• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Ammonia on the Performance of Catalysts for Selective Hydrogenation of 1-Methylnaphthalene

    2015-06-22 14:19:10GePanzhuRenLiangGaoXiaodongLiDadong
    中國煉油與石油化工 2015年4期
    關鍵詞:壞消息穩(wěn)健性真實性

    Ge Panzhu; Ren Liang; Gao Xiaodong; Li Dadong

    (SINOPEC Research Institute of Petroleum Processing, Beijing 100083)

    Effect of Ammonia on the Performance of Catalysts for Selective Hydrogenation of 1-Methylnaphthalene

    Ge Panzhu; Ren Liang; Gao Xiaodong; Li Dadong

    (SINOPEC Research Institute of Petroleum Processing, Beijing 100083)

    The effect of ammonia on the catalytic performance for 1-methylnaphthalene (1-MN) selective hydrogenation saturation was studied with Co-Mo/γ-Al2O3, Ni-W/γ-Al2O3, Ni-Mo/γ-Al2O3, and Ni-Mo-W/γ-Al2O3catalysts. The results indicated that Ni-Mo-W/γ-Al2O3catalyst exhibited the best performance for saturation of 1-MN. The introduction of NH3remarkably inhibited the hydrogenation of 1-MN in the dynamic control area, but it had no effect in the thermodynamic control area. Besides, the mono-aromatics selectivity on the Ni-Mo-W and Ni-Mo catalysts was enhanced. However, it had little effect on the Ni-W and Co-Mo catalysts.

    1-methylnaphthalene (1-MN); selectivity; hydrogenation catalyst; hydrogenation saturation

    1 Introduction

    With the increasingly stringent environmental regulations, clean gasoline and diesel production has become a growing concern[1]. Light cycle oil (LCO) of FCC unit features high contents of sulfur, nitrogen and aromatic hydrocarbons, low cetane number and poor stability[2]. Therefore, it is difficult to meet the clean diesel quality standards. At present, the processes of hydro-upgrading to produce high cetane number diesel need more severe operating conditions and higher hydrogen consumption. If the polyaromatic hydrocarbons (PAHs) in LCO can be selectively saturated into mono-aromatic hydrocarbons (MAHs), the MAHs could be cracked into high octane number components by hydrocracking or catalytic cracking to obtain higher economic value[3-4]. No matter LCO hydrocracking process or LCO hydrotreating combined with FCC process, the selective hydrogenation of PAHs is the key reaction.

    Although, many studies concerning the effect of NH3on inhibiting the hydrotreatment of various heterocyclic and aromatic compounds have been reported[5-7], the effect of NH3on the selective hydrogenation saturation of aromatics is rarely studied. By using the NiMo/Al2O3catalyst, Lee and co-workers[8-9]found that NH3had little influence on the HDN of quinoline, but it significantly inhibited the deep hydrogenation of poly-aromatics (naphthalene and phenanthrene). Whether NH3in the presence of different catalysts can inhibit the deep hydrogenation of polyaromatics to improve mono-aromatic selectivity remains unclear. Therefore, the intention of this paper is to investigate the effect of NH3on the performance of different catalysts for selective hydrogenation saturation of 1-MN.

    2 Experimental

    2.1 Feedstock and catalysts

    Feedstock: 1-MN was dissolved in cyclohexane to obtain a solution of A containing 10% of 1-MN. 1-MN and secbutylamine were dissolved in cyclohexane to obtain a solution of B containing 10% of 1-MN and 500 μg/g of nitrogen element. Sec-butylamine could rapidly generate NH3under reaction conditions. The effect of NH3on the performance of four different catalysts for selective hydrogenation of 1-MN was investigated with solution B.

    Catalysts: The catalysts were the commercially available NiMoW/γ-Al2O3, NiMo/γ-Al2O3, NiW/γ-Al2O3and CoMo/γ-Al2O3catalysts developed by the Research Institute of Petroleum Processing (RIPP). The main composition and physical properties of catalysts are shown in Table 1.

    Table 1 Composition and physical properties of catalysts

    2.2 Experiment on 1-MN hydrogenation

    The effect of NH3on the performance of four different catalysts for selective hydrogenation saturation of 1-MN was studied by using a high pressure hydrogenation micro-reactor. The catalyst samples were crushed and sieved to a size range of 40—60 mesh. 0.5 g of catalyst was diluted with 1 g of the similar-sized inert SiC and packed into the reactor tube. The catalyst sample was presulfided at 300 ℃ for 4 h with 5 m% of CS2solution at a rate of 0.3 mL/min. The hydrogen flow rate was 300 mL/min under a total reaction pressure of 4.0 MPa. Then the liquid flow was switched to raw materials at a rate of 0.2 mL/min at a reaction temperature of 250—380 ℃and under a total reaction pressure of 4.0 MPa.

    2.3 Analysis

    Liquid samples of the reactor effluents were collected from a low-pressure phase separator until a steady level of activity was reached. Hydrocarbon components were analyzed on a type 7890 gas chromatograph manufactured by the Agilent Company of USA. The conversion of 1-MN (x1-MN) and the selective hydrogenation saturation of single rings and double rings (s1-ringand s2-ring) are calculated according to Equations (1)— (3), respectively.

    In Equations (1)—(3), wfand wprepresent the mass fraction of 1-MN in the raw material and product, respectively; wtand wdrepresent the mass fraction of tetralin and decalin, respectively.

