• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Estimation of boundary-layer flow of a nanofluid past a stretching sheet: A revised model*

    2016-10-18 01:45:25NaeemaISHFAQZafarHayatKHANWaqarAhmadKHANRichardCULHAM
    關(guān)鍵詞:吉妮胎牛培養(yǎng)箱

    Naeema ISHFAQ, Zafar Hayat KHAN, Waqar Ahmad KHAN, Richard J. CULHAM

    1. School of Mathematical Sciences, Peking University, Beijing 100871, China,

    E-mail:sanam_143_6@hotmail.com

    2. Department of Mathematics, University of Malakand, Dir (Lower), Khyber Pakhtunkhwa, Pakistan

    3. Department of Mechanical and Industrial Engineering, College of Engineering, Majmaah University, Al Majma′ah, Saudi Arabia

    4. Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada

    ?

    Estimation of boundary-layer flow of a nanofluid past a stretching sheet: A revised model*

    Naeema ISHFAQ1, Zafar Hayat KHAN2, Waqar Ahmad KHAN3, Richard J. CULHAM4

    1. School of Mathematical Sciences, Peking University, Beijing 100871, China,

    E-mail:sanam_143_6@hotmail.com

    2. Department of Mathematics, University of Malakand, Dir (Lower), Khyber Pakhtunkhwa, Pakistan

    3. Department of Mechanical and Industrial Engineering, College of Engineering, Majmaah University, Al Majma′ah, Saudi Arabia

    4. Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada

    The previous model for the boundary layer nanofluid flow past a stretching surface with a specified nanoparticle volume fraction on the surface is revisited. The major limitation of the previous model is the active control of the nanoparticle volume fraction on the surface. In a revised model proposed in this paper, the nanoparticle volume fraction on the surface is passively controlled, which accounts for the effects of both the Brownian motion and the thermophoresis under the boundary condition, whereas the Buongiorno's model considers both effects in the governing equations. The assumption of zero nanoparticle flux on the surface makes the model physically more realistic. In the revised model, the dimensionless heat transfer rates are found to be higher whereas the dimensionless mass transfer rates are identically zero due to the passive boundary condition. It is also found that the Brownian motion parameter has a negligible effect on the Nusselt number.

    boundary layer flow, nanofluid, stretching sheet, Brownian motion, thermophoresis

    Introduction

    Buongiorno[1]developed a model for nanofluid that includes both the Brownian motion and thermophoresis effects. This model was employed by Kuznetsov and Nield[2]and Nield and Kuznetsov[3]to examine the influence of nanoparticles on the free convection past a vertical plate. They employed boundary conditions with respect to the nanoparticle fraction akin to the temperature. Later on, Khan and Pop[4]employed the same model to investigate the laminar flow generated by the stretching of a flat surface. They studied the effects of Brownian and thermophoresis parameters on the dimensionless heat and mass transfer rates using the same approach as used in Refs.[2,3]. This means that the nanoparticle fraction on the wall can be specified arbitrarily, which is not realistic physically. Most recently, Kuznetsov and Nield[5,6]developed a physically realistic type of boundary condition which accounts for the effect of both Brownian and thermophoresis parameters. According to this new type of boundary condition, there is zero nanoparticle flux on the surface and the particle fraction values are adjusted accordingly. The model developed in Kuznetsov and Nield[5,6]was employed by Khan et al.[7,8].

    Pal and Mandal[9]studied the magnetohydrodynamic boundary layer flow of an electrically conducting convective nanofluids induced by a non-linear vertical stretching/shrinking sheet with viscous dissipation, thermal radiation, and Ohmic heating. Their results reveal that by increasing the value of the Hartman number the velocity will decrease, whereas a reverse effect is found in the temperature profiles. Das[10]investigated numerically the boundary layerflow of a nanofluid over non-linear permeable stretching sheet with prescribed surface temperature in the presence of partial slip. Sandeep et al.[11]analyzed the flow, the heat and the mass transfer behavior of Jeffrey, Maxwell and Oldroyd-B nanofluids over a permeable stretching sheet in the presence of transverse magneticfield, thermophoresis, Brownian motion and suction/injection. They found that the friction factor of the Maxwell nanofluid is less important as compared with the Oldroyd-B and Jeffrey nanofluid. Chandrasekar and Kasiviswanathan[12]applied a variational technique to the MHD, the radiative nanofluid flow over a non-isothermal stretching sheet with Brownian motion and thermophoresis effects by Gyarmati's principle. The heat and mass transfer effects were investigated and analyzed by this technique. Ganga et al.[13]analyzed the effects of the space and temperature dependent internal heat generation/absorption on the magnetohydrodynamic boundary layer flow of the water based nanofluid over a stretching sheet with different nanoparticles. The influences of the nanoparticle volume fraction, the magnetic field,the Prandtl number, the non-uniform heat source/sink,the local skin friction coefficient and the reduced Nusselt number were investigated for different nanoparticles. Khan et al.[14]investigated the problem of the oblique hydromagnetic stagnation point flow of the electrically conducting optically dense viscous incompressible nanofluid of a variable viscosity over a convectively heated stretching sheet in the presence of thermal radiation. They analyzed the effects of various controlling parameters on the dimensionless velocity,temperature, nanoparticles concentration, skin friction,Nusselt and Sherwood numbers. Makinde et al.[15]investigated the combined effects of the thermal radiation, the thermophoresis, the Brownian motion, the magnetic field and the variable viscosity on the boundary layer flow, the heat and the mass transfer of an electrically conducting nanofluid over a radially stretching convectively heated surface. Their results reveal that the heat transfer rate is reduced with the increase of the viscosity and the nanofluid parameters whereas the mass transfer rates are enhanced with the increase of the Brownian motion parameter and the Lewis number. Ahmad[16]studied a classical non-Newtonian fluid in the presence of nano-particles over a nonlinear stretching sheet. The correlation expressions for the skin friction, the Nusselt number and the Sherwood number were developed by performing a linear regression on the obtained numerical data. Mabood and Khan[17]obtained an analytical solution of an unsteady two-dimensional MHD nanofluid flow with heat and mass transfer over a heated surface. They conducted a detailed study illustrating the influences of the magnetic, unsteady, suction/injection and nanofluid parameters, on the dimensionless velocity, temperature, concentration as well as on the skin friction coefficient, and the reduced Nusselt and Sherwood numbers.

