王程,徐瀟,陳沖,李梁,閆俊靈,湯蘇陽
體外誘導(dǎo)脂肪來源干細(xì)胞向黏膜上皮細(xì)胞分化的研究
王程,徐瀟,陳沖,李梁,閆俊靈,湯蘇陽
目的探討在體外誘導(dǎo)脂肪來源干細(xì)胞(ADSCs)分化為黏膜上皮細(xì)胞的可能性。方法獲取成年人皮下脂肪組織,進(jìn)行ADSCs的分離、培養(yǎng),擴(kuò)增至第三代進(jìn)行細(xì)胞免疫表型、分化情況及遺傳穩(wěn)定性鑒定。分別采用含10%胎牛血清、8μg/L表皮生長因子(EGF)、10%胎牛血清+8μg/L EGF、10%胎牛血清+8μg/L EGF+30%成纖維細(xì)胞培養(yǎng)基、10%胎牛血清+30%成纖維細(xì)胞培養(yǎng)基的DMEM培養(yǎng)液進(jìn)行培養(yǎng),于培養(yǎng)前及培養(yǎng)后7、14d觀察各組細(xì)胞的光鏡特征,采用免疫組織化學(xué)染色檢測特異性細(xì)胞表面標(biāo)記物的表達(dá)以及Western blotting方法檢測誘導(dǎo)前后ADSCs中CK-7、CK-14的蛋白表達(dá)水平。結(jié)果與未加EGF誘導(dǎo)劑培養(yǎng)組比較,經(jīng)EGF誘導(dǎo)14d后多數(shù)ADSCs細(xì)胞形態(tài)、排列方式發(fā)生改變。CK-19免疫組化染色顯示呈強(qiáng)陽性。Western blotting檢測結(jié)果提示誘導(dǎo)后的黏膜上皮細(xì)胞特異性蛋白CK7、CK14呈高表達(dá)。結(jié)論ADSCs在一定誘導(dǎo)條件下可向黏膜上皮樣細(xì)胞分化。
脂肪干細(xì)胞;表皮生長因子;上皮樣細(xì)胞;細(xì)胞分化
脂肪來源干細(xì)胞(adipose-derived stem cells,ADSCs)是近年來從脂肪組織中分離得到的一種具有多向分化潛能的干細(xì)胞[1],能夠在體外穩(wěn)定增殖且衰亡率低,同時具有取材容易、少量組織即可獲取大量干細(xì)胞、適宜大規(guī)模培養(yǎng)等優(yōu)點,目前已證實其具有向成骨細(xì)胞、軟骨細(xì)胞、脂肪細(xì)胞、肌肉細(xì)胞、心肌細(xì)胞、神經(jīng)細(xì)胞等方向分化的能力[2],是一種很有前景的組織工程種子細(xì)胞。本研究采用表皮生長因子(epidermal growth factor,EGF)作為誘導(dǎo)劑,觀察其對脂肪來源干細(xì)胞生長分化的影響。
1.1 材料
1.1.1 主要試劑及儀器 24孔培養(yǎng)板(Falcon公司),6cm及10cm培養(yǎng)皿、25cm2及75cm2培養(yǎng)瓶(Corning公司),胰蛋白酶、DMEM培養(yǎng)液、胎牛血清(Gibco BRL公司,美國),Ⅰ型膠原酶、PBS緩沖液、EGF(Peprotech Inc.,美國),成纖維細(xì)胞培養(yǎng)基(Hyclone公司),CD19、CD34、CD90、CD105抗人單克隆抗體,人抗細(xì)胞角蛋白7、14、19(CK-7、CK-14、CK-19)單克隆抗體(Abcam,China),流式細(xì)胞儀(Becton Dickinson company,BDFAesAria)。
1.1.2 細(xì)胞來源 選取在武警總醫(yī)院皮膚再生醫(yī)學(xué)科行脂肪抽吸術(shù)后廢棄的人體腹部、臀部、大腿皮下脂肪組織混懸液。所有患者均簽訂知情同意書,并經(jīng)武警總醫(yī)院倫理委員會批準(zhǔn)。
1.2 方法