    Many studies show that the aromatics hydrogenation over metal sulfide catalysts (Co-Mo, Ni-Mo, and Ni-W) approximates to the first order reaction[10]. So the pseudofirst-order kinetic equation was used to analyze the reaction rate constant and the apparent activation energy. The pseudo-first-order kinetic equation is shown as follows.

    In Equations (4) and (5), τ represents the reciprocal of contact time, s-1; x represents the conversion rate of 1-MN hydrogenation; k represents the reaction rate constant of 1-MN hydrogenation; Earepresents the apparent activation energy of 1-MN hydrogenation, kJ/mol; R represents the gas constant; T represents the reaction temperature, K; and A represents the pre-exponential factor.

    3 Influence of Internal and External Diffusion

    3.1 Influence of internal diffusion

    In order to make the dynamic data reliable, the study must rule out the influence of internal and external diffusion. Changing the catalyst granularity is an effective method to test the influence of internal diffusion.

    By using the solution A as feed in the presence of catalyst samples with particle size in the range of 30—50 mesh and 50—70 mesh, respectively, the contrast experiment was carried out at a temperature of 350 ℃. Meanwhile, 0.5 g of catalyst was diluted with 1 g of the similar-sized inert SiC and packed into the reactor tube. The test results are shown in Table 2. It can be seen that the conversion rate of 1-MN was almost consistent with each other. Therefore, the influence of internal diffusion did not exist in the catalyst sample with a particle size of 30—70 mesh. So the catalyst with a particle size of 20—40 mesh was used in this paper.

    Table 2 Results of influence of internal diffusion

    3.2 Influence of external diffusion

    Changing the quantity of catalyst loading is an effective method to test the influence of internal diffusion, which means changing the linear speed of the material flow within the reactor.

    By using the solution A as feed in the presence of catalyst with a particle size of 40—60 mesh, the contrast experiment was carried out with a loading of 0.3 g, 0.5 g and 0.8 g of catalyst samples diluted with SiC, respectively. The reaction temperature was 350 ℃ with other operating conditions remaining unchanged.

    The test results are shown in Table 3. It can be seen that the conversion rate of 1-MN was almost the same and the influence of external diffusion did not exist when the catalyst loading was within 0.3—0.8 g. Thus 0.5 g of catalyst diluted with 1.0 g of the similar-sized inert SiC was used in this paper.

    Table 3 Results of influence of external diffusion

    4 Results and Discussion

    4.1 Effect of NH3on 1-MN hydrogenation

    The reaction network of naphthalene hydrogenation includes parallel and sequential reactions such as ring hydrogenation, ring opening, isomerization and demethylation[11-13]. The primitive reactions of 1-MN hydrogenation are complicated and the rate constants of reaction are related to the catalyst type[14-15]. Besides, whether NH3will influence the hydrogenation of 1-MN over different catalysts is also worth inspecting. Therefore, the experiments were conducted on the four catalysts under the conditions of either without addition of NH3or with addition of NH3. The change in 1-MN hydrogenation conversion rate with the reaction temperature is shown in Figure 1(a) and 1(b). The pseudo-first-order rate constants and apparent activation energy of 1-MN hydrogenation on different catalysts are summarized in Table 4.

    According to Figure 1(a), when the reaction temperature was lower than 350 ℃, the catalyst activity of 1-MN saturation decreased in the following order: Ni-Mo-W>Ni-Mo>Ni-W>Co-Mo. The higher the activity of aromatic saturation was, the easier it would be for the 1-MN to get into the thermodynamic control area. When the reaction temperature was higher than 350 ℃, the activity order for four types of catalysts was basically the same. This phenomenon might be attributed to the fact that the catalyst might only change the reaction rate, but could not alter the equilibrium of the reaction when 1-MN saturation reaction reached the thermodynamic equilibrium at highertemperature[16]. According to the data listed in Table 4, when the reaction atmosphere did not contain NH3, the apparent activation energy of 1-MN hydrogenation on the Ni-W catalyst was lower than that of Co-Mo catalyst, so the aromatics saturation activity of the Ni-W catalyst was obviously higher than that of the Co-Mo catalyst.

    Figure 1 The effect of NH3on the 1-MN hydrogenation conversion rate using different catalysts■—Ni-Mo;●—Co-Mo;▲—Ni-W;◆—Ni-Mo-W

    Upon comparing Figure 1(b) with Figure 1(a), the influence of NH3on the four catalysts was different. The introduction of NH3decreased the aromatics saturation activity of the Co-Mo catalyst, which also could be evidenced by the data in Table 4. The calculated values of the rate constants are consistent with data obtained by Lee, et al[8]. As for the more active Ni-Mo-W, Ni-Mo and Ni-W type catalysts, the aromatics saturation activity was basically the same. Besides, the introduction of NH3inhibited the transformation of 1-MN in the dynamic control area at the reaction temperature in the range of between 280 ℃and 310 ℃. However, when the reaction temperature was higher than 310 ℃, the aromatics saturation activity was basically the same in the thermodynamic control area. This suggested that NH3showed a significant inhibitory effect in the kinetic control area for the reaction involving 1-MN and tetralin, but it had no impact on the thermodynamic control area for the reaction involving 1-MN and tetralin[17]. The results can be further confirmed by the data listed in Table 4. After the introduction of NH3, the apparent activation energy for 1-MN hydrogenation decreased in the following order: Ni-Mo-W>Ni-Mo>Ni-W>Co-Mo, denoting that the higher the activity of the catalyst, the more obvious the inhibition effect of NH3would be.