    In this study, the model of the nanofluid flow past a stretching sheet in Ref.[4] is revised with the assumption that the value of nanoparticles at the wall are no longer given.

    1. Formatting mathematical model

    The present analysis closely follows the work of Ref.[4] and so only a brief outline is given here. A two-dimensional steady boundary layer flow of a nanofluid past a stretching surface is under consideration. The sheet is linearly stretched with linear velocity uw(x)=ax , whereais a constant and a steady uniform stress is accompanied by a pair of forces of equal magnitude and opposite directions along thex-axis so that the sheet is stretched with the origin kept fixed. The flow takes place aty≥0, whereyis the coordinate measured normal to the stretching surface. It is assumed that on the stretching surface, the temperatureTkeeps a constant value Twand the nanoparticle fractionC takes the value Cwfor the actively controlled nanoparticles on the surface whereasCis passively controlled by the effects of thermophoresis for the passively controlled nanoparticles. The ambient values, attained asy tends to infinity, ofT and C are denoted by T∞and C∞, respectively.

    The basic steady conservation equations of mass,momentum, thermal energy and nanoparticles for the nanofluids can be written in Cartesian coordinates x andy as (see Kuznetsov and Nield[5,6])

    Table 1 Comparison of results for the Nusselt number when Nb = Nt=0

    with boundary conditions

    Hereuandv are the velocity components along the axes xandy , respectively,p is the fluid pressure,ρis the density of the nanofluid,νis the kinematic viscosity of the nanofluid,αis the thermal diffusivity of the nanofluid,a is a positive constant,DBis the Brownian diffusion coefficient, and DTis the thermophoretic diffusion coefficient.

    A similarity solution of Eqs.(1)-(5) with the boundary conditions (6) takes the following form:

    where the stream functionψis defined in the usual way as u=?ψ/?y and v=-?ψ/?x. To determine the similarity solution (7), we have taken into account that the pressure in the outer (inviscid) flow isp=p0(constant). Substituting (7) into Eqs.(2)-(5), we obtain the following ordinary differential equations:

    with the boundary conditions

    where primes denote differentiations with respect to ηand the four parameters are defined as:

    HerePr,Sc,NbandNt denote the Prandtl number, the Schmidt number, the Brownian motion andthe thermophoresis parameters, respectively. It is important to note that this boundary value problem reduces to the classical problem of the flow and heat and mass transfer due to a stretching surface in a viscous fluid whenNbandNt approaches to zero in Eqs.(9)and (10).

    Of practical interest, in this study, is the Nusselt number Nux, which is defined as

    where qwis the heat flux andkis the effective thermal conductivity. Using (7), we obtain

    It is important to note that with the new boundary condition the Sherwood number, which represents the dimensionless mass flux, is identically zero, i.e.

    2. Numerical scheme

    The nonlinear ordinary differential Eqs.(8)-(10)subject to the boundary conditions (11) are solved numerically using an efficient Runge-Kutta fourth order method along with the shooting technique. The asymptotic boundary conditions given by Eq.(11) are replaced by using a value of 15 for the similarity variable ηmax. The choice of ηmax=15and the step size?η=0.001, ensure that all numerical solutions approach the asymptotic values correctly. For validating the proposed scheme, a comparison of the Nusselt number with the data in Refs.[4,8,9] is shown in Table 1 for both active and passive controls ofφin the special case when Nb=Nt=0. Therefore, we are confident that the applied numerical scheme is very accurate.

    3. Results and discussions

    Since there is no change in the momentum and energy equations and the related boundary conditions,the dimensionless velocity and temperature profiles will remain the same as obtained with the previous model[4]. The only change is in the boundary condition of the surface nanoparticle volume fraction. The effects of the nanofluid parameters and the Schmidt number on the rescaled nanoparticle volume fraction for water-based nanofluids are shown in Figs.1(a)-1(c) for active control (as the previous model) and passive control (as the revised model) of nanoparticles at the surface.

