• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Estimation of boundary-layer flow of a nanofluid past a stretching sheet: A revised model*

    2016-10-18 01:45:25NaeemaISHFAQZafarHayatKHANWaqarAhmadKHANRichardCULHAM
    關(guān)鍵詞:吉妮胎牛培養(yǎng)箱

    Naeema ISHFAQ, Zafar Hayat KHAN, Waqar Ahmad KHAN, Richard J. CULHAM

    1. School of Mathematical Sciences, Peking University, Beijing 100871, China,

    E-mail:sanam_143_6@hotmail.com

    2. Department of Mathematics, University of Malakand, Dir (Lower), Khyber Pakhtunkhwa, Pakistan

    3. Department of Mechanical and Industrial Engineering, College of Engineering, Majmaah University, Al Majma′ah, Saudi Arabia

    4. Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada

    ?

    Estimation of boundary-layer flow of a nanofluid past a stretching sheet: A revised model*

    Naeema ISHFAQ1, Zafar Hayat KHAN2, Waqar Ahmad KHAN3, Richard J. CULHAM4

    1. School of Mathematical Sciences, Peking University, Beijing 100871, China,

    E-mail:sanam_143_6@hotmail.com

    2. Department of Mathematics, University of Malakand, Dir (Lower), Khyber Pakhtunkhwa, Pakistan

    3. Department of Mechanical and Industrial Engineering, College of Engineering, Majmaah University, Al Majma′ah, Saudi Arabia

    4. Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada

    The previous model for the boundary layer nanofluid flow past a stretching surface with a specified nanoparticle volume fraction on the surface is revisited. The major limitation of the previous model is the active control of the nanoparticle volume fraction on the surface. In a revised model proposed in this paper, the nanoparticle volume fraction on the surface is passively controlled, which accounts for the effects of both the Brownian motion and the thermophoresis under the boundary condition, whereas the Buongiorno's model considers both effects in the governing equations. The assumption of zero nanoparticle flux on the surface makes the model physically more realistic. In the revised model, the dimensionless heat transfer rates are found to be higher whereas the dimensionless mass transfer rates are identically zero due to the passive boundary condition. It is also found that the Brownian motion parameter has a negligible effect on the Nusselt number.

    boundary layer flow, nanofluid, stretching sheet, Brownian motion, thermophoresis

    Introduction

    Buongiorno[1]developed a model for nanofluid that includes both the Brownian motion and thermophoresis effects. This model was employed by Kuznetsov and Nield[2]and Nield and Kuznetsov[3]to examine the influence of nanoparticles on the free convection past a vertical plate. They employed boundary conditions with respect to the nanoparticle fraction akin to the temperature. Later on, Khan and Pop[4]employed the same model to investigate the laminar flow generated by the stretching of a flat surface. They studied the effects of Brownian and thermophoresis parameters on the dimensionless heat and mass transfer rates using the same approach as used in Refs.[2,3]. This means that the nanoparticle fraction on the wall can be specified arbitrarily, which is not realistic physically. Most recently, Kuznetsov and Nield[5,6]developed a physically realistic type of boundary condition which accounts for the effect of both Brownian and thermophoresis parameters. According to this new type of boundary condition, there is zero nanoparticle flux on the surface and the particle fraction values are adjusted accordingly. The model developed in Kuznetsov and Nield[5,6]was employed by Khan et al.[7,8].

    Pal and Mandal[9]studied the magnetohydrodynamic boundary layer flow of an electrically conducting convective nanofluids induced by a non-linear vertical stretching/shrinking sheet with viscous dissipation, thermal radiation, and Ohmic heating. Their results reveal that by increasing the value of the Hartman number the velocity will decrease, whereas a reverse effect is found in the temperature profiles. Das[10]investigated numerically the boundary layerflow of a nanofluid over non-linear permeable stretching sheet with prescribed surface temperature in the presence of partial slip. Sandeep et al.[11]analyzed the flow, the heat and the mass transfer behavior of Jeffrey, Maxwell and Oldroyd-B nanofluids over a permeable stretching sheet in the presence of transverse magneticfield, thermophoresis, Brownian motion and suction/injection. They found that the friction factor of the Maxwell nanofluid is less important as compared with the Oldroyd-B and Jeffrey nanofluid. Chandrasekar and Kasiviswanathan[12]applied a variational technique to the MHD, the radiative nanofluid flow over a non-isothermal stretching sheet with Brownian motion and thermophoresis effects by Gyarmati's principle. The heat and mass transfer effects were investigated and analyzed by this technique. Ganga et al.[13]analyzed the effects of the space and temperature dependent internal heat generation/absorption on the magnetohydrodynamic boundary layer flow of the water based nanofluid over a stretching sheet with different nanoparticles. The influences of the nanoparticle volume fraction, the magnetic field,the Prandtl number, the non-uniform heat source/sink,the local skin friction coefficient and the reduced Nusselt number were investigated for different nanoparticles. Khan et al.[14]investigated the problem of the oblique hydromagnetic stagnation point flow of the electrically conducting optically dense viscous incompressible nanofluid of a variable viscosity over a convectively heated stretching sheet in the presence of thermal radiation. They analyzed the effects of various controlling parameters on the dimensionless velocity,temperature, nanoparticles concentration, skin friction,Nusselt and Sherwood numbers. Makinde et al.[15]investigated the combined effects of the thermal radiation, the thermophoresis, the Brownian motion, the magnetic field and the variable viscosity on the boundary layer flow, the heat and the mass transfer of an electrically conducting nanofluid over a radially stretching convectively heated surface. Their results reveal that the heat transfer rate is reduced with the increase of the viscosity and the nanofluid parameters whereas the mass transfer rates are enhanced with the increase of the Brownian motion parameter and the Lewis number. Ahmad[16]studied a classical non-Newtonian fluid in the presence of nano-particles over a nonlinear stretching sheet. The correlation expressions for the skin friction, the Nusselt number and the Sherwood number were developed by performing a linear regression on the obtained numerical data. Mabood and Khan[17]obtained an analytical solution of an unsteady two-dimensional MHD nanofluid flow with heat and mass transfer over a heated surface. They conducted a detailed study illustrating the influences of the magnetic, unsteady, suction/injection and nanofluid parameters, on the dimensionless velocity, temperature, concentration as well as on the skin friction coefficient, and the reduced Nusselt and Sherwood numbers.