    According to Figure 1(b), the effect of NH3on inhibition of the Co-Mo type catalyst activity gradually slowed down with the increase of reaction temperature. This can be explained from two aspects. On the one hand, upon comparing with the influence of NH3, the limits of thermodynamic equilibrium between 1-MN and tetralin at higher temperature might be more obvious. On the other hand, a higher temperature improved the conversion frequency of reactants on the surface active centers of catalyst, which could weaken the competitive adsorption effect of NH3.

    4.2 Effect of NH3on the products of 1-MN hydrogenation saturation

    The products of naphthalene hydrogenation reaction are more complicated. Generally, the reaction network of naphthalene includes two parallel paths: one is that naphthalene is hydrogenated into tetralin, then the isomerization or ring opening reaction of tetralin occurs; the other is that naphthalene is hydrogenated into tetralin, tetralin is further hydrogenated into cis/trans-decalin, and then the isomerization or ring opening reaction of decalin occurs[12]. The reaction network of naphthalene hydrogenation is shown in Figure 2[11]. Tetralin and cis/trans-decalin are the main products of naphthalene hydrogenation.

    By using the four types of catalysts, the 1-MN hydrogenation saturation reaction was carried out at temperatures ranging from 250 ℃ to 380 ℃ and under a hydrogen partial pressure of 4.0 MPa. The main products of 1-MN hydrogenation included tetralin, decalin and a small amount of indan and alkyl benzene obtained from isomerization and ring opening reactions. However, as regards the hydrogenation catalysts, the main products included tetralinNH3, which denoted that NH3increased the selectivity of tetralin in the temperature range of 310—380 ℃, but it showed little inhibitory effect on the selectivity of tetralin on the Ni-W catalysts. Besides, the introduction of NH3showed an obvious inhibitory effect on the generation of tetralin and had no effect on the selectivity of tetralin for the less active Co-Mo catalyst.

    Table 4 Effect of NH3on 1-MN hydrogenation reaction rate constant and activation energy

    4.3 Effect of NH3on the selectivity of 1-MN hydrogenation saturation

    Under the same saturation rate of 1-MN, the effects of and decalin. The amount of indan and alkyl benzene was relatively small. Thus the trends of tetralin and decalin formation related with reaction temperature on the four types of catalysts are shown in Figure 3. Solid lines represent the case without NH3in the atmosphere, and dotted lines represent the case with the introduction of NH3into the atmosphere.

    It can be seen from Figure 3 that, with regard to the Ni-Mo-W and Ni-Mo catalysts, the amount of tetralin increased and decalin decreased after the introduction of NH3on the selectivity of intermediate products from 1-MN hydrogenation saturation on the four types of catalysts were analyzed, with the results presented in Figure 4. As shown in Figure 4, with regard to the Ni-Mo-W and Ni-Mo catalysts, the presence of NH3in the reaction atmosphere was beneficial to improving the selectivity of the intermediate products of tetralin under the same saturation rate of 1-MN, which might be caused by the different competitive adsorption of NH3, tetralin and 1-MN on the catalyst surface. Some research results have shownthat the adsorption effect of the three substances decreases in the following order: NH3> naphthalene > tetralin[18]. Therefore, NH3is more likely to occupy the active centers of catalyst than tetralin because of its strong adsorption ability. On the other hand, NH3can easily inhibit the dissociative adsorption of hydrogen molecules, which would reduce the concentration of tetralin and hydrogen molecules on the catalyst surface and further inhibit the hydrogenation of tetralin[7,19-21]. Because naphthalene has strong adsorption activity and NH3has less inhibitory effect on the naphthalene compared with tetralin, the introduction of NH3improves the selectivity of tetralin on the Ni-Mo-W and Ni-Mo catalysts.

    Figure 2 Reaction network of naphthalene hydrogenation

    Figure 3 Trends of tetralin and decalin formation on the four types of catalysts■—Tetralin;▲—Decalin;---Tetralin (NH3);---Decalin (NH3)

    Nevertheless, the introduction of NH3has no effect on the selectivity of tetralin on the Ni-W and Co-Mo catalysts, as shown in Figure 4. These results might be ascribed to the lower aromatics saturation activity of Ni-W and Co-Mo catalysts. The products originating from deep saturation of decalin were so insignificant that the effect of NH3on the selectivity of tetralin was not obvious. This phenomenon may also indicate that NH3has no influence on the selectivity of tetralin on the Ni-W and Co-Mo catalysts.

    Figure 4 Effect of NH3on the selectivity of 1-MN hydrogenation saturation■—No added NH3;◆—With addition of NH3

    5 Conclusions

    1) The catalyst activity for 1-MN saturation decreased in the following order: Ni-Mo-W>Ni-Mo>Ni-W>Co-Mo, and the higher the activity of catalyst for aromatics saturation, the easier the 1-MN feedstock could get into the thermodynamic control area.

    2) In the dynamic control area of aromatics hydrogenation saturation, the introduction of NH3could significantly inhibit the transformation of 1-MN. However, in the thermodynamic control area, the introduction of NH3had no effect on the conversion rate of 1-MN.

    3) The introduction of NH3could significantly increase the selectivity of mono-aromatics on the Ni-Mo-W and Ni-Mo catalysts, but it had little effect on the Ni-W and Co-Mo catalysts.

    Acknowledgement:This project is financially supported by the SINOPEC.