1.2.1 自體脂肪干細(xì)胞的分離、培養(yǎng)與鑒定 入選患者(均為成年人)行血液常規(guī)檢查及傳染病抗原、抗體檢查(包括各項肝炎、梅毒、艾滋病抗體)。從患者腹部、臀部或大腿吸取脂肪,均勻分至50ml離心管中,操作中注意無菌原則。放入離心機(jī)中,500×g離心5min。離心后將上層脂肪傾倒于50ml離心管中,每個離心管至多25ml。將適量濃度胰蛋白酶和膠原酶加入離心管至50ml,使其在離心管內(nèi)的終濃度均為0.1%,然后置入水浴振蕩器中,37℃、220r/min振蕩30~45min,觀察脂肪逐漸變?yōu)槿槊訝?,置入離心機(jī),2000r/min離心5min,棄上層脂肪及上清,加入適量PBS重懸細(xì)胞沉淀,吹打后接種于H-DMEM培養(yǎng)液(含10%胎牛血清,100U/ml青霉素,100mg/L鏈霉素)中,37℃、5%CO2、飽和濕度條件下培養(yǎng),24h后換液,棄去未貼壁的細(xì)胞,每隔3~4d換液,倒置顯微鏡(Leica)觀察細(xì)胞生長情況,接近80%融合時用0.25%胰蛋白酶(Hyclone公司)室溫消化5~10min,按1:3比例傳代培養(yǎng)。傳至第3代時,觀察細(xì)胞形態(tài)及活性,并采用流式細(xì)胞儀進(jìn)行表型檢測(CD34、CD73、CD90、CD105)。
1.2.2 流式細(xì)胞儀檢測 取第3代ADSCs,經(jīng)0.25%胰酶室溫消化,磷酸鹽緩沖液(PBS)洗滌離心后,加入人抗廣譜角蛋白多克隆抗體(Maxim公司),工作濃度1:20,4℃孵育30min。PBS洗滌3次,加入異硫氰酸熒光素(FITC)標(biāo)記的人抗兔二抗(Sigma公司),工作濃度為1:200,4℃孵育30min。PBS洗滌3次后,分別標(biāo)記CD19、CD34、CD73、CD90,采用流式細(xì)胞儀進(jìn)行檢測。
1.2.3 EGF誘導(dǎo)ADSCs分化 取第3代ADSCs接種于24孔板(2000個/孔),分別加入含不同成分的培養(yǎng)液進(jìn)行培養(yǎng)。A組:DMEM培養(yǎng)液,10%胎牛血清;B組:DMEM培養(yǎng)液,8μg/L EGF(Peperotech);C組:DMEM培養(yǎng)液,10%胎牛血清,8μg/L EGF;D組:DMEM培養(yǎng)液,10%胎牛血清,8μg/L EGF,30%成纖維細(xì)胞培養(yǎng)基;E組:DMEM培養(yǎng)液,10%胎牛血清,30%成纖維細(xì)胞培養(yǎng)基。
1.2.4 吉姆薩染色 ①涂片的制作與固定:用移液槍吸取10~20μl待檢溶液滴在載玻片上,均勻涂布,室溫下陰干后,用Camon固定液固定涂片10min。②染色:置吉姆薩工作液30min。③洗脫:染色完成后,涂片立即用ddH2O洗脫。④顯微鏡觀察:用甘油壓片,指甲油封固。在100×油鏡下觀察。
1.2.5 免疫組織化學(xué)染色 取誘導(dǎo)前和誘導(dǎo)后7、14d的細(xì)胞,采用SP法進(jìn)行CK-19免疫組織化學(xué)染色,嚴(yán)格按照Maxim生物技術(shù)有限公司提供的免疫組織化學(xué)染色試劑盒說明書操作,二氨基聯(lián)苯胺(DAB)顯色。兔抗廣譜角蛋白多克隆抗體(Maxim)工作濃度為1:100,采用蘇木素進(jìn)行復(fù)染,以非特異血清代替一抗作為陰性對照。角蛋白19(cytokeratin-19,CK-19)陽性細(xì)胞胞質(zhì)呈深藍(lán)色。
1.2.6 Western blotting檢測ADSCs中CK-7、CK-19的蛋白表達(dá)水平 取誘導(dǎo)前及誘導(dǎo)后14d的細(xì)胞,提取細(xì)胞總蛋白,采用NC膜進(jìn)行蛋白質(zhì)電轉(zhuǎn)移(轉(zhuǎn)移條件:200mA,2h),然后將NC膜轉(zhuǎn)移至含5%封閉液的托盤中,4℃過夜。棄封閉液,PBST洗膜3次,每次10min。加入一抗(1:100)孵育2h。PBST洗膜3次,每次10min。再加入HRP標(biāo)記的二抗(用封閉液稀釋,1:200)孵育1h。PBST洗膜3次,每次10min。加入配制好的增強(qiáng)化學(xué)發(fā)光( ECL)底物液,X線片曝光,暗室顯影,定影,洗片。BCA法檢測蛋白含量,SDS-PAGE凝膠電泳,轉(zhuǎn)膜,脫脂奶粉封閉,吸棄封閉液,立即加入稀釋好的一抗,室溫或4℃緩慢搖動孵育1h,回收一抗,加入Western洗滌液,緩慢搖動洗滌5~10min,共洗滌3次,吸棄洗滌液,立即加入稀釋好的二抗,室溫或4℃緩慢搖動孵育1h,回收二抗,加入Western洗滌液,緩慢搖動洗滌5~10min,共洗滌3次。ECL底物發(fā)光檢測誘導(dǎo)前后ADSCs中CK-7、CK-19的表達(dá)水平。
