柳向東,郭 慧
暨南大學(xué)統(tǒng)計(jì)學(xué)系,廣州 510632
【數(shù)學(xué) / Mathematics】
基于市道輪換模型的SHIBOR市場(chǎng)利率
柳向東,郭 慧
暨南大學(xué)統(tǒng)計(jì)學(xué)系,廣州 510632
基于固定波動(dòng)率模型和廣義自回歸條件異方差(generalized autoregressive conditional heteroskedasticity,GARCH)模型,研究引入馬氏市道輪換模型. 該模型可以將線性利率期限結(jié)構(gòu)推廣到非線性形式,運(yùn)用到資產(chǎn)定價(jià)的變化中,特別是債券收益率的確定中.不同于唯一依賴(lài)?yán)仕降膫鹘y(tǒng)模型,馬氏市道輪換模型能夠模擬貨幣政策對(duì)利率的影響.利用2006-10-08至2013-03-29每周三上海銀行間同業(yè)拆放利率(Shanghai interbank offered rate,SHIBOR)月度數(shù)據(jù),用R語(yǔ)言實(shí)現(xiàn)并比較了固定波動(dòng)率模型、GARCH模型以及混合GARCH馬氏市道輪換模型對(duì)各參數(shù)的估計(jì)效果.結(jié)果表明,混合GARCH馬氏市道輪換模型的擬合效果在各種情形下均占優(yōu).
應(yīng)用統(tǒng)計(jì)數(shù)學(xué);馬氏市道輪換;廣義自回歸條件異方差;上海銀行間同業(yè)拆放利率;利率期限結(jié)構(gòu);固定波動(dòng)率;單機(jī)制模型
在資產(chǎn)定價(jià)中,利率期限結(jié)構(gòu)模型是一個(gè)重要的模型,一般采用債券定價(jià)中即期利率的擴(kuò)散模型對(duì)其進(jìn)行研究. Chan等[1]提出了一個(gè)統(tǒng)一的單因子線性擴(kuò)散模型(CKLS),通過(guò)實(shí)證表明一些著名的單因子模型不能有效描述短期利率行為,如 Vasicek和 CIR 模型[2-3]. Clifford等[4-9]也認(rèn)為使用擴(kuò)散模型進(jìn)行數(shù)據(jù)擬合結(jié)果往往不甚理想. Stephen等[10-15]認(rèn)為,應(yīng)由一個(gè)非線性的市道輪換模型來(lái)解釋多因素(牛市和熊市)帶來(lái)的經(jīng)濟(jì)體制的變化,如美聯(lián)儲(chǔ)在20世紀(jì)80年代初發(fā)生的經(jīng)驗(yàn)體制變化及石油輸出國(guó)組織(organization of petroleum exporting countries,OPEC)在20世紀(jì)70年代末石油危機(jī)下產(chǎn)生的經(jīng)濟(jì)體制變化等.近年來(lái),國(guó)內(nèi)不少學(xué)者也開(kāi)始提出并使用各種基于市道輪換的利率模型來(lái)刻畫(huà)利率的動(dòng)態(tài)特性.劉金全等[16]通過(guò)在利率期限結(jié)構(gòu)中加入馬爾科夫市道輪換,推廣出與狀態(tài)相依的CKLS模型,提出不同到期日利率期限結(jié)構(gòu)可由縮壓的馬爾科夫市道輪換CKLS模型獲得.吳吉林等[17-18]在市道輪換隨機(jī)波動(dòng)模型基礎(chǔ)上,引入非線性漂移項(xiàng),并同時(shí)考慮了隨機(jī)波動(dòng)方程中的常數(shù)項(xiàng)、滯后一階項(xiàng)及方差的市道輪換模型.唐曉彬[19]在狀態(tài)空間模型中引入馬爾科夫市道輪換,較好地刻畫(huà)了我國(guó)經(jīng)濟(jì)周期的非對(duì)稱(chēng)性,得出宏觀調(diào)控政策會(huì)對(duì)我國(guó)經(jīng)濟(jì)產(chǎn)生正向的沖擊,宏觀調(diào)控是有效的. Wu等[20-21]把利率期限結(jié)構(gòu)與馬氏市道輪換結(jié)合起來(lái)進(jìn)行模型研究.Zeng等[22]在市道輪換擴(kuò)散模型中加入跳擴(kuò)散,提出了一個(gè)動(dòng)態(tài)利率期限結(jié)構(gòu)模型,指出市場(chǎng)存在跳躍風(fēng)險(xiǎn)和市道輪換的風(fēng)險(xiǎn),但并未做實(shí)證分析.