    [1] Li Dadong. Pertroleum refining technologies and catalysis in the 21stcentury[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2005, 21(3): 17-25 (in Chinese)

    [2] Huang Xinlu, Zeng Ronghui. A discussion on FCC diesel processing schemes[J]. Sino-global Energy, 2012, 17: 75-82 (in Chinese)

    [3] Mao Anguo,Gong Jianhong. Molecular-based study on FCC LCO to light aromatics[J]. Petroleum Processing and Petrochemicals, 2014, 45(7): 1-6 (in Chinese)

    [4] Huang Xinlu. Technology for producing light aromatics from heavy aromatics[J]. Chemical Industry and Engineering Process, 2013, 32(9): 2263-2266 (in Chinese)

    [5] Jiang Donghong, Shi Yulin, Hu Zhihai. Influence of H2S and NH3on the activity of aromatics hydrogenation over sulfidized hydrotreating catalyst[J]. Petroleum Processing and Petrochemicals, 2006, 37(4): 25-27 (in Chinese)

    [6] Chadwick D, Oen A, Siewe C. Influence of water and ammonia on hydrotreating catalysts and activity for tetralin hydrogenation [J]. Catalysis Today, 1996, 29: 229-233

    [7] Nat P J, Schoonhoven J, Plantenga F L. Mild and conventional hydrocracking: process conditions, products and catalysts[J]. Studies in Surface Science and Catalysis, 1989, 53: 399-415

    [8] Lee C M, Satterfield C N. Effect of ammonia on the hydrogenation of naphthalene or butylbenzene during the hydrodenitrogenation of quinoline[J]. Energy & Fuels, 1992, 6(3): 315-317

    [9] Lee C M, Satterfield C N. Effect of ammonia on the hydrogenation of phenanthrene during the hydrodenitrogenation of quinoline[J]. Energy & Fuels, 1993, 7(6): 978-980

    當解釋變量為外部評價主體時,ICR=1,否則,ICR=0。從模型3能夠發(fā)現(xiàn),ω2反映會計穩(wěn)健性和正股票收益率之間的關系,ω4反映會計穩(wěn)健性和負股票收益率之間的關系,若ω4顯著為正,則表明“壞消息”比“好消息”能更快速反映會計穩(wěn)健性。在本文中可以解釋為若在進行內(nèi)部控制評價時,公司出具的內(nèi)部控制評價報告具有真實性,則公司的會計穩(wěn)健性將顯著高于內(nèi)部控制評價報告不真實的公司的會計穩(wěn)健性。

    [10] Sapre A V, Gates B C. Hydrogenation of Aromatic Hydrocarbons Catalyzed by Sutfided Co-Mo/γ-Al2O3. Reactivities and Reaction Networks[J]. Industrial & Engineering Chemistry Process Design and Development, 1981, 20(1): 68-73

    [11] Liu Yunqi, Li Wangliang, Liu Chunying, et al. Hydrogenation of naphthalene on HY/MCM-41/γ-Al2O3supported sulfided Ni-Mo-P catalyst[J]. Chinese Journal of Catalysis, 2004, 25(7): 537-541 (in Chinese)

    [12] Ren Xiaoqian, Yu Xizhi, Li Kai, et al. Reactivity of saturated hydrogenation of naphthalene over the commercial NiW/Al2O3catalyst at high reaction temperature[J]. Chemical Engineering, 2007, 35(3): 30-34 (in Chinese)

    [13] Liu Lihua, Liu Shuqun. Ni2P-MoS2/γ-Al2O3catalyst for deep hydrodesulfurization via the hydrogenation reaction pathway[J]. China Petroleum Processing and Petrochemical Technology, 2014, 16(4): 12-18

    [14] Korret S C, Klein M T. Polynuclear aromatic hydrocarbons hydrogenation. 1. Experimental reaction pathways and kinetics [J]. Ind Eng Chem Res, 1995, 34: 101-117

    [16] Wang Zhenglie, Zhou Yaping. Physical Chemistry (Part II) [M]. Beijing: China Higher Education Press, 2001: 271-272 (in Chinese)

    [17] Li Hongbao, Huang Weiguo, Kang Xiaohong, et al. Effect of nitrogen compounds on aromatics hydrogenation over Ni-W hydrotreating catalysts with various supports[J]. Petroleum Processing and Petrochemicals, 2006, 37(10): 27-32 (in Chinese)

    [18] Lau Y K, Saluja P P S, Kebarle P, et al. Gas-phase basicities of N-methyl substituted 1,8-diaminonaphthalenes and related compounds[J]. Journal of the American Chemical Society, 1978, 100(23): 7328-7333

    [19] Blanchin S, Galtier P, Kasztelan S, et al. Kinetic modeling of the effect of H2S and of NH3on toluene hydrogenation in the presence of a NiMo/Al2O3hydrotreating catalyst. Discrimination between homolytic and heterolytic models[J]. The Journal of Physical Chemistry A, 2001, 105(48): 10860-10866

    [20] Shao Zhicai, Zhao Xinqiang, Liu Tao, et al. Commercial application of the second generation RHT catalysts for hydroprocessing the residue with low sulfur and high nitrogen contents[J]. China Petroleum Processing and Petrochemical Technology, 2014, 16(1): 1-7

    [21] Shao Zhicai, Liu Tao, Dai Lishun, et al. Effect of H2S and NH3on heteroatomic removal by hydrogenation[J]. Petroleum Processing and Petrochemicals, 2014, 45(3): 30-34 (in Chinese)

    date: 2015-09-14; Accepted date: 2015-11-04.

    Prof. Gao Xiaodong, Telephone: +86-10- 82369334; E-mail: gaoxd.ripp@sinopec.com.