圖1 原代ADSCs形態(tài)觀察(×100)Fig. 1 Morphological observation of primary adipose-derived stem cells (×100)Most of the cells had attached to the wall, spindle shaped, with small amount of non-adherent circular lymphocytes (24h after inoculation, inverted microscope)
2.1 ADSCs的分離、培養(yǎng)、擴(kuò)增 脂肪細(xì)胞懸液接種于培養(yǎng)瓶后,原代細(xì)胞經(jīng)過24h體外培養(yǎng)后有大量貼壁細(xì)胞(圖1),在4d內(nèi)呈相對靜止?fàn)顟B(tài),之后細(xì)胞生長速度加快,并呈克隆樣生長,12d左右達(dá)到細(xì)胞融合,細(xì)胞形態(tài)呈長梭形,比較均一。
2.2 自體ADSCs免疫表型鑒定結(jié)果 流式細(xì)胞檢測顯示,第3代ADSCs表面標(biāo)記物CD73、CD90陽性率均大于95%,CD19、CD34陽性率低于3%(圖2)。
2.3 誘導(dǎo)分化細(xì)胞的形態(tài)學(xué)和免疫組織化學(xué)鑒定吉姆薩染色結(jié)果顯示,誘導(dǎo)分化前各組ADSCs在體外均正常生長和增殖,呈成纖維細(xì)胞形態(tài),為長梭形(圖3)。誘導(dǎo)7d后對ADSCs進(jìn)行觀察,除單純EGF誘導(dǎo)組(B組)可見細(xì)胞死亡外,其余各組細(xì)胞形態(tài)無明顯變化,仍呈長梭形。在誘導(dǎo)14d后,EGF和成纖維細(xì)胞培養(yǎng)基聯(lián)合誘導(dǎo)組(D組)細(xì)胞呈多邊形單層生長,呈“鵝卵石樣”分布(圖4);除D組外,其余各組細(xì)胞仍維持其原來的形狀,且細(xì)胞分層生長,細(xì)胞因密度太大發(fā)生接觸抑制,細(xì)胞界限不清,出現(xiàn)老化現(xiàn)象。CK-19免疫組織化學(xué)染色顯示,EGF和成纖維細(xì)胞培養(yǎng)基聯(lián)合誘導(dǎo)組(D組)細(xì)胞CK-19呈強(qiáng)陽性表達(dá),多數(shù)細(xì)胞胞質(zhì)呈深藍(lán)色(圖4),其余各組呈弱表達(dá)。
2.4 Western blotting檢測結(jié)果 在誘導(dǎo)前的ADSCs中,鼻黏膜上皮細(xì)胞特異性蛋白CK-7、CK-14均呈現(xiàn)低表達(dá),而在EGF與成纖維細(xì)胞培養(yǎng)基聯(lián)合培養(yǎng)(D組)14d后,ADSCs中CK-7、CK-14蛋白表達(dá)明顯增強(qiáng)(圖5)。除D組外,其余各組均呈弱表達(dá)。
圖2 第3代ADSCs的免疫表型鑒定Fig. 2 Identification of immunophenotype of passage 3 adipose-derived stem cells (ADSCs) The expression rate of CD73 and CD90 were >95%, and of CD34 and CD19 were <3% in passage 3 ADSCs