    In this study, the model of the nanofluid flow past a stretching sheet in Ref.[4] is revised with the assumption that the value of nanoparticles at the wall are no longer given.

    1. Formatting mathematical model

    The present analysis closely follows the work of Ref.[4] and so only a brief outline is given here. A two-dimensional steady boundary layer flow of a nanofluid past a stretching surface is under consideration. The sheet is linearly stretched with linear velocity uw(x)=ax , whereais a constant and a steady uniform stress is accompanied by a pair of forces of equal magnitude and opposite directions along thex-axis so that the sheet is stretched with the origin kept fixed. The flow takes place aty≥0, whereyis the coordinate measured normal to the stretching surface. It is assumed that on the stretching surface, the temperatureTkeeps a constant value Twand the nanoparticle fractionC takes the value Cwfor the actively controlled nanoparticles on the surface whereasCis passively controlled by the effects of thermophoresis for the passively controlled nanoparticles. The ambient values, attained asy tends to infinity, ofT and C are denoted by T∞and C∞, respectively.

    The basic steady conservation equations of mass,momentum, thermal energy and nanoparticles for the nanofluids can be written in Cartesian coordinates x andy as (see Kuznetsov and Nield[5,6])

    Table 1 Comparison of results for the Nusselt number when Nb = Nt=0

    with boundary conditions

    Hereuandv are the velocity components along the axes xandy , respectively,p is the fluid pressure,ρis the density of the nanofluid,νis the kinematic viscosity of the nanofluid,αis the thermal diffusivity of the nanofluid,a is a positive constant,DBis the Brownian diffusion coefficient, and DTis the thermophoretic diffusion coefficient.

    A similarity solution of Eqs.(1)-(5) with the boundary conditions (6) takes the following form:

    where the stream functionψis defined in the usual way as u=?ψ/?y and v=-?ψ/?x. To determine the similarity solution (7), we have taken into account that the pressure in the outer (inviscid) flow isp=p0(constant). Substituting (7) into Eqs.(2)-(5), we obtain the following ordinary differential equations:

    with the boundary conditions

    where primes denote differentiations with respect to ηand the four parameters are defined as:

    HerePr,Sc,NbandNt denote the Prandtl number, the Schmidt number, the Brownian motion andthe thermophoresis parameters, respectively. It is important to note that this boundary value problem reduces to the classical problem of the flow and heat and mass transfer due to a stretching surface in a viscous fluid whenNbandNt approaches to zero in Eqs.(9)and (10).

    Of practical interest, in this study, is the Nusselt number Nux, which is defined as

    where qwis the heat flux andkis the effective thermal conductivity. Using (7), we obtain

    It is important to note that with the new boundary condition the Sherwood number, which represents the dimensionless mass flux, is identically zero, i.e.

    2. Numerical scheme

    The nonlinear ordinary differential Eqs.(8)-(10)subject to the boundary conditions (11) are solved numerically using an efficient Runge-Kutta fourth order method along with the shooting technique. The asymptotic boundary conditions given by Eq.(11) are replaced by using a value of 15 for the similarity variable ηmax. The choice of ηmax=15and the step size?η=0.001, ensure that all numerical solutions approach the asymptotic values correctly. For validating the proposed scheme, a comparison of the Nusselt number with the data in Refs.[4,8,9] is shown in Table 1 for both active and passive controls ofφin the special case when Nb=Nt=0. Therefore, we are confident that the applied numerical scheme is very accurate.

    3. Results and discussions

    Since there is no change in the momentum and energy equations and the related boundary conditions,the dimensionless velocity and temperature profiles will remain the same as obtained with the previous model[4]. The only change is in the boundary condition of the surface nanoparticle volume fraction. The effects of the nanofluid parameters and the Schmidt number on the rescaled nanoparticle volume fraction for water-based nanofluids are shown in Figs.1(a)-1(c) for active control (as the previous model) and passive control (as the revised model) of nanoparticles at the surface.

