久久久久爽电影 | www.精华液| 美女国产高潮福利片在线看| 久久国产精品男人的天堂亚洲| 国产伦人伦偷精品视频| 成熟少妇高潮喷水视频| av电影中文网址| 99国产极品粉嫩在线观看| 黄色视频,在线免费观看| 99久久精品国产亚洲精品| 在线观看舔阴道视频| 亚洲第一av免费看| 两性夫妻黄色片| 欧美一级a爱片免费观看看 | 午夜成年电影在线免费观看| 麻豆成人av在线观看| 男人舔女人下体高潮全视频| а√天堂www在线а√下载| 欧美另类亚洲清纯唯美| 国产乱人伦免费视频| 久久狼人影院| 久久人妻福利社区极品人妻图片| 夜夜夜夜夜久久久久| 757午夜福利合集在线观看| 久久精品影院6| 在线av久久热| 天天一区二区日本电影三级 | 在线播放国产精品三级| 亚洲精品一区av在线观看| 人成视频在线观看免费观看| 黄色毛片三级朝国网站| avwww免费| 美女 人体艺术 gogo| av电影中文网址| 久久人人精品亚洲av| 亚洲av第一区精品v没综合| 国产精品一区二区在线不卡| 精品不卡国产一区二区三区| 在线永久观看黄色视频| 18美女黄网站色大片免费观看| 欧美大码av| 少妇粗大呻吟视频| 亚洲人成77777在线视频| 日本撒尿小便嘘嘘汇集6| 少妇 在线观看| 欧美日本中文国产一区发布| 久久香蕉激情| 久久久久久久久中文| 人人妻人人澡欧美一区二区 | 人妻久久中文字幕网| 岛国在线观看网站| 亚洲,欧美精品.| 久久久精品国产亚洲av高清涩受| 精品国产国语对白av| 99re在线观看精品视频| 啪啪无遮挡十八禁网站| 国产精品 欧美亚洲| 午夜两性在线视频| 亚洲av电影在线进入| 99久久综合精品五月天人人| 少妇 在线观看| 深夜精品福利| 99精品久久久久人妻精品| 色老头精品视频在线观看| 国产精品二区激情视频| 一区在线观看完整版| 一本大道久久a久久精品| 国产免费av片在线观看野外av| 美女 人体艺术 gogo| 麻豆成人av在线观看| 国产精品自产拍在线观看55亚洲| 亚洲男人的天堂狠狠| 好男人电影高清在线观看| 国产精品 国内视频| 精品国产国语对白av| 99热只有精品国产| x7x7x7水蜜桃| 久久香蕉精品热| 亚洲七黄色美女视频| 黄色毛片三级朝国网站| 他把我摸到了高潮在线观看| 欧美黄色淫秽网站| 老鸭窝网址在线观看| 日韩欧美在线二视频| 999久久久精品免费观看国产| 日韩视频一区二区在线观看| 级片在线观看| 亚洲国产精品999在线| 操出白浆在线播放| 又紧又爽又黄一区二区| 丝袜美腿诱惑在线| 怎么达到女性高潮| 少妇被粗大的猛进出69影院| 最新在线观看一区二区三区| 女人被躁到高潮嗷嗷叫费观| 亚洲精品久久国产高清桃花| 免费在线观看视频国产中文字幕亚洲| 亚洲精品国产精品久久久不卡| 多毛熟女@视频| 午夜福利18| 久久久国产成人免费| 国产乱人伦免费视频| 国内毛片毛片毛片毛片毛片| 看免费av毛片| 91成年电影在线观看| av电影中文网址| 狠狠狠狠99中文字幕| 精品福利观看| 青草久久国产| 日韩精品青青久久久久久| 欧美丝袜亚洲另类 | 久久久久九九精品影院| 女人被躁到高潮嗷嗷叫费观| e午夜精品久久久久久久| 精品久久久久久,| 欧美另类亚洲清纯唯美| 亚洲av美国av| 精品高清国产在线一区| 日日干狠狠操夜夜爽| 国产精品一区二区精品视频观看| 久久性视频一级片| 久久欧美精品欧美久久欧美| 成人三级做爰电影| 91麻豆精品激情在线观看国产| 9色porny在线观看| 国产一区二区在线av高清观看| 9191精品国产免费久久| 日韩av在线大香蕉| 亚洲中文字幕一区二区三区有码在线看 | 手机成人av网站| 亚洲精品久久国产高清桃花| 女人被躁到高潮嗷嗷叫费观| 精品国产乱码久久久久久男人| 黑丝袜美女国产一区| 久久人人爽av亚洲精品天堂| 波多野结衣高清无吗| 免费搜索国产男女视频| 麻豆一二三区av精品| 国产精品香港三级国产av潘金莲| 很黄的视频免费| 亚洲一区二区三区色噜噜| av超薄肉色丝袜交足视频| 亚洲自偷自拍图片 自拍| 亚洲中文av在线| 人人澡人人妻人| 91麻豆精品激情在线观看国产| 精品久久久久久成人av| 国产成人系列免费观看| 免费不卡黄色视频| 国产精品综合久久久久久久免费 | 精品午夜福利视频在线观看一区| 亚洲精品在线观看二区| 国产国语露脸激情在线看| 丝袜在线中文字幕| 大香蕉久久成人网| 精品不卡国产一区二区三区| av网站免费在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产日韩一区二区三区精品不卡| 