圖3 誘導(dǎo)前ADSCs吉姆薩染色結(jié)果(×200)Fig. 3 ADSCs before induction (Giemsa staining ×200)
圖4 CK19免疫組化染色(×200)Fig. 4 Expression of CK19 in ADSCs (Immunohistochemical staining ×200)
近年來研究顯示,骨髓間質(zhì)干細(xì)胞具有多向分化潛能,可在體內(nèi)外轉(zhuǎn)化為多種不同類型的細(xì)胞,其作為組織工程的種子細(xì)胞已得到了廣泛應(yīng)用[3-5]。有研究發(fā)現(xiàn),骨髓間質(zhì)干細(xì)胞、造血干細(xì)胞和普通的骨髓細(xì)胞均可在體內(nèi)生成肺組織和其他組織類型的上皮細(xì)胞[5-8]。脂肪組織與骨髓一樣,均來源于中胚層,故ADSCs在細(xì)胞來源、生長增殖、分化潛能等方面與骨髓間質(zhì)干細(xì)胞極為相似。但脂肪組織來源更為廣泛,且ADSCs能保持穩(wěn)定的倍增能力,并有體外擴(kuò)增簡單易行、免疫原性低和無倫理學(xué)限制等優(yōu)點[9-11],已成為目前干細(xì)胞誘導(dǎo)分化研究的新熱點。ADSCs作為間質(zhì)干細(xì)胞,可向內(nèi)、中和外三個胚層的細(xì)胞分化,在不同誘導(dǎo)條件下的分化方向不同。已有研究證實ADSCs可向軟骨細(xì)胞、骨細(xì)胞、成纖維細(xì)胞、脂肪細(xì)胞、平滑肌細(xì)胞、神經(jīng)細(xì)胞、心肌細(xì)胞、肝細(xì)胞和內(nèi)皮細(xì)胞等分化[12-16]。ADSCs向上皮細(xì)胞定向分化的研究報道不多,如能成功誘導(dǎo)分化,可以為創(chuàng)面修復(fù)和組織再生等臨床問題提供一種全新的解決方法。本研究通過流式細(xì)胞技術(shù)檢測培養(yǎng)第3代的ADSCs,發(fā)現(xiàn)其高表達(dá)CD73、CD90,幾乎不表達(dá)CD19、CD34,與既往研究結(jié)果一致[17-18]。
圖5 ADSCs中CK-7、CK-14蛋白表達(dá)的Western blotting檢測結(jié)果Fig. 5 Expression of CK-7 and CK-14 protein in ADSCs (Western blotting)
Baer等[19]認(rèn)為細(xì)胞角蛋白(cytokeratin,CK)是在誘導(dǎo)分化過程中合成的第一種上皮細(xì)胞特異性結(jié)構(gòu)蛋白,隨著分化過程的進(jìn)展,其他的上皮細(xì)胞角蛋白(如上皮細(xì)胞角蛋白7、14、19和20)[20-21]和另外一些上皮細(xì)胞標(biāo)志物如卵透明帶蛋白1 (zonaocdudensprotein 1,ZO1)[22]也逐漸獲得陽性表達(dá),這可作為證實誘導(dǎo)分化成功的檢測指標(biāo)之一[22]。本實驗結(jié)果也證實,在EGF與成纖維細(xì)胞培養(yǎng)基聯(lián)合誘導(dǎo)下,ADSCs可向黏膜上皮細(xì)胞分化。
EGF是最早發(fā)現(xiàn)的生長因子之一,它的體外作用主要是促細(xì)胞生長[23]。研究顯示,EGF可促進(jìn)表皮及角膜上皮的修復(fù)[24]。成纖維細(xì)胞培養(yǎng)基含有多種促進(jìn)表皮細(xì)胞生長的因子。本研究結(jié)果顯示,單純應(yīng)用EGF不能使ADSCs向上皮分化,甚至出現(xiàn)細(xì)胞死亡,可能是由于在無血清狀態(tài)下,EGF不能提供足夠的營養(yǎng)使細(xì)胞存活,因此,ADSCs不能發(fā)生轉(zhuǎn)化。但EGF與成纖維細(xì)胞培養(yǎng)基聯(lián)合應(yīng)用能使其表達(dá)角蛋白,在誘導(dǎo)第7天,免疫組織化學(xué)染色顯示極少的細(xì)胞表達(dá)角蛋白,至第14天時表達(dá)角蛋白的細(xì)胞增多,而未誘導(dǎo)和單純條件培養(yǎng)基誘導(dǎo)的細(xì)胞角蛋白表達(dá)陰性,可能是由于在成纖維細(xì)胞條件培養(yǎng)基中還含有除EGF之外的多種誘導(dǎo)ADSCs分化為上皮細(xì)胞的因子,如可以促進(jìn)上皮細(xì)胞增殖的胰島素樣生長因子(IGF)等。