本研究把市道輪換模型與廣義自回歸條件異方差(generalized autoregressive conditional heteroskedasticity,GARCH)模型相結(jié)合,對(duì)上海銀行間同業(yè)拆放利率(Shanghai interbank offered rate,SHIBOR)進(jìn)行建模.這樣做是由于在不同的經(jīng)濟(jì)體制下會(huì)產(chǎn)生不同的利率波動(dòng),而馬氏輪換模型能對(duì)這些不同的經(jīng)濟(jì)體制進(jìn)行明確的研究.在某種意義上,馬爾科夫市道輪換模型可被視為傳統(tǒng)線性模型進(jìn)行非線性推廣的自然模式之一.本研究發(fā)現(xiàn)銀行7天同業(yè)拆借利率存在明顯的非線性、市道輪換和波動(dòng)的水平效應(yīng),而且引入市道輪換后波動(dòng)的持久性顯著下降,可見(jiàn)市道輪換模型確實(shí)適用于SHIBOR市場(chǎng)研究.在估計(jì)技術(shù)方面,本研究采用極大似然方法估計(jì)市道輪換模型.與其他方法相比,極大似然方法所使用的計(jì)算量較少,且能用R語(yǔ)言來(lái)實(shí)現(xiàn)對(duì)各個(gè)參數(shù)的估計(jì).不過(guò),這種方法可能不如粒子濾波馬爾科夫鏈蒙特卡洛方法(particle Markov chain Monte Carlo methods,PMCMC)準(zhǔn)確有效,這是將來(lái)需要改進(jìn)的一個(gè)方向[23-25].
用于解釋動(dòng)態(tài)短期利率的模型有3類(lèi):第1類(lèi)是擴(kuò)散模型,主要用于建立長(zhǎng)期的模型結(jié)構(gòu);第2類(lèi)是自回歸條件異方差(autoregressive conditional heteroscedasticity,ARCH)模型,該模型對(duì)金融時(shí)間序列的動(dòng)態(tài)建模有用;第3類(lèi)是允許存在市道輪換的馬氏輪換模型.
1.1 擴(kuò)散模型
大部分期限結(jié)構(gòu)模型都假定短期利率隨時(shí)間推移成為擴(kuò)散過(guò)程.擴(kuò)散模型的好處在于短期利率的瞬時(shí)變化可被描述為一個(gè)隨機(jī)微分方程(stochastic differential equation, SDE),然后利用伊藤微積分描述期限結(jié)構(gòu).Chan等[1]研究表明,許多特定的隨機(jī)微分方程可寫(xiě)為
(1)
其中,r表示時(shí)間t內(nèi)的短期利率;α和β是刻畫(huà)利率變化條件均值的參數(shù);σ為利率波動(dòng);γ度量波動(dòng)對(duì)利率水平的敏感度(或稱(chēng)彈性參數(shù)); dB是一個(gè)標(biāo)準(zhǔn)的布朗運(yùn)動(dòng).
為實(shí)現(xiàn)一般隨機(jī)微分方程(stochastic differential equation,SDE)的校準(zhǔn),對(duì)式(1)進(jìn)行簡(jiǎn)單的離散化處理,
Δrt=α+βrt-1+εt
(2)
1.2 廣義ARCH模型
由Robert[26]提出的ARCH(autoregressive conditional heteroscedasticity)模型,經(jīng)Tim[27]拓展,發(fā)展為廣義ARCH模型(generalized autoregressive conditional heteroscedasticity,GARCH). 在GARCH(1, 1)模型中, 一個(gè)時(shí)間序列過(guò)程的條件均值和條件方差會(huì)被同時(shí)模擬, 其中, (1,1)指階數(shù)為1的GARCH項(xiàng)(括號(hào)中第1項(xiàng))和階數(shù)為1 的ARCH項(xiàng)(括號(hào)中第2項(xiàng)),一般來(lái)說(shuō),GARCH(1, 1)能較好地捕捉波動(dòng)的聚集性,其波動(dòng)率是一個(gè)由滯后的波動(dòng)率估計(jì)值和滯后的預(yù)測(cè)誤差平方得到的函數(shù),
Δrt=Xt-1β+εt
(3)
需要注意的是,在短期利率GARCH(1,1)模型中,通常假定α0>0,α1≥0,β1≥0,以確保條件波動(dòng)非負(fù).此外,還假設(shè)α1-β1<1以保證條件波動(dòng)過(guò)程的平穩(wěn)性.