    猜你喜歡
    壞消息穩(wěn)健性真實性
    不算壞消息
    會計穩(wěn)健性的定義和計量
    商情(2019年3期)2019-03-29 12:04:52
    會計穩(wěn)健性的文獻綜述
    財訊(2018年22期)2018-05-14 08:55:57
    廣告的真實性
    LED非球面透鏡注射壓縮成型工藝穩(wěn)健性優(yōu)化分析
    中國塑料(2016年3期)2016-06-15 20:30:03
    貨幣政策、會計穩(wěn)健性與銀行信貸關系探析
    從懸疑報道談新聞的真實性
    新聞傳播(2015年9期)2015-07-18 11:04:13
    堅持新聞的真實性
    新聞傳播(2015年22期)2015-07-18 11:04:06
    壞消息,好消息
    公務員文萃(2014年4期)2014-05-24 23:02:41
    壞消息,好消息
    亚洲成国产人片在线观看| 精品免费久久久久久久清纯| 精品熟女少妇八av免费久了| 精品久久久久久久久久免费视频| 久久婷婷人人爽人人干人人爱| 婷婷精品国产亚洲av| 老司机在亚洲福利影院| 麻豆国产av国片精品| 久久欧美精品欧美久久欧美| 两个人看的免费小视频| 久久亚洲真实| 日韩欧美一区视频在线观看| 国产亚洲精品av在线| 欧美色视频一区免费| 欧美又色又爽又黄视频| 黄片播放在线免费| 久久亚洲真实| 欧美激情 高清一区二区三区| 在线观看66精品国产| 91大片在线观看| 99国产综合亚洲精品| 嫩草影视91久久| 成人精品一区二区免费| 在线看三级毛片| 嫩草影院精品99| 亚洲三区欧美一区| 制服人妻中文乱码| 禁无遮挡网站| 亚洲精品美女久久久久99蜜臀| 欧美成人午夜精品| 午夜免费鲁丝| 成年免费大片在线观看| 国产亚洲精品久久久久5区| 欧美在线黄色| 少妇熟女aⅴ在线视频| 99在线视频只有这里精品首页| 美女免费视频网站| 男男h啪啪无遮挡| 国产欧美日韩一区二区精品| 免费在线观看完整版高清| 老汉色av国产亚洲站长工具| 成年版毛片免费区| 色av中文字幕| 久久久国产精品麻豆| 亚洲一区二区三区色噜噜| 午夜日韩欧美国产| 精品午夜福利视频在线观看一区| 日韩av在线大香蕉| 久久狼人影院| 亚洲人成网站在线播放欧美日韩| 久久久久精品国产欧美久久久| 成人三级做爰电影| 成年女人毛片免费观看观看9| 久久久国产成人免费| 后天国语完整版免费观看| 亚洲色图 男人天堂 中文字幕| 桃红色精品国产亚洲av| 国产精品久久视频播放| 免费女性裸体啪啪无遮挡网站| 欧美激情高清一区二区三区| 免费女性裸体啪啪无遮挡网站| 51午夜福利影视在线观看| 一夜夜www| 久久亚洲真实| 午夜福利视频1000在线观看| 日韩高清综合在线| 禁无遮挡网站| 别揉我奶头~嗯~啊~动态视频| tocl精华| 91国产中文字幕| 午夜福利在线观看吧| 嫁个100分男人电影在线观看| 给我免费播放毛片高清在线观看| 这个男人来自地球电影免费观看| 欧美在线一区亚洲| 久久精品成人免费网站| 亚洲五月天丁香| 久久午夜亚洲精品久久| av福利片在线| 在线av久久热| 亚洲第一欧美日韩一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 国产片内射在线| 伦理电影免费视频| 欧美日韩亚洲国产一区二区在线观看| 日本a在线网址| 99国产精品一区二区蜜桃av| 麻豆av在线久日| 十八禁人妻一区二区| 这个男人来自地球电影免费观看| 这个男人来自地球电影免费观看| 男人操女人黄网站| 在线看三级毛片| 亚洲成国产人片在线观看| 99久久综合精品五月天人人| 午夜福利成人在线免费观看| 亚洲天堂国产精品一区在线| 国产av一区在线观看免费| 亚洲国产中文字幕在线视频| 91大片在线观看| 搡老熟女国产l中国老女人| 女人爽到高潮嗷嗷叫在线视频| 久久精品亚洲精品国产色婷小说| 日本成人三级电影网站| 精品高清国产在线一区| 亚洲欧美日韩高清在线视频| 久久精品91无色码中文字幕| 国内毛片毛片毛片毛片毛片| 成人午夜高清在线视频 | 高清毛片免费观看视频网站| 99久久无色码亚洲精品果冻| 国产精品久久视频播放| 制服诱惑二区| 美女 人体艺术 gogo| 成人亚洲精品av一区二区| 男女那种视频在线观看| 免费在线观看日本一区| 9191精品国产免费久久| 99国产精品一区二区三区| 国产精品一区二区精品视频观看| 妹子高潮喷水视频| 成人av一区二区三区在线看| 午夜视频精品福利| 婷婷精品国产亚洲av在线| 国产主播在线观看一区二区| 久久天堂一区二区三区四区| 亚洲精品美女久久av网站| 丝袜美腿诱惑在线| 