    Fig.1 Variation of volume fraction with nanofluid parameters and Schmidt number for both active and passive controls of nanoparticles at the surface

    It is noticed that in the active control model, the rescaled nanoparticle volume fraction φ (η)assumes the maximum on the surface and decreases to zero in the related boundary layer. No appreciable effect of nanofluid parameters could be observed on the rescaled nanoparticle volume fraction profiles.

    It is quite interesting to observe in the passive control model that the similarity variableφ (η)overshoots and attains negative values in the neighbourhood of the surface, see Figs.1(a)-1(c). This interestingbehaviour is also observed by Kuznetsov and Nield[5,6]. In fact, it is due to the zero nanoparticle flux condition(accounting for both Brownian motion and thermophoresis parameters) on the surface, which means that the nanoparticle flux at the surface is suppressed.

    Fig.2 Variation of Nusselt numbers for both active and passive controls of nanoparticles on the surface

    The variations of the dimensionless heat transfer rates against the dimensionless numbersSc,Pr , and the nanofluid parametersNtandNb are shown in Figs.2(a) and 2(b). In Fig.2(a) and Table 3, the values of the Prandtl numbers for different base fluids are given in Table 2.

    4. Estimation of the nusselt number

    A linear regression estimate Nuestof the Nusselt number for the case Pr =6.2and Sc=10, is presented, which incorporates the effects of the Brownian motionNband the thermophoresis parameterNt. The linearly estimated equation using the least square method is obtained as

    The calculations are performed for 256 sets of values ofNb, andNt in the range [0.1,0.2,0.3,0.4,0.5]. This correlation is valid in the range [0,0.5]with the maximum error of 1.66%. For more accurate estimation, a quadratic regression is performed for the following relation

    Both the linear and quadratic estimations indicate that the Nusselt number is a decreasing function of the Brownian motion Nband the thermophoresis parameterNt. This decreasing behaviour corresponds to an increase in the thermal boundary layer thickness. The interesting aspect of these correlations is that the coefficient ofNb is negligibly small and has very little effect on the Nusselt number. The same conclusion was drawn by Kuznetsov and Nield[3,4].

    5. Conclusion

    We have revisited the boundary layer flow of nanofluid past a stretching sheet. The major improvement in the reformulation is the introduction of a more realistic boundary condition on the surface. We have assumed the zero nanoparticle flux on the surface,which accounts for the effects of both Brownian motion and thermophoresis in the boundary condition. The self-similar numerical solutions are analysed under the influence of the different governing parameters. The dependence of the Nusselt number on the Brownian motion and thermophoresis parameters is estimated using both linear and quadratic correlations. It is found that under the assumption of passively controlled nanoparticle volume fraction on the surface, the Brownian motion parameterNb has negligible effect on the heat transfer rate. This is in accordance with the conclusion made by Kuznetsov and Nield[3,4].

    Table 2 Prandtl numbers for different base fluids under consideration[19,20]

    Table 3 Variation of Nusselt number against Nt for different base fluids with Sc =10and Nb=0.1

    Table 4 Quadratic regression coefficients and error bound for the estimated Nusselt number with variations in Prandtl numberPrfor Sc=10

    Table 5 Quadratic regression coefficients and error bound for the estimated Nusselt number with variations in Schmidt numberScfor Pr=6.2

    References

    [1] BUONGIORNO J. Convective transport in nanofluids[J]. Journal of Heat Transfer, 2006, 128(3): 240-250.

    [2] KUZNETSOV A. V., NIELD D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate[J]. International Journal of Thermal Sciences, 2010, 49(2): 243-247.

    [3] NIELD D. A., KUZNETSOV A. V. The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid[J]. International Journal of Heat and Mass Transfer, 2009,52(25-26): 5792-5795.

    MH7A細(xì)胞為永生化的RA關(guān)節(jié)滑膜細(xì)胞,購自廣州吉妮歐公司。用高糖DMEM+10%胎牛血清于5%CO2,37℃的培養(yǎng)箱培養(yǎng)。購買時為第3代,培養(yǎng)3代后用于后續(xù)實驗研究。

    [4] KHAN W. A., POP I. Boundary-layer flow of a nanofluid past a stretching sheet[J]. International Journal of Heat and Mass Transfer, 2010, 53(11): 2477-2483.

    [5] KUZNETSOV A. V., NIELD D. A. The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: A revised model[J]. International Journal of Heat and Mass Transfer, 2013, 65(25-26): 682-685.

    [6] KUZNETSOV A. V., NIELD D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate: A revised model[J]. International Journal of Thermal Sciences, 2014, 77: 126-129.

    [7] KHAN Z. H., KHAN W. A. and POP I. Triple diffusive free convection along a horizontal plate in porous media saturated by a nanofluid with convective boundary condition[J]. International Journal of Heat and Mass Transfer, 2013, 66(1): 603-612.