1.3 馬氏市道輪換GARCH模型
近年來(lái),計(jì)量經(jīng)濟(jì)學(xué)家已經(jīng)對(duì)各種經(jīng)濟(jì)時(shí)間序列作為市道輪換的時(shí)間序列過(guò)程進(jìn)行建模.在這些模型中,該變量的分布被假設(shè)在一個(gè)特定的市道或狀態(tài)發(fā)生的條件下.當(dāng)經(jīng)濟(jì)發(fā)生市道輪換時(shí),將發(fā)生一系列的重大變化.James[28]提出的馬氏市道輪換模型中,未觀測(cè)到的市道隨著時(shí)間的推移演變?yōu)橐浑A馬爾科夫過(guò)程. 一些研究將馬爾科夫市道輪換方法引入到波動(dòng)率過(guò)程中,從而可以捕捉波動(dòng)率存在的內(nèi)生變化過(guò)程,如Hamilton等[29-34]考慮了馬氏市道輪換的GARCH類(lèi)模型.
離散擴(kuò)散和GARCH模型都可寫(xiě)為
(4)
其中,θμ和θh是未知參數(shù)的向量;zt是獨(dú)立同分布的,且其均值為0,方差為1,這2個(gè)模型中都有
μ(θμ,Φt-1)=μt=α+βrt-1
(5)
其中,θμ={α,β}.
在離散擴(kuò)散模型中,條件方差是
(6)
其中,θh={σ2,γ}.
在GARCH中,條件方差是
(7)
其中,θh={a0,a1,b1},a0、a1和b1均為待估參數(shù).
一般市道輪換(general regime switching,GRS)模型的形式為
Δrt=μ(θμ(St),Φt-1)+
(8)
其中,St是t時(shí)刻的未知市道.本研究中,St取值1或2.盡管原則上這個(gè)方法能夠很容易地被擴(kuò)展到多個(gè)市道中,但為了注釋方便,當(dāng)St=i時(shí),式(8)可以寫(xiě)成
(9)
其中,μit是一個(gè)漂移項(xiàng). 假設(shè)在每個(gè)市道下短期利率條件正態(tài),那么在市道為1時(shí),Δrt的分布是N(μ1t,h1t), 市道為2時(shí), Δrt的分布是N(μ2t,h2t), 可以寫(xiě)成
(10)
其中,p1t=Pr(St=1|Φt-1), 表示市道1發(fā)生的可能性,其t時(shí)刻的變化條件方差為
[p1tμ1t+(1-p1t)μ2t]2
(11)
這里ht不是軌道相關(guān)的,在服從GARCH過(guò)程的h1t+1和h2t+1的構(gòu)造中能夠被用作滯后條件方差,即
(12)
[p1t-1μ1t-1+(1-p1t-1)μ2t-1)]2
(13)
εt-1= Δrt-1-E[Δrt-1|Φt-1]=
Δrt-1-[p1t-1μ1t-1+
(1-p1t-1)μ2t-1]
(14)
在一般模型中,條件均值采用標(biāo)準(zhǔn)的均值回歸形式,因此
μit=αi+βirt-1
(15)
市道輪換模型允許經(jīng)濟(jì)體在任意時(shí)刻存在任意有限的不同市道,市道完全支配該系列的動(dòng)態(tài)行為.在馬氏輪換模型中,每個(gè)市道都是計(jì)量經(jīng)濟(jì)學(xué)家無(wú)法直接觀察得到的,因此,必須利用統(tǒng)計(jì)推斷得到在任意時(shí)刻各個(gè)市道發(fā)生的可能性.由此James[28]開(kāi)發(fā)了一個(gè)過(guò)濾器,它使得計(jì)量經(jīng)濟(jì)學(xué)家能夠運(yùn)用迭代的方法來(lái)推斷每個(gè)時(shí)間點(diǎn)的市道發(fā)生的概率.