久久精品91无色码中文字幕| 在线观看免费午夜福利视频| 日韩一卡2卡3卡4卡2021年| 99久久综合精品五月天人人| 日本一本二区三区精品| 精品国内亚洲2022精品成人| 亚洲av成人一区二区三| 无限看片的www在线观看| 岛国在线观看网站| 亚洲五月色婷婷综合| 悠悠久久av| 国产成人系列免费观看| 18禁国产床啪视频网站| 变态另类丝袜制服| 日本a在线网址| 久久久久九九精品影院| 国产国语露脸激情在线看| 国内精品久久久久久久电影| 欧美一级毛片孕妇| 校园春色视频在线观看| 久久久久久久久免费视频了| 亚洲国产日韩欧美精品在线观看 | 国产免费男女视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品av久久久久免费| 国产亚洲欧美在线一区二区| 免费观看人在逋| a在线观看视频网站| 麻豆成人午夜福利视频| 欧美色欧美亚洲另类二区| 久久久久国产一级毛片高清牌| 在线播放国产精品三级| 真人做人爱边吃奶动态| 婷婷精品国产亚洲av| 婷婷精品国产亚洲av| 黄网站色视频无遮挡免费观看| 欧美又色又爽又黄视频| 午夜福利一区二区在线看| 色综合站精品国产| 99久久无色码亚洲精品果冻| 午夜福利视频1000在线观看| 女警被强在线播放| 色综合欧美亚洲国产小说| 日日摸夜夜添夜夜添小说| 日本熟妇午夜| 亚洲三区欧美一区| 国内揄拍国产精品人妻在线 | av超薄肉色丝袜交足视频| 香蕉国产在线看| 99热这里只有精品一区 | 国产乱人伦免费视频| 亚洲熟女毛片儿| 美女大奶头视频| 中文字幕人妻丝袜一区二区| 亚洲五月天丁香| 国产又色又爽无遮挡免费看| 国产一卡二卡三卡精品| 国产伦人伦偷精品视频| 禁无遮挡网站| 特大巨黑吊av在线直播 | 免费av毛片视频| 成在线人永久免费视频| 最近最新中文字幕大全免费视频| 国产国语露脸激情在线看| 伦理电影免费视频| 欧美乱码精品一区二区三区| 动漫黄色视频在线观看| 国产一区在线观看成人免费| 国产午夜精品久久久久久| 麻豆av在线久日| 性欧美人与动物交配| xxx96com| 久久精品亚洲精品国产色婷小说| 伊人久久大香线蕉亚洲五| 日本 av在线| 国产蜜桃级精品一区二区三区| 性色av乱码一区二区三区2| 精品欧美国产一区二区三| 一卡2卡三卡四卡精品乱码亚洲| 波多野结衣巨乳人妻| 日韩中文字幕欧美一区二区| 欧美一区二区精品小视频在线| 男女做爰动态图高潮gif福利片| 免费看美女性在线毛片视频| 一进一出抽搐动态| 国产久久久一区二区三区| 好看av亚洲va欧美ⅴa在| 12—13女人毛片做爰片一| 一区二区日韩欧美中文字幕| 国产精品爽爽va在线观看网站 | 亚洲国产中文字幕在线视频| 搡老熟女国产l中国老女人| 一进一出抽搐gif免费好疼| 国内揄拍国产精品人妻在线 | 国产97色在线日韩免费| 高潮久久久久久久久久久不卡| 搞女人的毛片| 天天躁夜夜躁狠狠躁躁| 丰满的人妻完整版| 香蕉丝袜av| 国产精品美女特级片免费视频播放器 | 亚洲国产日韩欧美精品在线观看 | 少妇粗大呻吟视频| 午夜福利欧美成人| 黑丝袜美女国产一区| 欧美成人一区二区免费高清观看 | 亚洲成人精品中文字幕电影| 十八禁网站免费在线| 国产成人精品久久二区二区91| 非洲黑人性xxxx精品又粗又长| 亚洲欧洲精品一区二区精品久久久| 国产免费男女视频| www.自偷自拍.com| 国产精品二区激情视频| 亚洲一码二码三码区别大吗| 热99re8久久精品国产| 亚洲 欧美一区二区三区| 少妇 在线观看| 久久国产精品男人的天堂亚洲| 免费女性裸体啪啪无遮挡网站| 日本一区二区免费在线视频| 国产99久久九九免费精品| 国产精品1区2区在线观看.| 日本五十路高清| 琪琪午夜伦伦电影理论片6080| 久久性视频一级片| √禁漫天堂资源中文www| 在线十欧美十亚洲十日本专区| 亚洲成人精品中文字幕电影| 国产精品九九99| 真人一进一出gif抽搐免费| 国内久久婷婷六月综合欲色啪| 一本综合久久免费| 91字幕亚洲| av有码第一页| 国产熟女午夜一区二区三区| 久久久久久久久免费视频了| 黄网站色视频无遮挡免费观看| 欧美午夜高清在线| 黄频高清免费视频| 国产亚洲欧美98| 香蕉久久夜色| 亚洲专区中文字幕在线| 欧美黑人欧美精品刺激| а√天堂www在线а√下载| 亚洲成人久久爱视频| 精品久久久久久久久久免费视频| 国产视频一区二区在线看| 久久狼人影院| 亚洲精品中文字幕一二三四区| 国产精品亚洲av一区麻豆| 9191精品国产免费久久| 午夜福利高清视频| 国产成年人精品一区二区| 亚洲精华国产精华精| √禁漫天堂资源中文www| 少妇 在线观看| 国产又色又爽无遮挡免费看| 国产黄色小视频在线观看| 