    [8] WANG C. Y. Free convection on a vertical stretching surface[J]. Zamm-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1989, 69(11): 418-420.

    [9] PAL D., MANDAL G. Hydromagnetic convective-radiative boundary layer flow of nanofluids induced by a nonlinear vertical stretching/shrinking sheet with viscous-Ohmic dissipation[J]. Powder Technology, 2015, 279: 61-74.

    [10] DAS K. Nanofluid flow over a non-linear permeable stretching sheet with partial slip[J] Journal of the Egyptian Mathematical Society, 2015, 23(2): 451-456.

    [11] SANDEEP N., RUSHI KUMAR B. and JAGADEESH KUMAR M. S. A comparative study of convective heat and mass transfer in non-Newtonian nanofluid flow past a permeable stretching sheet[J]. Journal of Molecular Liquids, 2015, 212(1): 585-591.

    [12] CHANDRASEKAR M., KASIVISWANATHAN M. S. Analysis of heat and mass transfer on MHD Flow of a nanofluid past a stretching sheet[J]. Procedia Engineering, 2015, 127: 493-500.

    [13] GANGA B., SARANYA S. and VISHNU GANESH N. et al. Effects of space and temperature dependent internal heat generation/absorption on MHD flow of a nanofluid over a stretching sheet[J]. Journal of Hydrodynamics,2015, 27(6): 945-954.

    [14] KHAN W. A., MAKINDE O. D. and KHAN Z. H. Nonaligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat[J]. International Journal of Heat and Mass Transfer, 2016,96: 525-534.

    [15] MAKINDE O. D., MABOOD F. and KHAN W. A. et al. MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat[J]. Journal of Molecular Liquids, 2016, 219: 624-630.

    [16] AHMAD A. Flow of Reiner Philipp off based nanofluid past a stretching sheet[J]. Journal of Molecular Liquids,2016, 219: 643-646.

    [17] MABOOD F., KHAN W. A. Analytical study for unsteady nanofluid MHD Flow impinging on heated stretching sheet[J]. Journal of Molecular Liquids, 2016, 219: 216-223.

    [18] KANDASAMY R., LOGANATHAN P. and PUVI ARASU P. Scaling group transformation for MHD boundary-layer flow of a nanofluid past a vertical stretching surface in the presence of suction/injection[J]. Nuclear Engineering and Design, 2011, 241(6): 2053-2059.

    [19] BEJAN A. Convection heat transfer[M]. 3rd Edition. New York, USA: John Wiley, 2004.

    [20] DAUBERT T. E., DANNER R. P. Physical and thermodynamic properties of pure chemicals[M]. New York,USA: Hemisphere Publishing Corporation, 1989.

    10.1016/S1001-6058(16)60663-7

    October 6, 2014, Revised April 27, 2015)

    * Project supported by the National Natural Science Foundation of China (Grant No. 11271023).