本研究用一個(gè)恒定的轉(zhuǎn)移概率矩陣來(lái)計(jì)算馬氏輪換模型,
(16)
由式(11)、式(15)和式(16),對(duì)數(shù)似然方程可變?yōu)?/p>
(17)
(18)
其中,P和Q均為轉(zhuǎn)移概率;g1t=f(Δrt|St=1);g2t=f(Δrt|St=2).
初始狀態(tài)在市道1的發(fā)生概率為
(19)
這個(gè)模型超越了基本擴(kuò)散模型和基本的GARCH模型,因?yàn)榛镜臄U(kuò)散模型和基本的GARCH模型的參數(shù)估計(jì)是在單機(jī)制的假設(shè)前提下進(jìn)行的.如果有2個(gè)市道,即高波動(dòng)和低波動(dòng)市道的情況下,簡(jiǎn)單地假定在一個(gè)波動(dòng)恒定的樣本期間內(nèi),將會(huì)系統(tǒng)性地高估低波動(dòng)市道時(shí)的波動(dòng)率和低估高波動(dòng)市道時(shí)的波動(dòng)率.
本研究數(shù)據(jù)取自每周三SHIBOR月度數(shù)據(jù),包括2006-10-08至2013-03-31日數(shù)據(jù),共計(jì)334個(gè)觀測(cè)值.
2.1 固定波動(dòng)率模型的估計(jì)與對(duì)比分析
根據(jù)固定波動(dòng)率的一階馬氏市道輪換模型,短期利率的變化在市道i中服從N(a0i+a1irt-1,b0i)分布,對(duì)比分析單機(jī)制和市道輪換的固定波動(dòng)率模型.表1給出了單機(jī)制和馬氏市道輪換的固定波動(dòng)率模型參數(shù)的估計(jì)結(jié)果及相應(yīng)的檢驗(yàn)統(tǒng)計(jì)量.其中,參數(shù)rt為t時(shí)的短期利率;a0i是利率均值回復(fù)水平;a1i為均值回歸參數(shù);b0i為短期利率的波動(dòng)率.可見(jiàn),在各個(gè)市道中方差都是固定不變的,因此該模型稱(chēng)為固定波動(dòng)率模型.
在市道輪換固定波動(dòng)率模型中,
(20)
在單機(jī)制固定波動(dòng)率模型中,
Δrt|Φt-1~N(a01+a11rt-1,b01)
(21)
用極大似然估計(jì)法分別對(duì)單機(jī)制和市道輪換固定波動(dòng)率模型中的參數(shù)進(jìn)行估計(jì),結(jié)果如表1. 其中,t和p是基于一致異方差的標(biāo)準(zhǔn)誤差;P和Q的顯著性是相對(duì)于0.5而言.
表1 單機(jī)制和市道輪換的固定波動(dòng)率 模型參數(shù)估計(jì)及統(tǒng)計(jì)分析Table 1 Parameter estimation and related statistics with single-regime model and Markov regime-switching constant-variance model
注:1)、2)和3)分別表示在0.1%、1%和5%水平下顯著.
在市道輪換固定方差模型中,市道1的方差與市道2的方差有明顯差別. 市道1的特點(diǎn)是一段時(shí)間內(nèi)的低方差(低波動(dòng)率)和低利率——隱含的長(zhǎng)期均值為每年2.43.市道2表現(xiàn)為一段時(shí)間內(nèi)的高方差(高波動(dòng)率)和高利率——隱含的長(zhǎng)期均值為每年4.24.其中,2個(gè)市道都有強(qiáng)持續(xù)性(P值和Q值都超過(guò)0.8,且都顯著).在此模型中,Ljung-Box檢驗(yàn)的結(jié)果表明,殘差序列相關(guān)性已明顯下降.通過(guò)對(duì)比表明,在SHIBOR數(shù)據(jù)中,這個(gè)簡(jiǎn)單的馬氏市道輪換模型比單機(jī)制模型能更好地描述短期利率隨機(jī)波動(dòng)率的特征.