    Fig.1 Variation of volume fraction with nanofluid parameters and Schmidt number for both active and passive controls of nanoparticles at the surface

    It is noticed that in the active control model, the rescaled nanoparticle volume fraction φ (η)assumes the maximum on the surface and decreases to zero in the related boundary layer. No appreciable effect of nanofluid parameters could be observed on the rescaled nanoparticle volume fraction profiles.

    It is quite interesting to observe in the passive control model that the similarity variableφ (η)overshoots and attains negative values in the neighbourhood of the surface, see Figs.1(a)-1(c). This interestingbehaviour is also observed by Kuznetsov and Nield[5,6]. In fact, it is due to the zero nanoparticle flux condition(accounting for both Brownian motion and thermophoresis parameters) on the surface, which means that the nanoparticle flux at the surface is suppressed.

    Fig.2 Variation of Nusselt numbers for both active and passive controls of nanoparticles on the surface

    The variations of the dimensionless heat transfer rates against the dimensionless numbersSc,Pr , and the nanofluid parametersNtandNb are shown in Figs.2(a) and 2(b). In Fig.2(a) and Table 3, the values of the Prandtl numbers for different base fluids are given in Table 2.

    4. Estimation of the nusselt number

    A linear regression estimate Nuestof the Nusselt number for the case Pr =6.2and Sc=10, is presented, which incorporates the effects of the Brownian motionNband the thermophoresis parameterNt. The linearly estimated equation using the least square method is obtained as

    The calculations are performed for 256 sets of values ofNb, andNt in the range [0.1,0.2,0.3,0.4,0.5]. This correlation is valid in the range [0,0.5]with the maximum error of 1.66%. For more accurate estimation, a quadratic regression is performed for the following relation

    Both the linear and quadratic estimations indicate that the Nusselt number is a decreasing function of the Brownian motion Nband the thermophoresis parameterNt. This decreasing behaviour corresponds to an increase in the thermal boundary layer thickness. The interesting aspect of these correlations is that the coefficient ofNb is negligibly small and has very little effect on the Nusselt number. The same conclusion was drawn by Kuznetsov and Nield[3,4].

    5. Conclusion

    We have revisited the boundary layer flow of nanofluid past a stretching sheet. The major improvement in the reformulation is the introduction of a more realistic boundary condition on the surface. We have assumed the zero nanoparticle flux on the surface,which accounts for the effects of both Brownian motion and thermophoresis in the boundary condition. The self-similar numerical solutions are analysed under the influence of the different governing parameters. The dependence of the Nusselt number on the Brownian motion and thermophoresis parameters is estimated using both linear and quadratic correlations. It is found that under the assumption of passively controlled nanoparticle volume fraction on the surface, the Brownian motion parameterNb has negligible effect on the heat transfer rate. This is in accordance with the conclusion made by Kuznetsov and Nield[3,4].

    Table 2 Prandtl numbers for different base fluids under consideration[19,20]

    Table 3 Variation of Nusselt number against Nt for different base fluids with Sc =10and Nb=0.1

    Table 4 Quadratic regression coefficients and error bound for the estimated Nusselt number with variations in Prandtl numberPrfor Sc=10

    Table 5 Quadratic regression coefficients and error bound for the estimated Nusselt number with variations in Schmidt numberScfor Pr=6.2

    References

    [1] BUONGIORNO J. Convective transport in nanofluids[J]. Journal of Heat Transfer, 2006, 128(3): 240-250.

    [2] KUZNETSOV A. V., NIELD D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate[J]. International Journal of Thermal Sciences, 2010, 49(2): 243-247.

    [3] NIELD D. A., KUZNETSOV A. V. The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid[J]. International Journal of Heat and Mass Transfer, 2009,52(25-26): 5792-5795.

    MH7A細(xì)胞為永生化的RA關(guān)節(jié)滑膜細(xì)胞,購自廣州吉妮歐公司。用高糖DMEM+10%胎牛血清于5%CO2,37℃的培養(yǎng)箱培養(yǎng)。購買時為第3代,培養(yǎng)3代后用于后續(xù)實驗研究。

    [4] KHAN W. A., POP I. Boundary-layer flow of a nanofluid past a stretching sheet[J]. International Journal of Heat and Mass Transfer, 2010, 53(11): 2477-2483.

    [5] KUZNETSOV A. V., NIELD D. A. The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: A revised model[J]. International Journal of Heat and Mass Transfer, 2013, 65(25-26): 682-685.

    [6] KUZNETSOV A. V., NIELD D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate: A revised model[J]. International Journal of Thermal Sciences, 2014, 77: 126-129.

    [7] KHAN Z. H., KHAN W. A. and POP I. Triple diffusive free convection along a horizontal plate in porous media saturated by a nanofluid with convective boundary condition[J]. International Journal of Heat and Mass Transfer, 2013, 66(1): 603-612.

    [8] WANG C. Y. Free convection on a vertical stretching surface[J]. Zamm-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1989, 69(11): 418-420.