鼻黏膜上皮主要由4類細(xì)胞組成:柱狀纖毛上皮細(xì)胞、無纖毛柱狀上皮、基細(xì)胞、分泌細(xì)胞[25-26]?;?xì)胞位于上皮層的最深面,依靠半橋粒(hemidesmosomes)錨附于基底膜[27],不直接暴露于細(xì)胞層的腔面,其表面可特異性表達(dá)CK-14[26-28]。既往文獻(xiàn)報道CK-7、CK-19是鼻黏膜上皮細(xì)胞最基本的細(xì)胞角蛋白組合之一[28]。鼻黏膜上皮細(xì)胞具有屏障功能及離子、水轉(zhuǎn)運(yùn)功能等重要生理功能,上皮細(xì)胞對表層液體層離子及水正常轉(zhuǎn)運(yùn)是發(fā)揮黏液纖毛傳輸功能的重要基礎(chǔ),已有臨床研究證實,對黏膜受損的空鼻綜合征患者,給予自體ADSCs可起到促進(jìn)黏膜愈合的作用[29],為本研究結(jié)果提供了佐證。
綜上所述,本研究結(jié)果證實,EGF與成纖維細(xì)胞培養(yǎng)基聯(lián)合應(yīng)用可作為誘導(dǎo)劑,誘導(dǎo)ADSCs向黏膜上皮細(xì)胞分化,為后續(xù)應(yīng)用ADSCs作為黏膜上皮組織工程的種子細(xì)胞用于上皮缺損的修復(fù)提供了實驗依據(jù)。但黏膜上皮細(xì)胞生長的微環(huán)境非常復(fù)雜,本研究未能完全模擬該環(huán)境,且體外誘導(dǎo)的上皮細(xì)胞要真正應(yīng)用于臨床還有很多問題需要解決。體內(nèi)誘導(dǎo)雖可得到組織微環(huán)境的支持,通過細(xì)胞間的接觸加速ADSCs向上皮細(xì)胞的分化,但由于干細(xì)胞向靶器官歸巢的效率較低,且散在分布于上皮細(xì)胞之間的干細(xì)胞沒有較好的方法來采集,因此很難研究干細(xì)胞的轉(zhuǎn)歸。盡管ADSCs定向分化為上皮細(xì)胞的研究還處于早期探索階段,但隨著對干細(xì)胞的分化機(jī)制、誘導(dǎo)方法及分化后細(xì)胞功能評價等問題的深入探討,今后將會形成比較完善和成熟的干細(xì)胞誘導(dǎo)分化體系,以及逐漸完善的方法學(xué)鑒定手段,并可利用組織工程技術(shù),探索更有效的誘導(dǎo)手段,最終將研究成果轉(zhuǎn)化為臨床所用。
[1]Xu YF, Zhang JW, Bao ZG,et al. Promoting neovascularization of adipose tissue derived stem cells compounding with different cellular scaffold in nude mice subcutaneous stratum[J]. J Zhengzhou Univ (Med Sci), 2013, 48(6): 773-776.[徐永飛, 張建文, 暴志國, 等. 脂肪來源干細(xì)胞復(fù)合不同生物支架在裸鼠皮下的促血管化作用[J]. 鄭州大學(xué)學(xué)報(醫(yī)學(xué)版), 2013, 48(6): 773-776.]
[2]Yamazaki M, Sato A, Toyoshima KE,et al. Polymorphic CAG repeat numbers in the androgen receptor gene of female pattern hair loss patients[J]. J Dermatol, 2011, 38(7): 680-684.