2.2 GARCH模型的估計(jì)與對(duì)比分析
下面放寬各個(gè)市道中波動(dòng)率固定的假設(shè),研究允許條件波動(dòng)率存在的GARCH過(guò)程.表2給出了單機(jī)制和馬氏市道輪換的GARCH模型參數(shù)的估計(jì)結(jié)果及相應(yīng)的檢驗(yàn)統(tǒng)計(jì)量.其中,t和p是基于一致異方差的標(biāo)準(zhǔn)誤差;P和Q的顯著性是相對(duì)于0.5而言;參數(shù)a0i和a1i與表1相同;hit為市道i時(shí)的波動(dòng)率;b0i、b1i和b1i為系數(shù).
表2 單機(jī)制和馬氏市道輪換的GARCH模型 參數(shù)估計(jì)及統(tǒng)計(jì)分析Table 2 Parameter estimation and related statistics with single-regime model and Markov regime-switching GARCH models
注: 1)、2)和3)分別表示在0.1%、1%和5%水平下顯著.
在混合GARCH馬氏市道輪換模型中,
(22)
(23)
εt-1=Δrt-1-[p1t-1μ1t-1+(1-p1t)μ2t-1]
(24)
μit-1=α0i+a1irt-1
(25)
在單機(jī)制GARCH模型中,
Δrt|Φt-1~N(a01+a11rt-1,h01)
(26)
在單機(jī)制GARCH模型中,隱含的長(zhǎng)期均值是每年2.34,比單機(jī)制固定波動(dòng)率模型小.盡管在此模型中Jarque-Bera檢驗(yàn)仍不支持標(biāo)準(zhǔn)化殘差服從標(biāo)準(zhǔn)正態(tài)分布的假設(shè),但Ljung-Box的檢驗(yàn)結(jié)果比單機(jī)制固定方差模型有改善,因此GARCH模型比單機(jī)制固定方差模型優(yōu)異.
在混合GARCH馬氏市道輪換模型中,同樣地,市道1為高波動(dòng)率的機(jī)制,市道2為低波動(dòng)率的機(jī)制.此外,高波動(dòng)率市道與低波動(dòng)率市道比較時(shí),高波動(dòng)性市道對(duì)近期震蕩更敏感(b11>b12). 在此模型中,Ljung-Box檢驗(yàn)的結(jié)果已幾乎無(wú)法表明殘差平方項(xiàng)的序列仍存在相關(guān)性. 顯然,與其他模型對(duì)比,混合GARCH馬氏市道輪換模型能更好地刻畫(huà)SHIBOR利率隨機(jī)波動(dòng)的特征.
本研究比較了固定波動(dòng)率模型、GARCH模型和混合GARCH馬氏市道輪換模型的擬合效果,所有模型的估計(jì),都使用R語(yǔ)言編程實(shí)現(xiàn).實(shí)證研究表明,GARCH模型比固定方差模型好,市道輪換模型比單機(jī)制模型優(yōu),混合GARCH馬氏市道輪換模型對(duì)SHIBOR利率風(fēng)險(xiǎn)溢價(jià)的估計(jì)具有更卓越的能力.未來(lái)研究可嘗試在高頻數(shù)據(jù)中加入市道輪換或基于市道輪換模型拓展出各種風(fēng)險(xiǎn)管理的方法,并用PMCMC方法對(duì)高頻數(shù)據(jù)進(jìn)行參數(shù)估計(jì)[34],這些方法對(duì)微觀經(jīng)濟(jì)規(guī)律的研究和應(yīng)用具有重要的意義.
/ References:
[1] Chan K, Karolyi A, Longstaff F, et al. An empirical comparison of alternative models of the short-term interest rate[ J]. Journal of Finance, 1992, 47(3):1209-1227.
[2] Vasicek O. An equilibrium characterization of the term structure[J]. Journal of Financial Economics, 1977, 5(2):177-188.
[3] Cox J, Ingersoll Jr J, Ross S. A theory of the term structure of interest rates[J]. Econometrica, 1985, 53(2):385-407.