久久婷婷人人爽人人干人人爱 | 一进一出抽搐gif免费好疼| 大香蕉久久成人网| 侵犯人妻中文字幕一二三四区| 色播亚洲综合网| 国产精品国产高清国产av| 精品久久久久久久毛片微露脸| 亚洲中文日韩欧美视频| 国产av精品麻豆| 中文字幕高清在线视频| 亚洲熟妇熟女久久| 亚洲精品国产色婷婷电影| 纯流量卡能插随身wifi吗| 欧美乱妇无乱码| 手机成人av网站| 叶爱在线成人免费视频播放| 99精品在免费线老司机午夜| 亚洲视频免费观看视频| svipshipincom国产片| 精品国产一区二区三区四区第35| 日本vs欧美在线观看视频| 亚洲av成人不卡在线观看播放网| 女警被强在线播放| 欧美一区二区精品小视频在线| 好男人在线观看高清免费视频 | 神马国产精品三级电影在线观看 | 午夜福利一区二区在线看| 国产激情久久老熟女| avwww免费| 午夜久久久在线观看| av在线播放免费不卡| 熟女少妇亚洲综合色aaa.| 色在线成人网| 一卡2卡三卡四卡精品乱码亚洲| 欧美黑人欧美精品刺激| 黑人操中国人逼视频| 一级,二级,三级黄色视频| 午夜精品国产一区二区电影| 亚洲av电影不卡..在线观看| 久热这里只有精品99| 久久久久精品国产欧美久久久| 国产午夜精品久久久久久| www日本在线高清视频| 给我免费播放毛片高清在线观看| av天堂在线播放| 国产av一区在线观看免费| 久久久久久久午夜电影| 一边摸一边抽搐一进一出视频| 国产欧美日韩一区二区精品| 亚洲第一av免费看| 看免费av毛片| 69av精品久久久久久| 12—13女人毛片做爰片一| 久久久久国产一级毛片高清牌| 人人妻人人爽人人添夜夜欢视频| 又黄又粗又硬又大视频| 欧美成狂野欧美在线观看| 亚洲成人精品中文字幕电影| 国产在线精品亚洲第一网站| 午夜亚洲福利在线播放| 亚洲一区二区三区色噜噜| 亚洲第一欧美日韩一区二区三区| 免费av毛片视频| 亚洲国产欧美网| 18美女黄网站色大片免费观看| 日韩精品青青久久久久久| 国产精品永久免费网站| 国产一区二区三区在线臀色熟女| 精品少妇一区二区三区视频日本电影| 国产成人av教育| 少妇被粗大的猛进出69影院| 99久久99久久久精品蜜桃| 这个男人来自地球电影免费观看| 免费看a级黄色片| 国产aⅴ精品一区二区三区波| 俄罗斯特黄特色一大片| 九色亚洲精品在线播放| x7x7x7水蜜桃| 欧美激情 高清一区二区三区| 韩国av一区二区三区四区| 一本久久中文字幕| 亚洲国产精品sss在线观看| 我的亚洲天堂| 国产成人精品无人区| 纯流量卡能插随身wifi吗| 欧美中文综合在线视频| 国产精品日韩av在线免费观看 | 69精品国产乱码久久久| 精品一品国产午夜福利视频| 热re99久久国产66热| 亚洲精品久久国产高清桃花| 男女午夜视频在线观看| 精品久久久久久久久久免费视频| 99国产综合亚洲精品| 一边摸一边抽搐一进一出视频| 色精品久久人妻99蜜桃| 欧美精品啪啪一区二区三区| 不卡一级毛片| 一区在线观看完整版| 亚洲全国av大片| 国产精品亚洲av一区麻豆| 美女大奶头视频| 美女扒开内裤让男人捅视频| 国产精品久久久人人做人人爽| 精品一区二区三区av网在线观看| 午夜亚洲福利在线播放| 午夜视频精品福利| 丰满人妻熟妇乱又伦精品不卡| 极品教师在线免费播放| 身体一侧抽搐| 欧美另类亚洲清纯唯美| or卡值多少钱| 国产午夜福利久久久久久| 色av中文字幕| 久久久久久大精品| 亚洲国产高清在线一区二区三 | 久久久国产成人精品二区| 亚洲熟妇中文字幕五十中出| 老司机在亚洲福利影院| x7x7x7水蜜桃| 99国产精品免费福利视频| 手机成人av网站| 性少妇av在线| 亚洲av成人av| 国产精品免费视频内射| 成人国语在线视频| 19禁男女啪啪无遮挡网站| 少妇 在线观看| 欧美中文日本在线观看视频| 欧美激情极品国产一区二区三区| 亚洲五月色婷婷综合| 老司机午夜福利在线观看视频| 国产精品日韩av在线免费观看 | 99久久精品国产亚洲精品| 亚洲成av片中文字幕在线观看| 成年版毛片免费区| 国产区一区二久久| 19禁男女啪啪无遮挡网站| 精品少妇一区二区三区视频日本电影| 少妇的丰满在线观看| 久久久久久久午夜电影| 亚洲电影在线观看av| 精品久久久久久成人av| av在线天堂中文字幕| 成人av一区二区三区在线看| 国产av一区在线观看免费| 日本a在线网址| 神马国产精品三级电影在线观看 | av天堂久久9| 最近最新中文字幕大全免费视频| 波多野结衣高清无吗|