[3]Wu Y, Feng CJ, En HJRGL,et al. Inhibition effect of bone marrow-derived mesenchymal stem cells on skin scar formation in mice[J]. Med J Chin PLA, 2013, 38(1): 34-38. [武艷, 馮長江, 恩和吉日嘎拉, 等. 骨髓間質(zhì)干細(xì)胞對小鼠皮膚瘢痕形成的抑制作用觀察[J]. 解放軍醫(yī)學(xué)雜志, 2013, 38(1): 34-38.]
[4]Pittenger MF, Mackay AM, Jaiswal SC,et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143-147.
[5]Krause DS, Theise ND, Collector MI,et al. Multi-organ, multilineage engraftment by a single bone marrow-derived stem cell[J]. Cell, 2001, 105(3): 369-377.
[6]Kotton DN, Ma BY, Cardoso WV,et al. Bone marrow derived cells as progenitors of lung alveolar epithelium[J]. Development, 2001, 128(24): 5181-5188.
[7]Petersen BE, Bowen WC, Patrene KD,et al. Bone marrow as a potential source of hepatic oval cells[J]. Science, 1999, 284(5417): 1168-1170.
[8]Pereira RF, Halford KW, O'Hara MD,et al. Marrow stromal cells from marrow can serve as long-lasting precursor cells for bone, cartilage,and lung in irradiated mice[J]. Proc Natl Acad Sci U S A, 1995, 92(11): 4857-4861.
[9]Kern S, Eichler H, Stoeve J,et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue[J]. Stem Cells, 2006, 24(5): 1294-1301.
[10] Jurgens WJ, Oedayrajsini-Varma MJ, Helder MN,et al. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies[J]. Cell Tissue Res, 2008, 332(3): 415-426.
[11] Bunnell BA, Estes BT, Guilak F,et al. Differentiation of adipose stem cells[J]. Methods Mol Biol, 2008, 456: 155-171.
[12] Zuk PA, Zhu M, Ashjian P,et al. Human adipose tissue is a source of multipotent stem cells[J]. Mol Biol Cell, 2002, 13(12): 4279-4295.
[13] Strem BM, Hicok KC, Zhu M,et al. Multipotential differentiation of adipose tissue-derived stem cells[J]. Keio J Med, 2005, 54(3): 132-141.
[14] De Ugarte DA, Morizono K, Elbarbary A,et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow[J]. Cells Tissues Organs, 2003, 174(3): 101-109.
[15] Ashjian PH, Elbarbary AS, Edmonds B,et al.In vitrodifferentiation of human processed lipoaspirate cells into early neural progenitors[J]. Plast Reconstr Surg, 2003, 111(6): 1922-1931.
[16] Seo MJ, Suh SY, Bae YC,et al. Differentiation of human adipose stromal cells into hepatic lineagein vitroandin vivo[J]. Biochem Biophys Res Commun, 2005, 328(1): 258-264.
[17] Tremolada C, Palmieri G, Ricordi C. Adipocyte transplantation and stem cells: plastic surgery meets regenerative medicine[J]. Cell Transplant, 2010, 19(10): 1217-1223.
[18] Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential[J]. Cytotherapy, 2003, 5(5): 362-369.
[19] Baer PC, Bereiter-Hahn J, Missler C,et al. Conditioned medium from renal tubular epithelial cells initiates differentiation of human mesenchymal stem cells[J]. Cell Prolif, 2009, 42(1): 29-37.
[20] Owens DW, Lane EB. The quest for the function of simple epithelial keratins[J]. Bioessays, 2003, 25(8): 748-758.
[21] Baer PC, Brzoska M, Geiger H. Epithelial differentiation of human adipose-derived stem cells[J]. Methods Mol Biol, 2011, 702: 289-298.
[22] Tan T, Qin SJ. Advances in study of adipose-derived stem cells in tissue engineering[J]. Chin Pharm Tech Econ Manag, 2008, 2(12): 58-62.[枟濤, 秦書儉. 脂肪干細(xì)胞在組織工程中的研究進(jìn)展[J]. 中國醫(yī)藥技術(shù)經(jīng)濟(jì)與管理, 2008, 2(12): 58-62.]
[23] Li M, Guo ZH, Xie YD,et al. Effect of propranolol on the expression of growth factors and apoptotic factors related to infantile hemangiomas[J]. Med J Chin PLA, 2015, 40(2): 121-127.[李銘, 郭志輝, 謝義德, 等. 口服普萘洛爾對嬰幼兒血管瘤相關(guān)生長因子及凋亡因子表達(dá)水平的影響[J]. 解放軍醫(yī)學(xué)雜志, 2015, 40(2): 121-127.]