夜夜夜夜夜久久久久| 亚洲国产欧美网| 久久婷婷成人综合色麻豆| 深夜精品福利| 日韩大码丰满熟妇| 欧美中文综合在线视频| 美女国产高潮福利片在线看| 国产人伦9x9x在线观看| 精品久久久久久久久久久久久 | 精品人妻1区二区| 国产精品精品国产色婷婷| 非洲黑人性xxxx精品又粗又长| 女人爽到高潮嗷嗷叫在线视频| 大型黄色视频在线免费观看| 中文字幕人妻丝袜一区二区| 午夜精品在线福利| 看免费av毛片| 国内少妇人妻偷人精品xxx网站 | 高潮久久久久久久久久久不卡| 精品国产亚洲在线| 亚洲男人天堂网一区| 高清毛片免费观看视频网站| 精品久久久久久久久久免费视频| 亚洲av五月六月丁香网| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人精品无人区| 人妻久久中文字幕网| 757午夜福利合集在线观看| 丰满的人妻完整版| 一边摸一边抽搐一进一小说| 久久久久久亚洲精品国产蜜桃av| 国产精品亚洲美女久久久| 丁香欧美五月| 国产黄色小视频在线观看| 老司机福利观看| av免费在线观看网站| 岛国视频午夜一区免费看| 午夜精品在线福利| 中文字幕av电影在线播放| 日韩欧美 国产精品| 午夜福利免费观看在线| 亚洲成a人片在线一区二区| 美国免费a级毛片| 亚洲第一av免费看| 99国产精品一区二区蜜桃av| 精品欧美一区二区三区在线| 亚洲一区中文字幕在线| 一区福利在线观看| 18禁裸乳无遮挡免费网站照片 | 搡老熟女国产l中国老女人| 欧美日本亚洲视频在线播放| 男女之事视频高清在线观看| 色尼玛亚洲综合影院| 欧美精品亚洲一区二区| 亚洲国产欧洲综合997久久, | 亚洲午夜精品一区,二区,三区| 国产高清激情床上av| 18禁裸乳无遮挡免费网站照片 | 精品国产亚洲在线| 久久久久久国产a免费观看| 亚洲欧美激情综合另类| www日本在线高清视频| 男人舔女人下体高潮全视频| 视频在线观看一区二区三区| 91老司机精品| 国产精品影院久久| 99国产精品一区二区蜜桃av| 精品久久久久久久久久久久久 | 波多野结衣高清作品| 禁无遮挡网站| 波多野结衣巨乳人妻| 国产又爽黄色视频| 69av精品久久久久久| 黄片播放在线免费| 午夜福利在线在线| 亚洲黑人精品在线| 最新美女视频免费是黄的| 老熟妇仑乱视频hdxx| 久久久精品欧美日韩精品| 精品久久久久久成人av| 999久久久精品免费观看国产| 91成年电影在线观看| 国产激情久久老熟女| 欧美成人午夜精品| 成人免费观看视频高清| 久9热在线精品视频| 制服人妻中文乱码| 不卡一级毛片| 欧美黑人精品巨大| 午夜免费激情av| 看黄色毛片网站| 精品国产一区二区三区四区第35| 好男人在线观看高清免费视频 | 成在线人永久免费视频| 精品久久久久久成人av| 精品一区二区三区视频在线观看免费| 久久久水蜜桃国产精品网| 夜夜夜夜夜久久久久| 久热爱精品视频在线9| 哪里可以看免费的av片| 国产v大片淫在线免费观看| 国产乱人伦免费视频| 国产一区二区在线av高清观看| 久久久久久亚洲精品国产蜜桃av| 麻豆成人av在线观看| 欧美性猛交黑人性爽| 亚洲国产精品久久男人天堂| 成人av一区二区三区在线看| 日本a在线网址| 国内精品久久久久精免费| 波多野结衣av一区二区av| 午夜免费激情av| 黑人操中国人逼视频| 国产一区在线观看成人免费| 禁无遮挡网站| 又黄又粗又硬又大视频| 美女高潮喷水抽搐中文字幕| 欧美中文日本在线观看视频| 妹子高潮喷水视频| 国产伦人伦偷精品视频| 91老司机精品| 在线视频色国产色| 国产色视频综合| 一本大道久久a久久精品| 久久亚洲精品不卡| 1024手机看黄色片| 欧美国产精品va在线观看不卡| 欧美黑人欧美精品刺激| 最新在线观看一区二区三区| 在线观看免费视频日本深夜| 黄色视频,在线免费观看| svipshipincom国产片| 欧美一区二区精品小视频在线| 欧美在线一区亚洲| 久久国产精品人妻蜜桃| 在线视频色国产色| 国产熟女午夜一区二区三区| 超碰成人久久| 在线免费观看的www视频| 国内精品久久久久久久电影| 少妇熟女aⅴ在线视频| 一二三四社区在线视频社区8| 精品久久蜜臀av无| 日本免费一区二区三区高清不卡| a级毛片在线看网站| 国语自产精品视频在线第100页| 黄片小视频在线播放| 亚洲免费av在线视频| 一二三四在线观看免费中文在| 成人亚洲精品一区在线观看| 国产av一区在线观看免费| 免费看a级黄色片| 成人手机av| 99国产精品99久久久久| 丁香欧美五月| 亚洲人成电影免费在线| 淫秽高清视频在线观看| 女警被强在线播放| 黄网站色视频无遮挡免费观看| 亚洲av日韩精品久久久久久密| 亚洲国产精品久久男人天堂| 99国产极品粉嫩在线观看| 