    Biography: Naeema ISHFAQ (1986-), Female,

    Ph. D. Candidate

    Corresponging author: Zafar Hayat KHAN,

    E-mail: zafarhayyatkhan@gmail.com

    2016,28(4):596-602

    猜你喜歡
    吉妮胎牛培養(yǎng)箱
    基于細(xì)胞體外培養(yǎng)篩選最適胎牛血清
    嬰兒培養(yǎng)箱的質(zhì)控辦法及設(shè)計改良探討
    細(xì)胞貼壁效應(yīng)是評價胎牛血清質(zhì)量的重要因素
    2021年本刊一些常用詞匯可直接用縮寫(一)
    微生物培養(yǎng)箱的選購與管理
    食品工程(2020年3期)2020-01-05 14:38:16
    基于模糊PID參數(shù)自整定的細(xì)胞培養(yǎng)箱溫度控制算法
    印度猴子吉妮
    胎牛血清對人內(nèi)皮細(xì)胞HMEC-1體外成血管實驗影響的觀察△
    三種吉妮宮內(nèi)節(jié)育器的臨床效果觀察
    吉妮姐姐在紐約
    内地一区二区视频在线| 日本成人三级电影网站| 成人三级黄色视频| 久久久久久国产a免费观看| 性色avwww在线观看| 在线免费观看不下载黄p国产| 18禁在线无遮挡免费观看视频| 在线免费观看不下载黄p国产| 精品久久久久久成人av| 精品人妻一区二区三区麻豆| 日日啪夜夜撸| 不卡一级毛片| 男女啪啪激烈高潮av片| 3wmmmm亚洲av在线观看| 亚洲电影在线观看av| 国内少妇人妻偷人精品xxx网站| 国产久久久一区二区三区| 成人av在线播放网站| 国产精品嫩草影院av在线观看| 男人舔女人下体高潮全视频| 欧美激情久久久久久爽电影| 日韩一区二区视频免费看| 国产毛片a区久久久久| 波野结衣二区三区在线| 99视频精品全部免费 在线| 小说图片视频综合网站| 午夜福利在线在线| 美女国产视频在线观看| 在线观看美女被高潮喷水网站| 免费看a级黄色片| 26uuu在线亚洲综合色| 日韩精品有码人妻一区| 国产精品女同一区二区软件| 狂野欧美激情性xxxx在线观看| 中国美女看黄片| 国产黄色视频一区二区在线观看 | 国产亚洲91精品色在线| 亚洲精品粉嫩美女一区| 欧美在线一区亚洲| 少妇人妻精品综合一区二区 | 久久鲁丝午夜福利片| 99视频精品全部免费 在线| 男人舔奶头视频| 国产精品久久久久久精品电影| 国产一区二区激情短视频| 亚洲精品国产av成人精品| 欧美极品一区二区三区四区| 级片在线观看| 精品久久久久久久人妻蜜臀av| 亚洲av电影不卡..在线观看| 嘟嘟电影网在线观看| 欧美成人免费av一区二区三区| 国产日本99.免费观看| 国产69精品久久久久777片| 成熟少妇高潮喷水视频| 国产精品电影一区二区三区| 国产精品不卡视频一区二区| 欧美日韩一区二区视频在线观看视频在线 | 国产精品综合久久久久久久免费| 久久久久久久久久久免费av| 成年女人看的毛片在线观看| 黄片无遮挡物在线观看| 在线观看一区二区三区| 色综合站精品国产| 日韩欧美精品免费久久| 亚洲人成网站在线播| 国产精品永久免费网站| 国产 一区 欧美 日韩| 欧美一级a爱片免费观看看| 在线国产一区二区在线| av天堂中文字幕网| 国内精品美女久久久久久| 村上凉子中文字幕在线| 高清日韩中文字幕在线| 九色成人免费人妻av| 欧美一区二区亚洲| 久久国内精品自在自线图片| 免费看日本二区| 极品教师在线视频| 亚洲在线自拍视频| 别揉我奶头 嗯啊视频| 亚洲美女视频黄频| 美女黄网站色视频| 亚洲综合色惰| 少妇人妻一区二区三区视频| 偷拍熟女少妇极品色| 亚洲av熟女| 亚洲欧美日韩高清专用| 日韩一区二区三区影片| 欧美成人免费av一区二区三区| 亚洲欧洲日产国产| 久久综合国产亚洲精品| 久久久久性生活片| 亚洲图色成人| 国产欧美日韩精品一区二区| 欧美+日韩+精品| 亚洲国产高清在线一区二区三| 中文字幕av成人在线电影| 日韩欧美三级三区| 偷拍熟女少妇极品色| 97热精品久久久久久| 久久99热6这里只有精品| 精品少妇黑人巨大在线播放 | 亚洲av中文av极速乱| 舔av片在线| 蜜桃亚洲精品一区二区三区| av.