[4] Clifford A B, Walter N T.The stochastic volatility of short-term interest rates: some international evidence[J].The Journal of Finance, 1999, 54(6):2339-2359.
[5] Xiong Jie,Zeng Yong. A branching particle approximation to the filtering problem with counting process observations[J]. Statistical Inference for Stochastic Processes, 2011,14(4): 111-140.
[6] Del M P, Doucet A,Jasra A. On adaptive resampling procedures for sequential Monte Carlo methods[J]. Bernoulli, 2012,18(1): 252-278.
[7] Lopes H F,Tsay R S. Particle filters and Bayesian inference in financial econometrics[J]. Journal of Forecasting, 2011,30(1): 169-209.
[8] Douc R,Moulines E. Limit theorems for weighted samples with applications to sequential Monte Carlo methods[J]. The Annals of Statistics, 2008,36(2): 2344-2376.
[9] Asparouhova E N, Bessembinder H,Kalchevab I. Liqui-dity biases in asset pricing tests[J]. Journal of Financial Economics, 2010,96(3): 215-237.
[10] Stephen F G. Regime-switching in Australian short-term interest rates[J].Accounting & Finance,1996,36(1):65-88.
[11] Liu Xiangdong, Zhong Nie. Pricing life insurance with jump Poisson-diffusion under no-arbitrage framework [J].International Journal of Applied Mathematics and Statistics, 2014, 52(4):53-62.
[12] Liu Xiangdong, Shu Wu, Yong Zeng. The multifactor term structure of interest rates under regime shifts and Lévy jumps[J].The 8th ICSA International Conferrence,2010,56(4):852-872.
[13] Ait-Sahalia Y, Kimme R. Estimating affine multifactor term structure models using closed-form likelihood expansions [J]. Journal of Financial Economics, 2010, 98(3): 113-144.
[14] Xiang Ju, Zhu Xiaoneng. A regime-switching Nelson-Siegel term structure model and interest rate forecasts [J]. Journal of Financial Econometrics,2013, 11(3):522-555.
[15] Siu T K. Bond pricing under a Markovian regime-switching jump-augmented Vasicek model via stochastic flows[J]. Applied Mathematics and Computation, 2010, 216(3):3184-3190.
[16] Liu Jinquan, Zheng Tingguo. The term structure of interest rates to regime-switching model and the empirical analysis[J]. Economic Research, 2006, 41(11): 82-91.(in Chinese) 劉金全,鄭挺國(guó).利率期限結(jié)構(gòu)的馬爾科夫機(jī)制轉(zhuǎn)移模型與實(shí)證分析[J].經(jīng)濟(jì)研究,2006,41(11):82-91.
[17] Wu Jilin, Tao Wangsheng. The research of short-term interest rates in our country based on the regime-switching and random fluctuations[J]. Chinese Management Science, 2009, 17(3): 40-46.(in Chinese) 吳吉林,陶旺升.基于機(jī)制轉(zhuǎn)移與隨機(jī)波動(dòng)的我國(guó)短期利率研究[J].中國(guó)管理科學(xué),2009,17(3):40-46.
[18] Smith D R. Markov-switching and stochastic volatility diffusion models of short-term interest rates[J].Journal of Business and Economic Statistics,2002,20(2):183-197.
[19] Tang Xiaobin. The state space model of markov regime-switching and its application research on the economic cycle[D]. Chengdu:Southwestern University of Finance and Economics, 2010.(in Chinese) 唐曉彬.Markov機(jī)制轉(zhuǎn)移的狀態(tài)空間模型及其在我國(guó)經(jīng)濟(jì)周期中的應(yīng)用研究[D].成都:西南財(cái)經(jīng)大學(xué),2010.
[20] Wu Shu,Zeng Yong. A general equilibrium model of the term structure of interest rates under regime-switching risk[J]. International Journal of Theoretical and Applied Finance, 2005, 8(7):839-869.
[21] Wu Shu, Zeng Yong. An econometric model of the term structure of interest rates under regime-switching risk[J]. Springer, 2013,2:53-59.
[22] Zeng Yong, Wu Shu. The term structure of interest rates under regime shifts and jumps[J].Economics Letters, 2006, 93(2):215-221.