    [9] PAL D., MANDAL G. Hydromagnetic convective-radiative boundary layer flow of nanofluids induced by a nonlinear vertical stretching/shrinking sheet with viscous-Ohmic dissipation[J]. Powder Technology, 2015, 279: 61-74.

    [10] DAS K. Nanofluid flow over a non-linear permeable stretching sheet with partial slip[J] Journal of the Egyptian Mathematical Society, 2015, 23(2): 451-456.

    [11] SANDEEP N., RUSHI KUMAR B. and JAGADEESH KUMAR M. S. A comparative study of convective heat and mass transfer in non-Newtonian nanofluid flow past a permeable stretching sheet[J]. Journal of Molecular Liquids, 2015, 212(1): 585-591.

    [12] CHANDRASEKAR M., KASIVISWANATHAN M. S. Analysis of heat and mass transfer on MHD Flow of a nanofluid past a stretching sheet[J]. Procedia Engineering, 2015, 127: 493-500.

    [13] GANGA B., SARANYA S. and VISHNU GANESH N. et al. Effects of space and temperature dependent internal heat generation/absorption on MHD flow of a nanofluid over a stretching sheet[J]. Journal of Hydrodynamics,2015, 27(6): 945-954.

    [14] KHAN W. A., MAKINDE O. D. and KHAN Z. H. Nonaligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat[J]. International Journal of Heat and Mass Transfer, 2016,96: 525-534.

    [15] MAKINDE O. D., MABOOD F. and KHAN W. A. et al. MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat[J]. Journal of Molecular Liquids, 2016, 219: 624-630.

    [16] AHMAD A. Flow of Reiner Philipp off based nanofluid past a stretching sheet[J]. Journal of Molecular Liquids,2016, 219: 643-646.

    [17] MABOOD F., KHAN W. A. Analytical study for unsteady nanofluid MHD Flow impinging on heated stretching sheet[J]. Journal of Molecular Liquids, 2016, 219: 216-223.

    [18] KANDASAMY R., LOGANATHAN P. and PUVI ARASU P. Scaling group transformation for MHD boundary-layer flow of a nanofluid past a vertical stretching surface in the presence of suction/injection[J]. Nuclear Engineering and Design, 2011, 241(6): 2053-2059.

    [19] BEJAN A. Convection heat transfer[M]. 3rd Edition. New York, USA: John Wiley, 2004.

    [20] DAUBERT T. E., DANNER R. P. Physical and thermodynamic properties of pure chemicals[M]. New York,USA: Hemisphere Publishing Corporation, 1989.

    10.1016/S1001-6058(16)60663-7

    October 6, 2014, Revised April 27, 2015)

    * Project supported by the National Natural Science Foundation of China (Grant No. 11271023).