在线天堂| 久久人人爽人人爽人人片va| 欧美丝袜亚洲另类| 黄色日韩在线| 亚洲内射少妇av| 少妇熟女欧美另类| 搞女人的毛片| 国内揄拍国产精品人妻在线| 有码 亚洲区| 99热6这里只有精品| 直男gayav资源| 成人高潮视频无遮挡免费网站| av国产免费在线观看| 毛片一级片免费看久久久久| 欧美最黄视频在线播放免费| 国产真实伦视频高清在线观看| 亚洲av一区综合| 亚洲人成网站在线播| 成人特级黄色片久久久久久久| 99久久中文字幕三级久久日本| 一级毛片我不卡| 久久人妻av系列| 亚洲成人久久性| 噜噜噜噜噜久久久久久91| 中出人妻视频一区二区| 我的老师免费观看完整版| 淫秽高清视频在线观看| 亚洲图色成人| 午夜福利在线在线| 日韩高清综合在线| 欧美日本视频| 九九久久精品国产亚洲av麻豆| 日韩欧美精品免费久久| 中国美白少妇内射xxxbb| 26uuu在线亚洲综合色| 男人的好看免费观看在线视频| 黄色欧美视频在线观看| 国产午夜精品久久久久久一区二区三区| 成人特级av手机在线观看| 成人鲁丝片一二三区免费| 久久久久久久久久久免费av| 欧美性猛交黑人性爽| 成人二区视频| 欧美三级亚洲精品| 舔av片在线| 欧洲精品卡2卡3卡4卡5卡区| 久久热精品热| 亚洲五月天丁香| 一级毛片aaaaaa免费看小| 免费看a级黄色片| 性插视频无遮挡在线免费观看| 观看免费一级毛片| 日产精品乱码卡一卡2卡三| 免费搜索国产男女视频| 中文字幕av在线有码专区| 哪个播放器可以免费观看大片| 女人十人毛片免费观看3o分钟| 亚洲国产精品国产精品| 神马国产精品三级电影在线观看| 女人十人毛片免费观看3o分钟| 国内久久婷婷六月综合欲色啪| 亚洲电影在线观看av| 淫秽高清视频在线观看| 国产色爽女视频免费观看| 99国产极品粉嫩在线观看| 天天躁日日操中文字幕| 日日摸夜夜添夜夜添av毛片| 国产精品国产三级国产av玫瑰| 日韩高清综合在线| 麻豆乱淫一区二区| 日韩精品有码人妻一区| 在线免费观看的www视频| 国产精品久久视频播放| 中文字幕人妻熟人妻熟丝袜美| 亚洲在线自拍视频| 在线观看66精品国产| 2021天堂中文幕一二区在线观| 欧美一区二区国产精品久久精品| 男人和女人高潮做爰伦理| 亚洲国产精品国产精品| 国产精品1区2区在线观看.| 久久99蜜桃精品久久| 中文精品一卡2卡3卡4更新| 美女cb高潮喷水在线观看| 亚洲人成网站在线播| 赤兔流量卡办理| 熟女电影av网| 男女做爰动态图高潮gif福利片| 久久精品影院6| 97热精品久久久久久| 国产精品伦人一区二区| 中文资源天堂在线| 亚洲成人久久性| 爱豆传媒免费全集在线观看| 夜夜爽天天搞| 人妻久久中文字幕网| 99久久人妻综合| 人人妻人人澡人人爽人人夜夜 | 我要看日韩黄色一级片| 观看免费一级毛片| 日韩精品有码人妻一区| 国产69精品久久久久777片| 日本黄色视频三级网站网址| 日本免费a在线| 久久人妻av系列| 亚洲成人精品中文字幕电影| 免费观看的影片在线观看| 亚洲性久久影院| 日韩制服骚丝袜av| 亚洲精品456在线播放app| 寂寞人妻少妇视频99o| 日本免费a在线| 国产色婷婷99| 少妇丰满av| 国产精品一区www在线观看| 亚洲欧美日韩东京热| 精品午夜福利在线看| 国产单亲对白刺激| 亚洲av中文av极速乱| 午夜老司机福利剧场| 国产午夜精品论理片| 亚洲自偷自拍三级| 国产在视频线在精品| 伦理电影大哥的女人| 又粗又硬又长又爽又黄的视频 | 亚洲电影在线观看av| 久久综合国产亚洲精品| 赤兔流量卡办理| 日日撸夜夜添| 亚洲一区高清亚洲精品| 日韩人妻高清精品专区| 日韩亚洲欧美综合| 高清午夜精品一区二区三区 | 白带黄色成豆腐渣| 欧美一区二区亚洲| 小蜜桃在线观看免费完整版高清| 亚洲av男天堂| 九九爱精品视频在线观看| 91午夜精品亚洲一区二区三区| 日韩av在线大香蕉| kizo精华| 国产高清视频在线观看网站| 亚洲天堂国产精品一区在线| 深夜a级毛片| 人妻久久中文字幕网| 99久久人妻综合| 久久99精品国语久久久| 久久精品夜色国产| 一进一出抽搐gif免费好疼| 六月丁香七月| 国产精品国产高清国产av| 男女下面进入的视频免费午夜| 亚洲婷婷狠狠爱综合网| 国产精品麻豆人妻色哟哟久久 | 国产精品永久免费网站| 国产精品乱码一区二三区的特点| 我要看日韩黄色一级片| 精品久久久久久久久久久久久| 国产伦一二天堂av在线观看| av国产免费在线观看| 天天躁日日操中文字幕| av在线老鸭窝| 久久久久久九九精品二区国产| 国产一区二区在线av高清观看| 高清毛片免费观看视频网站| 天堂av国产一区二区熟女人妻| 国产午夜福利久久久久久| 激情 狠狠 欧美| 久久精品国产鲁丝片午夜精品| 亚洲电影在线观看av| 黑人高潮一二区| 一卡2卡三卡四卡精品乱码亚洲| 国产午夜福利久久久久久| 免费搜索国产男女视频| 欧美+日韩+精品| 国产精品三级大全| 久久人妻av系列| 一区福利在线观看| 女的被弄到高潮叫床怎么办| 