[23] Andrieu C, Doucet A, Holenstein R. Particle Markov chain Monte Carlo methods[J]. Journal of the Royal Statistical Society(Series B), 2010, 72:269-342.
[24] Le A, Dai Qiang, Singleton K. Discrete-time dynamic term structure models with generalized market prices of risk[J]. Review of Finance Studies,2010, 32(1):2184-2227.
[25] Futami H. Regime switching term structure model under partial information[J]. International Journal of Theoretical and Applied Finance, 2011, 14(2): 265-294.
[26] Robert F E. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J].Econometrica, 1982,50(4):987-1007.
[27] Tim B. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3):307-327.
[28] James D H. A new approach to the economic analysis of nonstationary time series and the business cycle[J]. Econometrica, 1989, 57(2):357-384.
[29] Hamilton J D, Susmel R. Autoregressive conditional heteroscedasticity and changes in regime[J]. Journal of Econometrics, 1994,64(2):307-333.
[30] Ferland R, Gauthier G, Lalancette S. A regime-switching term structure model with observable state variables [J]. Finance Research Letters, 2010, 7(2):103-109.
[31] Elliott R J, Siu T K. On Markov-modulated exponential-affine bond price formulae [J]. Applied Mathematical Finance, 2009, 16(1): 1-15.
[32] Dai Qiang, Singleton K, Yang Wei. Regime shifts in a dynamic term structure model of the U.S. treasury bond yields [J]. Review of Financial Studies, 2007, 20(2): 1669-1706.
[33] Ang A, Bekaert G, Wei Min. The term structure of real rates and expected inflation [J]. The Journal of Finance, 2008, 63(2):797-849.
[34] Zhu Cai, Huang Jianhui. State-space models: application in economic and finance[M]. New York(USA):Springer,2013.
【中文責(zé)編:坪 梓;英文責(zé)編:木 南】
2014-12-17;Accepted:2015-01-26
Research of market interest rates of the SHIBOR based on regime switching model
Liu Xiangdong?and Guo Hui
Department of Statistics, Jinan University, Guangzhou 510632, P.R.China
In this paper, a new model, the Markov regime switching model, based on the fixed volatility model and the generalized autoregressive conditional heteroskedasticity (GARCH) model is introduced. In the Markov regime switching model, the linear term structure of interest rates can be extended to nonlinear form. The Markov regime switching model can be used to estimate the dynamics of asset prices, especially the bond yields. Different from the traditional model, which only depends on the level of interest rates, a state variable is introduced in the regime switching model, and thus the model can indicate the impact of the monetary policy on interest rates . Using the monthly Shanghai interbank offered rate (SHIBOR) data issued every Wednesday from October 8th, 2006 to March 29th, 2013, we use R implement and compare the performances of fixed volatility model, GARCH model, and the mixed GARCH Markov regime switching model in estimating the monthly SHIBOR. The results indicate that the mixed GARCH Markov regime switching model can make good estimations and can be considered as the best one under all circumstances.
application of statistical mathematics; Markov regime switching; generalized autoregressive conditional heteroskedasticity (GARCH); Shanghai interbank offered rate (SHIBOR); term structure of interest rates; fixed volatility; single regime model
:Liu Xiangdong,Guo Hui. Research of market interest rates of the SHIBOR based on regime switching model[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(3): 317-323.(in Chinese)
O 211.9;F 830
A
10.3724/SP.J.1249.2015.03317
國(guó)家自然科學(xué)基金資助項(xiàng)目(71471075);教育部人文社會(huì)科學(xué)研究資助項(xiàng)目(14YJAZH052)
柳向東(1973—),男(漢族),湖南省瀏陽(yáng)市人,暨南大學(xué)副教授、博士. E-mail: tliuxd@jnu.edu.cn
Foundation:National Natural Science Foundation of China (71471075); Humanities and Social Science Foundation of Ministry of Education(14YJAZH052)
? Corresponding author:Associate professor Liu Xiangdong. E-mail: tliuxd@jnu.edu.cn
引 文:柳向東,郭 慧. 基于市道輪換模型的SHIBOR市場(chǎng)利率[J]. 深圳大學(xué)學(xué)報(bào)理工版,2015,32(3):317-323.