久久性视频一级片| 成年版毛片免费区| 听说在线观看完整版免费高清| 黄色a级毛片大全视频| 国产在线观看jvid| 成年人黄色毛片网站| 日韩精品中文字幕看吧| or卡值多少钱| 观看免费一级毛片| 美女大奶头视频| 99精品久久久久人妻精品| 中文亚洲av片在线观看爽| 日本a在线网址| 麻豆一二三区av精品| 午夜免费观看网址| 少妇的丰满在线观看| 亚洲全国av大片| 亚洲五月婷婷丁香| 亚洲va日本ⅴa欧美va伊人久久| 色综合站精品国产| 黑人欧美特级aaaaaa片| 午夜福利18| 欧美成狂野欧美在线观看| 亚洲午夜精品一区,二区,三区| 国产精品一区二区三区四区久久 | 9191精品国产免费久久| 波多野结衣高清作品| 国产久久久一区二区三区| 亚洲成人精品中文字幕电影| 亚洲成人久久爱视频| 一区二区三区激情视频| 欧美zozozo另类| 久久精品国产综合久久久| 国产成年人精品一区二区| 欧美中文综合在线视频| 久久国产乱子伦精品免费另类| 99久久国产精品久久久| 不卡一级毛片| 男女视频在线观看网站免费 | 一本大道久久a久久精品| 国产精品二区激情视频| 观看免费一级毛片| 男女下面进入的视频免费午夜 | 又黄又粗又硬又大视频| 一个人免费在线观看的高清视频| 亚洲人成网站高清观看| 一a级毛片在线观看| 桃色一区二区三区在线观看| 天天躁夜夜躁狠狠躁躁| 午夜精品在线福利| 日本黄色视频三级网站网址| a级毛片在线看网站| 91九色精品人成在线观看| 草草在线视频免费看| 大香蕉久久成人网| 啦啦啦观看免费观看视频高清| 国产成+人综合+亚洲专区| 色在线成人网| 日本a在线网址| 日韩欧美在线二视频| 日韩精品中文字幕看吧| 日韩欧美一区视频在线观看| tocl精华| 亚洲最大成人中文| 亚洲av日韩精品久久久久久密| 中文在线观看免费www的网站 | 国产不卡一卡二| 桃色一区二区三区在线观看| 男人舔奶头视频| 国产欧美日韩一区二区精品| 欧美成人午夜精品| 最近最新免费中文字幕在线| 成年版毛片免费区| 性色av乱码一区二区三区2| 精品国产国语对白av| 久久香蕉国产精品| 精品国产乱子伦一区二区三区| 宅男免费午夜| 级片在线观看| 久久精品国产亚洲av香蕉五月| 人妻久久中文字幕网| 巨乳人妻的诱惑在线观看| 首页视频小说图片口味搜索| 女人高潮潮喷娇喘18禁视频| 可以在线观看的亚洲视频| 日韩欧美 国产精品| 俺也久久电影网| 亚洲色图av天堂| 99国产精品一区二区蜜桃av| 少妇熟女aⅴ在线视频| 国产黄色小视频在线观看| 香蕉久久夜色| 国产精品精品国产色婷婷| 色综合婷婷激情| 91成年电影在线观看| 中文字幕久久专区| 少妇被粗大的猛进出69影院| 午夜福利成人在线免费观看| 村上凉子中文字幕在线| 午夜激情福利司机影院| 欧美又色又爽又黄视频| 国产国语露脸激情在线看| 久久婷婷成人综合色麻豆| 十八禁人妻一区二区| 亚洲五月色婷婷综合| 久久久国产精品麻豆| 日本一本二区三区精品| 日韩欧美一区视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产真人三级小视频在线观看| 少妇的丰满在线观看| 日韩成人在线观看一区二区三区| 狂野欧美激情性xxxx| 97人妻精品一区二区三区麻豆 | 亚洲中文日韩欧美视频| 听说在线观看完整版免费高清| 色综合婷婷激情| 精品久久久久久久毛片微露脸| 中文资源天堂在线| 丝袜美腿诱惑在线| 91在线观看av| 黄频高清免费视频| 中文资源天堂在线| 精品免费久久久久久久清纯| 欧美性长视频在线观看| 叶爱在线成人免费视频播放| 不卡av一区二区三区| 亚洲av熟女| 国产精品免费视频内射| 麻豆av在线久日| 免费无遮挡裸体视频| 中亚洲国语对白在线视频| 欧美日韩精品网址| 国产精品久久久久久人妻精品电影| 一本综合久久免费| 国产精品自产拍在线观看55亚洲| 18禁黄网站禁片午夜丰满| 身体一侧抽搐| 麻豆成人午夜福利视频| 一边摸一边做爽爽视频免费| 丝袜人妻中文字幕| 每晚都被弄得嗷嗷叫到高潮| 免费在线观看黄色视频的| 精品国产亚洲在线| 制服诱惑二区| 成人av一区二区三区在线看| 99久久国产精品久久久| 男女午夜视频在线观看| 色综合欧美亚洲国产小说| avwww免费| 国产精品久久电影中文字幕| 国产又爽黄色视频| 国产久久久一区二区三区| 久久中文看片网| 亚洲精品av麻豆狂野| 俄罗斯特黄特色一大片| 亚洲一区中文字幕在线| 在线观看午夜福利视频| 黄网站色视频无遮挡免费观看| 真人一进一出gif抽搐免费| 悠悠久久av| 亚洲人成伊人成综合网2020| 国产真人三级小视频在线观看| 国产亚洲欧美精品永久| 日韩欧美一区二区三区在线观看| 淫妇啪啪啪对白视频|