    Biography: Naeema ISHFAQ (1986-), Female,

    Ph. D. Candidate

    Corresponging author: Zafar Hayat KHAN,

    E-mail: zafarhayyatkhan@gmail.com

    2016,28(4):596-602

    猜你喜歡
    吉妮胎牛培養(yǎng)箱
    基于細(xì)胞體外培養(yǎng)篩選最適胎牛血清
    嬰兒培養(yǎng)箱的質(zhì)控辦法及設(shè)計改良探討
    細(xì)胞貼壁效應(yīng)是評價胎牛血清質(zhì)量的重要因素
    2021年本刊一些常用詞匯可直接用縮寫(一)
    微生物培養(yǎng)箱的選購與管理
    食品工程(2020年3期)2020-01-05 14:38:16
    基于模糊PID參數(shù)自整定的細(xì)胞培養(yǎng)箱溫度控制算法
    印度猴子吉妮
    胎牛血清對人內(nèi)皮細(xì)胞HMEC-1體外成血管實驗影響的觀察△
    三種吉妮宮內(nèi)節(jié)育器的臨床效果觀察
    吉妮姐姐在紐約
    另类亚洲欧美激情| 日日爽夜夜爽网站| 成人亚洲精品一区在线观看| 夜夜躁狠狠躁天天躁| 在线永久观看黄色视频| 久久久久久久久免费视频了| 在线看a的网站| 午夜福利在线免费观看网站| 一级a爱视频在线免费观看| 久久久精品国产亚洲av高清涩受| 亚洲片人在线观看| 精品久久久久久,| 精品久久蜜臀av无| 一级毛片精品| 少妇 在线观看| 欧美 日韩 精品 国产| 国产蜜桃级精品一区二区三区 | 桃红色精品国产亚洲av| 一区二区三区精品91| 两人在一起打扑克的视频| 欧美亚洲 丝袜 人妻 在线| e午夜精品久久久久久久| 脱女人内裤的视频| 老司机靠b影院| 国产主播在线观看一区二区| 久久久久久久精品吃奶| 老司机福利观看| 99久久99久久久精品蜜桃| 不卡一级毛片| 老汉色av国产亚洲站长工具| 十八禁人妻一区二区| av片东京热男人的天堂| netflix在线观看网站| 国产一区二区三区视频了| 搡老岳熟女国产| 宅男免费午夜| 最新的欧美精品一区二区| 午夜精品久久久久久毛片777| 国产片内射在线| 女人爽到高潮嗷嗷叫在线视频| 成人国产一区最新在线观看| 一区二区日韩欧美中文字幕| 麻豆av在线久日| 人妻久久中文字幕网| 真人做人爱边吃奶动态| 亚洲五月色婷婷综合| 久久国产精品男人的天堂亚洲| 亚洲精品粉嫩美女一区| 日本黄色日本黄色录像| 欧美日本中文国产一区发布| 极品少妇高潮喷水抽搐| 国产精品国产av在线观看| 欧美黄色片欧美黄色片| 久久99一区二区三区| 精品福利永久在线观看| 69精品国产乱码久久久| 91麻豆av在线| 99精品在免费线老司机午夜| 国产精品一区二区精品视频观看| 国产精品久久久久久精品古装| 亚洲精品中文字幕在线视频| 国产一区有黄有色的免费视频| 亚洲第一青青草原| 成人亚洲精品一区在线观看| 亚洲五月婷婷丁香| 久久这里只有精品19| 高清av免费在线| 久久人妻av系列| 女性被躁到高潮视频| 窝窝影院91人妻| 国产精品国产高清国产av | 在线观看免费视频日本深夜| 亚洲精品中文字幕在线视频| 人人妻,人人澡人人爽秒播| 国产深夜福利视频在线观看| 国产精品影院久久| 精品久久久久久,| 男女床上黄色一级片免费看| 亚洲中文av在线| 老司机影院毛片| 午夜亚洲福利在线播放| 国产伦人伦偷精品视频| 黄片大片在线免费观看| 极品人妻少妇av视频| 午夜精品久久久久久毛片777| 国产麻豆69| 欧美人与性动交α欧美精品济南到| 欧美日韩一级在线毛片| 18禁黄网站禁片午夜丰满| 亚洲人成电影免费在线| 久久久精品国产亚洲av高清涩受| 老司机午夜十八禁免费视频| 视频区图区小说| 亚洲欧美激情综合另类| 美女 人体艺术 gogo| 99热网站在线观看| 精品一区二区三区四区五区乱码| 亚洲人成电影观看| 久久人妻熟女aⅴ| 日本a在线网址| av超薄肉色丝袜交足视频| 色精品久久人妻99蜜桃| 最新的欧美精品一区二区| 一区在线观看完整版| 在线观看免费日韩欧美大片| 香蕉国产在线看| 欧美精品一区二区免费开放| 国产成人av教育| 国产成人精品在线电影| 国产精品国产av在线观看| 国产高清激情床上av| 婷婷成人精品国产| 久久婷婷成人综合色麻豆| 亚洲精品中文字幕在线视频| 1024香蕉在线观看| 欧美精品人与动牲交sv欧美| 国产极品粉嫩免费观看在线| 亚洲精品一二三| 99国产精品免费福利视频| 日韩人妻精品一区2区三区| 免费不卡黄色视频| 亚洲精品久久午夜乱码| 久久久久久免费高清国产稀缺| 国产91精品成人一区二区三区| 日韩人妻精品一区2区三区| 