[24] Merkle HP, Ditzinger G, Lang SR,et al.In vitrocell models to study nasal mucosal permeability and metabolism[J]. Adv Drug Deliv Rev, 1998, 29(1-2): 51-79.
[25] Crystal RG, Randell SH, Engelhardt JF,et al. Airway epithelial cells: current concepts and challenges[J]. Proc Am Thorac Soc, 2008, 5(7): 772-777.
[26] Dahl R, Mygind N. Anatomy, physiology and function of the nasal cavities in health and disease[J]. Adv Drug Deliv Rev, 1998, 29(1-2): 3-12.
[27] Rock JR, Onaitis MW, Rawlins EL,et al. Basal cells as stem cells of the mouse trachea and human airway epithelium[J]. Proc Natl Acad Sci U S A, 2009, 106(31): 12771-12775.
[28] Dong Z, Guan GM, Chang WL. Expression of cell proliferation and apoptosis gene associated protein on nasal polyps and its significance[J]. Chin J Otorhinolaryngol, 2000, 35(6): 429-431.[董震, 關(guān)桂梅, 常萬龍. 鼻息肉組織中的細(xì)胞增殖與凋亡相關(guān)基因蛋白的表達(dá)及意義[J]. 中華耳鼻咽喉科雜志, 2000, 35(6): 429- 431.]
[29] Liu L, Jia DJ, Yan JL,et al. Clinical studies on theex-vivoexpansion of autologous adipose derived stem cells for the functional reconstruction of mucous membrane in empty nose syndrome[J]. Med J Chin PLA, 2014, 39(10): 815-818. [李梁,賈德進(jìn), 閆俊靈, 等. 體外擴(kuò)增的自體脂肪干細(xì)胞對空鼻綜合征患者黏膜功能重建的臨床研究[J]. 解放軍醫(yī)學(xué)雜志, 2014, 39(10): 815-818.]
In vitrostudy on differentiation of adipose-derived stem cells into mucosal epithelial cells
WANG Cheng, XU Xiao, CHEN Chong, LI Liang, YAN Jun-ling, TANG Su-yang*
Department of Skin and Hair Regenerative Medicine, General Hospital of Chinese People’s Armed Police Forces, Beijing 100039, China
*< class="emphasis_italic">Corresponding author, E-mail: 2278645614@qq.com
, E-mail: 2278645614@qq.com
ObjectiveTo explore the possibility of inducing the differentiation of adipose-derived stem cells (ADSCs) into mucosal epithelial cellsin vitro.MethodsAdult subcutaneous adipose tissue was obtained for carrying out the isolation, culture, amplification and differentiation of ADSCs, and to identify the genetic stability of the third passage. The cultures were performed with DMEM culture media containing respectively 10% fetal bovine serum (FBS), 8μg/L epidermal growth factor (EGF), 10% FBS+8μg/L EGF, 10% FBS+8μg/L EGF+30% fibroblast cell culture medium, and 10% FBS+30% fibroblast culture medium. The light microscopic characteristics of the cells were observed before culture and 7 and 14 days after culture. The expression of specific cell surface markers and expression levels of CK-7 and CK-14 proteins in ADSCs before and after induction were detected by immunohistochemical staining and Western blotting respectively.ResultsCompared with the group without EGF, the morphology and arrangement of ADSCs induced by EGF for 14d were changed. Immunochemical staining showed CK-19 was strongly positive expressed. Western blotting analysis showed that CK-7 and CK-14 were strongly expressed in the epithelial cells.ConclusionAdipose-derived stem cells can be differentiated into mucosal epithelioid cellsin vitro.
adipose-derived stem cells; epidermal growth factor; epithelioid cells; cell differentiation
Q254
A
0577-7402(2015)10-0798-05
10.11855/j.issn.0577-7402.2015.10.06
2015-05-16;
2015-08-22)
(責(zé)任編輯:胡全兵)
王程,醫(yī)學(xué)碩士。主要從事再生醫(yī)學(xué)和整形外科方面的基礎(chǔ)與臨床研究
100039 北京 武警總醫(yī)院皮膚再生醫(yī)學(xué)科(王程、徐瀟、陳沖、李梁、閆俊靈、湯蘇陽)
湯蘇陽,E-mail:2278645614@qq.com