自拍偷自拍亚洲精品老妇| 1024手机看黄色片| 在线观看66精品国产| 最近中文字幕高清免费大全6| 中文在线观看免费www的网站| 久久久久久九九精品二区国产| 久久综合国产亚洲精品| 国产av一区在线观看免费| 欧美日韩综合久久久久久| 精品午夜福利在线看| 成人鲁丝片一二三区免费| 熟女电影av网| 成年女人看的毛片在线观看| 精品一区二区免费观看| 欧美色视频一区免费| 亚洲最大成人中文| 久久中文看片网| 午夜激情福利司机影院| 国产黄片美女视频| 免费电影在线观看免费观看| 可以在线观看的亚洲视频| 麻豆成人av视频| 精品一区二区免费观看| 国产真实乱freesex| 欧美人与善性xxx| 精品午夜福利在线看| 婷婷色av中文字幕| 你懂的网址亚洲精品在线观看 | 午夜激情欧美在线| 欧美变态另类bdsm刘玥| 神马国产精品三级电影在线观看| 亚洲内射少妇av| 久久久国产成人精品二区| 日韩,欧美,国产一区二区三区 | 国产精品久久久久久精品电影| 性色avwww在线观看| 人人妻人人看人人澡| 亚洲欧美成人综合另类久久久 | 三级毛片av免费| 少妇高潮的动态图| 国产亚洲91精品色在线| 美女高潮的动态| 成人特级黄色片久久久久久久| 国产成人福利小说| 91精品国产九色| 成年女人看的毛片在线观看| 深爱激情五月婷婷| 级片在线观看| 亚洲精品乱码久久久久久按摩| 一夜夜www| 欧美一级a爱片免费观看看| 日本与韩国留学比较| 日本一二三区视频观看| 国产成人精品久久久久久| 一本久久精品| 永久网站在线| 日韩亚洲欧美综合| 久久久久久九九精品二区国产| 一本久久精品| 亚洲中文字幕一区二区三区有码在线看| 两个人视频免费观看高清| 国产伦在线观看视频一区| 黄色视频,在线免费观看| 国产精品人妻久久久久久| 丰满乱子伦码专区| 乱码一卡2卡4卡精品| 欧美又色又爽又黄视频| 久久99热6这里只有精品| av天堂在线播放| 亚洲成人久久爱视频| 一区二区三区高清视频在线| 免费av观看视频| 亚洲精品日韩av片在线观看| 日本免费a在线| 国产综合懂色| 亚洲成人久久性| 搡老妇女老女人老熟妇| 国产成人精品一,二区 | 最近最新中文字幕大全电影3| 国产极品精品免费视频能看的| 国产精品久久久久久精品电影| 亚洲最大成人手机在线| 波多野结衣巨乳人妻| 国产 一区精品| 精品一区二区三区视频在线| 久久久久国产网址| 97在线视频观看| 99久久成人亚洲精品观看| av在线观看视频网站免费| 午夜福利视频1000在线观看| 麻豆成人av视频| 国产男人的电影天堂91| 又爽又黄无遮挡网站| 日本-黄色视频高清免费观看| 九九热线精品视视频播放| 国产精品永久免费网站| 99国产极品粉嫩在线观看| 春色校园在线视频观看| 欧美激情国产日韩精品一区| 又粗又硬又长又爽又黄的视频 | 国内久久婷婷六月综合欲色啪| 一进一出抽搐gif免费好疼| 99久久无色码亚洲精品果冻| 欧美潮喷喷水| 国产高清激情床上av| 非洲黑人性xxxx精品又粗又长| 久久鲁丝午夜福利片| 一级毛片电影观看 | 国产成人影院久久av| 亚洲av中文字字幕乱码综合| 久久亚洲精品不卡| 欧美色欧美亚洲另类二区| 你懂的网址亚洲精品在线观看 | 男女视频在线观看网站免费| 麻豆一二三区av精品| 99热网站在线观看| 欧美3d第一页| 1000部很黄的大片| 嫩草影院入口| 精品久久久久久久人妻蜜臀av| 精品国产三级普通话版| 日本撒尿小便嘘嘘汇集6| 亚洲一区二区三区色噜噜| 亚洲欧美日韩卡通动漫| 久久久久久久久中文| 亚洲国产欧美在线一区| 久久精品国产亚洲av天美| 欧美日韩在线观看h| 51国产日韩欧美| 欧美一区二区精品小视频在线| 欧美色视频一区免费| 精品人妻偷拍中文字幕| 欧美3d第一页| 久久精品国产亚洲av香蕉五月| 国产久久久一区二区三区| 久久久久久久久大av| 精品久久久久久久久久免费视频| 国产男人的电影天堂91| 日韩在线高清观看一区二区三区| 深爱激情五月婷婷| 看十八女毛片水多多多| 亚洲最大成人手机在线| 久久久午夜欧美精品| 美女高潮的动态| 26uuu在线亚洲综合色| 国产乱人偷精品视频| 亚州av有码| 美女被艹到高潮喷水动态| a级毛片a级免费在线| 成人永久免费在线观看视频| 卡戴珊不雅视频在线播放| 插逼视频在线观看| 国产精品美女特级片免费视频播放器| 亚洲精品亚洲一区二区| 极品教师在线视频| 免费电影在线观看免费观看| a级一级毛片免费在线观看| 国产一区二区三区在线臀色熟女| 欧美+日韩+精品| 卡戴珊不雅视频在线播放| 中文亚洲av片在线观看爽| 欧美zozozo另类| 久久精品国产亚洲av涩爱 | 91狼人影院| 日韩中字成人| 