美女扒开内裤让男人捅视频| 丁香六月欧美| 亚洲国产欧美日韩在线播放| 天堂√8在线中文| 女人久久www免费人成看片| 中国美女看黄片| svipshipincom国产片| 欧美乱色亚洲激情| 精品久久久久久,| 国产亚洲精品久久久久5区| 国产区一区二久久| 欧美人与性动交α欧美软件| 日本欧美视频一区| 日本a在线网址| 久久久久视频综合| 女性被躁到高潮视频| 亚洲欧美色中文字幕在线| 男女免费视频国产| 久久精品国产99精品国产亚洲性色 | av网站在线播放免费| 一区二区三区国产精品乱码| 国产亚洲精品久久久久久毛片 | 老司机福利观看| 无限看片的www在线观看| 婷婷精品国产亚洲av在线 | 真人做人爱边吃奶动态| 国产无遮挡羞羞视频在线观看| 国产不卡av网站在线观看| 亚洲欧美一区二区三区黑人| 三级毛片av免费| 美女福利国产在线| 欧美日韩亚洲高清精品| a级片在线免费高清观看视频| 男女之事视频高清在线观看| 亚洲欧美激情综合另类| 国产精品电影一区二区三区 | 99精国产麻豆久久婷婷| 精品熟女少妇八av免费久了| 黑人猛操日本美女一级片| 国产成+人综合+亚洲专区| 99久久99久久久精品蜜桃| 欧美精品啪啪一区二区三区| 一级a爱视频在线免费观看| 久久婷婷成人综合色麻豆| 亚洲成人免费av在线播放| av视频免费观看在线观看| 99re6热这里在线精品视频| 国内毛片毛片毛片毛片毛片| 国内毛片毛片毛片毛片毛片| 午夜亚洲福利在线播放| 亚洲精华国产精华精| 亚洲av熟女| 亚洲五月婷婷丁香| 亚洲五月婷婷丁香| 久久精品亚洲av国产电影网| 中文字幕人妻熟女乱码| 精品国产一区二区久久| 视频区图区小说| 国产97色在线日韩免费| 老司机福利观看| 成人免费观看视频高清| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲av成人一区二区三| 精品久久久久久久久久免费视频 | 黄频高清免费视频| 欧美日韩福利视频一区二区| 校园春色视频在线观看| 成人18禁高潮啪啪吃奶动态图| 国产免费男女视频| 老司机靠b影院| 一区二区日韩欧美中文字幕| 久久久国产精品麻豆| 亚洲精华国产精华精| 国产成人一区二区三区免费视频网站| 亚洲人成伊人成综合网2020| 国产精品 欧美亚洲| 一区二区三区国产精品乱码| 精品久久久精品久久久| 亚洲成人免费电影在线观看| 日韩免费av在线播放| 丰满的人妻完整版| 亚洲中文av在线| 国产精品久久久久久人妻精品电影| 精品无人区乱码1区二区| 午夜成年电影在线免费观看| 免费一级毛片在线播放高清视频 | 99香蕉大伊视频| 欧美成人免费av一区二区三区 | 妹子高潮喷水视频| 国产真人三级小视频在线观看| 大香蕉久久网| 国产有黄有色有爽视频| 高清毛片免费观看视频网站 | 黄频高清免费视频| 免费观看人在逋| 狠狠婷婷综合久久久久久88av| 又大又爽又粗| 欧美日韩成人在线一区二区| 国产麻豆69| 国产精品电影一区二区三区 | 中文字幕人妻丝袜制服| 久久人妻福利社区极品人妻图片| 99国产精品一区二区蜜桃av | 亚洲av成人一区二区三| 欧美日韩瑟瑟在线播放| 国产精品亚洲一级av第二区| 黄色 视频免费看| www.自偷自拍.com| 欧美在线黄色| 18禁国产床啪视频网站| 一个人免费在线观看的高清视频| 高清黄色对白视频在线免费看| 99riav亚洲国产免费| 中文字幕人妻熟女乱码| 人人澡人人妻人| 亚洲av成人一区二区三| 国产视频一区二区在线看| 91字幕亚洲| 国产91精品成人一区二区三区| 午夜福利免费观看在线| 免费在线观看黄色视频的| 久久国产精品人妻蜜桃| 水蜜桃什么品种好| 欧美乱色亚洲激情| 亚洲 国产 在线| 国产男靠女视频免费网站| 久久人人97超碰香蕉20202| av视频免费观看在线观看| 精品免费久久久久久久清纯 | 久久精品国产a三级三级三级| 日韩人妻精品一区2区三区| 精品卡一卡二卡四卡免费| 1024香蕉在线观看| 亚洲avbb在线观看| 欧美+亚洲+日韩+国产| 69av精品久久久久久| 真人做人爱边吃奶动态| 人人妻人人爽人人添夜夜欢视频| 亚洲精品乱久久久久久| 天天躁夜夜躁狠狠躁躁| 欧美日韩视频精品一区| 亚洲欧美日韩另类电影网站| 黑丝袜美女国产一区| 老司机福利观看| 男人舔女人的私密视频| tocl精华| 国产精品98久久久久久宅男小说| 国产精品av久久久久免费| 国产精品免费大片| 乱人伦中国视频| 欧美亚洲 丝袜 人妻 在线| 国产免费男女视频| 久久久久久久午夜电影 | 超碰成人久久| 久久中文字幕人妻熟女| 精品一区二区三区av网在线观看| 精品国产美女av久久久久小说| 人人妻人人澡人人看| 久久久久国产精品人妻aⅴ院 | 老熟妇乱子伦视频在线观看| 丝袜美腿诱惑在线| 午夜成年电影在线免费观看| 