成人二区视频| 国产三级中文精品| 夜夜爽天天搞| 内射极品少妇av片p| a级毛片a级免费在线| 亚洲欧美日韩高清在线视频| 亚洲乱码一区二区免费版| 亚洲国产精品成人久久小说 | 综合色丁香网| 联通29元200g的流量卡| 日韩精品有码人妻一区| 婷婷色av中文字幕| 蜜臀久久99精品久久宅男| 一进一出抽搐动态| 欧美精品一区二区大全| 国产成人影院久久av| 人人妻人人澡人人爽人人夜夜 | 高清在线视频一区二区三区 | 麻豆久久精品国产亚洲av| 日韩高清综合在线| 国语自产精品视频在线第100页| 18禁在线播放成人免费| 免费av观看视频| 国产一区二区在线av高清观看| 99热6这里只有精品| 国产午夜福利久久久久久| 51国产日韩欧美| 精华霜和精华液先用哪个| 老师上课跳d突然被开到最大视频| 深夜精品福利| 中国美白少妇内射xxxbb| 夜夜爽天天搞| 欧美精品一区二区大全| 晚上一个人看的免费电影| 99久久中文字幕三级久久日本| 国产成人a区在线观看| 激情 狠狠 欧美| 看十八女毛片水多多多| 成人av在线播放网站| 久久99蜜桃精品久久| 久久精品国产鲁丝片午夜精品| 亚洲精品色激情综合| 男女下面进入的视频免费午夜| 国产91av在线免费观看| 欧美精品国产亚洲| av在线亚洲专区| 国模一区二区三区四区视频| 亚洲精品乱码久久久久久按摩| 亚洲一区高清亚洲精品| 国产私拍福利视频在线观看| av专区在线播放| 男女边吃奶边做爰视频| 成人综合一区亚洲| 日韩精品有码人妻一区| 亚洲国产精品久久男人天堂| 国产精品,欧美在线| 国产精品野战在线观看| 欧美在线一区亚洲| 99久久久亚洲精品蜜臀av| 欧美3d第一页| 日韩三级伦理在线观看| 国产伦在线观看视频一区| 性色avwww在线观看| 日日啪夜夜撸| 精品人妻一区二区三区麻豆| 国产精品爽爽va在线观看网站| 日本熟妇午夜| 久久久久网色| 少妇被粗大猛烈的视频| 日韩大尺度精品在线看网址| 在线观看美女被高潮喷水网站| 亚洲经典国产精华液单| 三级毛片av免费| 男女做爰动态图高潮gif福利片| 国产成人精品一,二区 | 国产黄片美女视频| 热99re8久久精品国产| 久久这里只有精品中国| 国产精品野战在线观看| 69人妻影院| 永久网站在线| 极品教师在线视频| 亚洲内射少妇av| 大香蕉久久网| 最近2019中文字幕mv第一页| 亚洲欧美成人综合另类久久久 | 在线天堂最新版资源| 欧美色欧美亚洲另类二区| 亚洲av.av天堂| 亚洲欧美成人精品一区二区| 国模一区二区三区四区视频| 国产亚洲5aaaaa淫片| 国产亚洲av片在线观看秒播厂 | 亚洲激情五月婷婷啪啪| 内地一区二区视频在线| 亚洲精品国产成人久久av| 在线观看66精品国产| 少妇熟女欧美另类| 91麻豆精品激情在线观看国产| 99精品在免费线老司机午夜| 一区二区三区四区激情视频 | 欧美丝袜亚洲另类| 欧美日韩精品成人综合77777| 国产 一区 欧美 日韩| 综合色av麻豆| 美女脱内裤让男人舔精品视频 | 永久网站在线| 老司机福利观看| 久久久久久国产a免费观看| 国语自产精品视频在线第100页| 国产精品久久久久久精品电影小说 | 亚洲乱码一区二区免费版| 99热这里只有是精品在线观看| 少妇高潮的动态图| 99久久精品热视频| 给我免费播放毛片高清在线观看| 国产精品人妻久久久久久| 少妇猛男粗大的猛烈进出视频 | 精品久久国产蜜桃| 男人狂女人下面高潮的视频| 亚洲精华国产精华液的使用体验 | 国产精品99久久久久久久久| 亚洲乱码一区二区免费版| 极品教师在线视频| 亚洲18禁久久av| 国产探花极品一区二区| 春色校园在线视频观看| 日韩欧美 国产精品| 麻豆av噜噜一区二区三区| 搡女人真爽免费视频火全软件| 蜜桃久久精品国产亚洲av| 男女边吃奶边做爰视频| 成年版毛片免费区| 日本欧美国产在线视频| 成人三级黄色视频| 啦啦啦观看免费观看视频高清| 我要看日韩黄色一级片| 在线天堂最新版资源| 成人二区视频| 美女黄网站色视频| 欧美日韩国产亚洲二区| 亚洲精品国产av成人精品| 村上凉子中文字幕在线| 亚洲人成网站高清观看| 亚洲七黄色美女视频| 熟女电影av网| 日日摸夜夜添夜夜爱| 免费人成在线观看视频色| 天天一区二区日本电影三级| 国产成人福利小说| 国产高清三级在线| 97人妻精品一区二区三区麻豆| 性插视频无遮挡在线免费观看| 在线播放无遮挡| 久久久精品欧美日韩精品| 亚洲成av人片在线播放无| 亚洲国产精品sss在线观看| 色播亚洲综合网| 成年版毛片免费区| 禁无遮挡网站| 国产三级中文精品| 免费看日本二区| 国产精品久久久久久精品电影| av卡一久久| 人体艺术视频欧美日本|