啦啦啦免费观看视频1| 国产欧美日韩一区二区精品| 在线观看舔阴道视频| 啦啦啦免费观看视频1| 亚洲国产欧美一区二区综合| 狂野欧美激情性xxxx| 伦理电影免费视频| 一本大道久久a久久精品| 好男人电影高清在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 欧美亚洲 丝袜 人妻 在线| 久久精品国产99精品国产亚洲性色 | 国产精品一区二区在线不卡| 国产免费男女视频| 天天躁夜夜躁狠狠躁躁| 黄色视频不卡| av福利片在线| 国产成人啪精品午夜网站| www日本在线高清视频| 国产一区二区三区视频了| 亚洲熟妇中文字幕五十中出 | 日韩熟女老妇一区二区性免费视频| 欧美在线一区亚洲| 欧美丝袜亚洲另类 | 超色免费av| 久久久久久久久免费视频了| 午夜免费成人在线视频| 精品乱码久久久久久99久播| 男人的好看免费观看在线视频 | 久久青草综合色| 国产免费男女视频| 午夜免费成人在线视频| 久久国产精品男人的天堂亚洲| 久久中文字幕一级| bbb黄色大片| 精品高清国产在线一区| 每晚都被弄得嗷嗷叫到高潮| 男女床上黄色一级片免费看| www.999成人在线观看| 18禁黄网站禁片午夜丰满| 高潮久久久久久久久久久不卡| 免费在线观看影片大全网站| 日本精品一区二区三区蜜桃| 亚洲七黄色美女视频| 在线视频色国产色| 大香蕉久久成人网| 国产99白浆流出| 欧美亚洲 丝袜 人妻 在线| 国产精品免费视频内射| 又大又爽又粗| 成人特级黄色片久久久久久久| 最近最新免费中文字幕在线| av不卡在线播放| 香蕉丝袜av| 精品久久久精品久久久| 久久人妻熟女aⅴ| 国产亚洲精品一区二区www | 亚洲成人免费电影在线观看| 久久精品亚洲av国产电影网| 亚洲精品中文字幕在线视频| 欧美人与性动交α欧美精品济南到| 在线观看www视频免费| 高清毛片免费观看视频网站 | 韩国精品一区二区三区| 热99re8久久精品国产| 999久久久国产精品视频| 别揉我奶头~嗯~啊~动态视频| 在线观看www视频免费| 亚洲五月婷婷丁香| 丝袜在线中文字幕| 人人妻人人澡人人看| 国产欧美日韩一区二区三区在线| 99久久国产精品久久久| 亚洲少妇的诱惑av| 国产成人一区二区三区免费视频网站| 国产亚洲精品久久久久久毛片 | 不卡av一区二区三区| 精品国产一区二区三区四区第35| 捣出白浆h1v1| 欧美色视频一区免费| 国产激情欧美一区二区| 一级a爱片免费观看的视频| 久久人妻福利社区极品人妻图片| 人妻久久中文字幕网| 亚洲熟女毛片儿| 99国产极品粉嫩在线观看| 男女下面插进去视频免费观看| 亚洲在线自拍视频| 啦啦啦免费观看视频1| 如日韩欧美国产精品一区二区三区| av不卡在线播放| 国产91精品成人一区二区三区| 久久久国产成人免费| 午夜日韩欧美国产| 精品亚洲成国产av| 国产成人精品久久二区二区91| 高清在线国产一区| 亚洲国产欧美日韩在线播放| 国产一卡二卡三卡精品| a在线观看视频网站| 亚洲avbb在线观看| 777米奇影视久久| 久久青草综合色| 国产真人三级小视频在线观看| 午夜福利,免费看| 香蕉丝袜av| 99热国产这里只有精品6| 丰满人妻熟妇乱又伦精品不卡| 天天影视国产精品| 国产精品自产拍在线观看55亚洲 | av福利片在线| av电影中文网址| 亚洲精品国产区一区二| 91成人精品电影| 久久亚洲真实| svipshipincom国产片| 无限看片的www在线观看| 一本一本久久a久久精品综合妖精| 又大又爽又粗| 91麻豆av在线| 亚洲精品在线美女| 亚洲熟妇熟女久久| 美女扒开内裤让男人捅视频| 91九色精品人成在线观看| 国产一区二区三区视频了| 最近最新免费中文字幕在线| av国产精品久久久久影院| 久久精品国产清高在天天线| 老司机影院毛片| 在线观看日韩欧美| 黄色a级毛片大全视频| 我的亚洲天堂| 动漫黄色视频在线观看| 在线观看66精品国产| 日韩欧美国产一区二区入口| 日韩欧美一区二区三区在线观看 | 天天添夜夜摸| 一级作爱视频免费观看| 老司机福利观看| 女性被躁到高潮视频| 美女午夜性视频免费| 俄罗斯特黄特色一大片| 女人被狂操c到高潮| 天天躁日日躁夜夜躁夜夜| 国产精品一区二区精品视频观看| 国产精品综合久久久久久久免费 | 免费在线观看视频国产中文字幕亚洲| 亚洲精品一卡2卡三卡4卡5卡| 久久狼人影院| 在线天堂中文资源库| 桃红色精品国产亚洲av| 色尼玛亚洲综合影院| 曰老女人黄片| 久久狼人影院| 麻豆国产av国片精品| 99热国产这里只有精品6| 啦啦啦在线免费观看视频4| 国产免费av片在线观看野外av| 99精品欧美一区二区三区四区| 一区在线观看完整版| 夫妻午夜视频| 村上凉子中文字幕在线| 法律面前人人平等表现在哪些方面| 91麻豆精品激情在线观看国产 | 天天操日日干夜夜撸| 一二三四在线观看免费中文在| 深夜精品福利| 亚洲av片天天在线观看| 99在线人妻在线中文字幕 | 国产精品久久久人人做人人爽| 国产精品久久电影中文字幕 | 成年人黄色毛片网站| 一级毛片高清免费大全| 亚洲av日韩精品久久久久久密| 亚洲午夜理论影院| 亚洲男人天堂网一区| 一级毛片高清免费大全| 亚洲成av片中文字幕在线观看| 亚洲中文日韩欧美视频| 亚洲国产看品久久| 淫妇啪啪啪对白视频| 国产亚洲欧美在线一区二区| 热re99久久国产66热| 在线看a的网站| 色综合婷婷激情| 高清黄色对白视频在线免费看| 一级a爱视频在线免费观看| 日韩人妻精品一区2区三区| 身体一侧抽搐| 国产精华一区二区三区| 午夜免费成人在线视频| 日本撒尿小便嘘嘘汇集6| 欧美av亚洲av综合av国产av| 久久这里只有精品19| 国产成人欧美| 男人操女人黄网站| 一级黄色大片毛片| 午夜福利在线观看吧| 美国免费a级毛片| 久久久久久人人人人人| 久久国产乱子伦精品免费另类| 国产一区二区三区视频了| 一二三四社区在线视频社区8| 狂野欧美激情性xxxx| 欧美精品啪啪一区二区三区| 亚洲熟妇熟女久久| 久久热在线av| 国产精品香港三级国产av潘金莲| 亚洲综合色网址| 亚洲国产欧美日韩在线播放| 久久精品成人免费网站| 韩国av一区二区三区四区| 天堂√8在线中文| 精品一区二区三区av网在线观看| 在线视频色国产色| 99久久综合精品五月天人人| 亚洲精品中文字幕在线视频| 亚洲一码二码三码区别大吗| 欧美精品啪啪一区二区三区| 久久久水蜜桃国产精品网| 久久午夜综合久久蜜桃| 久久久久久久国产电影| 三级毛片av免费| 亚洲欧美激情在线| 国产欧美日韩一区二区精品| 激情视频va一区二区三区| 国产熟女午夜一区二区三区| 欧美精品亚洲一区二区| a级毛片在线看网站| 亚洲专区字幕在线| 亚洲七黄色美女视频| 在线观看免费高清a一片| 日本精品一区二区三区蜜桃| 国产欧美日韩综合在线一区二区| 乱人伦中国视频| av网站免费在线观看视频| 久久国产亚洲av麻豆专区| 欧美黑人欧美精品刺激| 成人国语在线视频| 午夜精品国产一区二区电影| 一本一本久久a久久精品综合妖精| 无人区码免费观看不卡| 国产视频一区二区在线看| 狠狠狠狠99中文字幕| 色婷婷久久久亚洲欧美| 在线免费观看的www视频| 亚洲精品自拍成人| 精品少妇一区二区三区视频日本电影| 国产av精品麻豆| 精品国产国语对白av| 一区二区日韩欧美中文字幕| 操出白浆在线播放| 韩国精品一区二区三区| 两性夫妻黄色片| 黄网站色视频无遮挡免费观看| 久久中文字幕人妻熟女| 一本综合久久免费| 亚洲精品国产精品久久久不卡| xxxhd国产人妻xxx| 另类亚洲欧美激情| 久久ye,这里只有精品| 男女床上黄色一级片免费看| 欧美精品啪啪一区二区三区| 精品国产乱码久久久久久男人| 动漫黄色视频在线观看| 久久久久国产一级毛片高清牌| 精品亚洲成国产av| 黄色怎么调成土黄色| 一本一本久久a久久精品综合妖精| 国产精品久久久久成人av| 波多野结衣一区麻豆| 国产精品综合久久久久久久免费 | 午夜精品国产一区二区电影| 中文欧美无线码| 搡老岳熟女国产| 美女扒开内裤让男人捅视频| 久久精品人人爽人人爽视色| 精品少妇一区二区三区视频日本电影| 国产成人影院久久av| 又黄又粗又硬又大视频| 精品久久久久久久毛片微露脸| 中文亚洲av片在线观看爽 | 悠悠久久av| 久久久久国内视频| 亚洲国产精品sss在线观看 | 久久精品成人免费网站| av中文乱码字幕在线| 精品久久久久久久久久免费视频 | 老熟女久久久| 国产人伦9x9x在线观看| 黄频高清免费视频| 国产乱人伦免费视频| 久久精品人人爽人人爽视色| 欧美乱码精品一区二区三区| tocl精华| 国产淫语在线视频| 黄色a级毛片大全视频| 人成视频在线观看免费观看| 欧美+亚洲+日韩+国产| 久久久国产成人精品二区 | 欧美老熟妇乱子伦牲交| 韩国av一区二区三区四区| 免费观看人在逋| 国产精品综合久久久久久久免费 | 午夜福利乱码中文字幕| 日日爽夜夜爽网站| 亚洲一区二区三区欧美精品| 12—13女人毛片做爰片一| 高清在线国产一区| 午夜亚洲福利在线播放| 亚洲一区二区三区不卡视频| 午夜福利在线观看吧| 悠悠久久av| 亚洲精品久久成人aⅴ小说| 18禁美女被吸乳视频| 成人永久免费在线观看视频| 大香蕉久久网| 免费在线观看视频国产中文字幕亚洲| 国产精品av久久久久免费| 欧美精品啪啪一区二区三区| 国产精品一区二区在线观看99| 精品第一国产精品| 国产主播在线观看一区二区| 久久久久久亚洲精品国产蜜桃av| 亚洲精品久久成人aⅴ小说| 如日韩欧美国产精品一区二区三区| 99国产极品粉嫩在线观看| 成熟少妇高潮喷水视频|