• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Promotional Effect of CoO(OH) on Selective Hydrogenation of Maleic Anhydride to γ-Butyrolactone over Supported Ruthenium Catalyst

    2015-06-22 14:19:10ZhouYafenWangQingWangManmanYangWenjuanZhouLimeiMaXiaoyan
    中國煉油與石油化工 2015年4期

    Zhou Yafen; Wang Qing; Wang Manman; Yang Wenjuan; Zhou Limei; Ma Xiaoyan

    (1. Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002; 2. College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059)

    Promotional Effect of CoO(OH) on Selective Hydrogenation of Maleic Anhydride to γ-Butyrolactone over Supported Ruthenium Catalyst

    Zhou Yafen1; Wang Qing1; Wang Manman1; Yang Wenjuan1; Zhou Limei1; Ma Xiaoyan2

    (1. Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002; 2. College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059)

    A decorated ruthenium catalyst was prepared by the coprecipitation method and used for the selective hydrogenation of maleic anhydride (MA) to γ-butyrolactone (GBL). The as-prepared catalyst was characterized by XRD, TGDTG and N2adsorption techniques. The characterization tests revealed that the catalyst carrier was composed of monoclinic zirconia (m-ZrO2) and hydroxyl cobalt oxide (CoO(OH)). The hydrogenation results showed that the content of CoO(OH), the reaction temperature, the hydrogen pressure and the reaction time significantly affected the catalytic selectivity to GBL. The promotional effect of CoO(OH) was remarkable, which led to an obvious increase in GBL selectivity. An 100% MA conversion and 92.0% selectivity to GBL were achieved over the Ru/ZrO2-CoO(OH)(35%) catalyst in water solvent under the conditions involving a reaction temperature of 180 ℃, a hydrogen pressure of 3.0 MPa, and a reaction time of 6 h.

    ruthenium catalyst; hydrogenation; maleic anhydride; γ-butyrolactone

    1 Introduction

    Hydrogenation of maleic anhydride (MA) is of great academic and industrial significance. The products resulted from hydrogenation of MA, such as succinic anhydride (SA), γ-butyrolactone (GBL), 1,4-butanediol (BDO) and tetrahydrofuran (THF) are important intermediates and can be obtained selectively by using different catalysts or regulating and controlling the reaction conditions[1-2]. The reaction pathway for the hydrogenation of MA is illustrated in Figure 1[3-4]. In particular, GBL is currently an alternative to the non eco-friendly chlorinated solvent and also an important intermediate widely used in the fine chemical and pharmaceutical industries. For example, GBL is used for the production of pyrrolidone, N-methylpyrrolidone and polyvinylpyrrolidone, which are employed in the processes for manufacture of pigment, medicine, and polymers. GBL is mainly manufactured by two processes, viz.: the dehydrogenation of BDO[5]and the hydrogenation of maleic acid[6], succinic acid[7]and their dialkyl esters (e.g. dimethyl maleate, diethyl succinate)[8-9]. In the former process, BDO is manufactured by the Reppe process based on raw materials, such as the explosion-prone acetylene and possibly carcinogenic formaldehyde. In the latter process, the severe conditions such as high temperature and high pressure are required in the hydrogenation of maleic acid or succinic acid. Also, the additional costs related to the processes of esterification and alcohol recovery should be taken into account for the hydrogenation of maleic or succinic diesters. In recent years, MA can be produced in a large scale and at a low cost by partial oxidation of n-butane[10]. Therefore, the direct hydrogenation of MA has become the most promising method for the synthesis of GBL.

    The key to the hydrogenation of MA to GBL is the preparation of catalysts. During the past decades, both homogeneous and heterogeneous catalysts were used for the hydrogenation of MA to GBL in liquid or gas phase. Although a high γ-butyrolactone yield can be obtained under milder conditions by using homogeneous noble metal complex catalysts[11-12], there are still some problems suchas high cost, difficulty in the preparation of organometallic complex and difficulty in the separation of catalyst and products. These shortcomings can be overcome by using heterogeneous noble metal catalysts[13-16]which have advantages of high activity and good selectivity to target product. The heterogeneous copper-based catalysts are extensively used for the hydrogenation of MA. However, the early Cu-Cr catalysts have brought about Cr pollution to the environment[17]. As regards the recently developed chromium-free copper based catalysts such as Cu-Zn-Ti[1], Cu-Zn-Zr[4], Cu-Zn-Ce[18], and Cu-CeO2-Al2O3[19], there still exist some disadvantages, for example, the sintering and deactivation of catalysts at high reaction temperature. On the other hand, the cobalt-based catalysts are widely used in several hydrogenation reactions. For example, Co/CNTs[20]and CoxP/SiO2[21]are used for the hydrogenation of CO. The Co/SiO2catalyst is active in both the selective hydrogenation of MA and the hydrogenolysis of succinic anhydride[22]. In addition, the remarkable improvement of Co in catalytic performance has been observed in the hydrogenation of dimethyl oxalate[23]. It is also found that the Rh/Co bimetallic catalyst can efficiently promote hydrogenation of unsaturated hydrocarbons with hydrous hydrazine as a hydrogen source[24].

    In this paper, we report a study on the hydrogenation of MA to GBL over ZrO2, CoO(OH), and ZrO2-CoO(OH) supported ruthenium catalysts. The catalysts were characterized by means of XRD, TG-DTG and BET techniques. The aim of the present work is to study the promotional effect of CoO(OH) on supported ruthenium catalyst. Moreover, the effects of the reaction conditions were also investigated to take into account the potential industrial relevance of one-step hydrogenation of MA to GBL over the Ru/ZrO2-CoO(OH) catalyst.

    Figure 1 Reaction pathway for the hydrogenation of maleic anhydride

    2 Experimental

    2.1 Catalyst preparation

    A series of Ru/ZrO2-CoO(OH) catalysts containing 2.0% of Ru and different contents of CoO(OH) were prepared by the coprecipitation method. Typically, a certain amount of ZrOCl2·8H2O and CoCl2·6H2O was dissolved in 15 mL of distilled water, followed by the introduction of RuCl3aqueous solution. Then a 25% NaOH solution was added to the above mixed solution drop by drop under vigorous stirring until the pH value reached 10. The resulted suspension was stirred continuously for 6 h followed by ageing at room temperature for 12 h. After that, the precipitate was filtered and washed with distilled water until the pH value reached 7. Finally, after drying in vacuum overnight at 60 ℃, the Ru/ZrO2-CoO(OH) catalyst was obtained. All the catalyst samples were used directly without activation.

    2.2 Catalyst characterization

    The X-ray diffraction (XRD) analysis was performed on a Rigaku D/max-rA diffractometer using a Cu Kαradiation, operating at 40 kV and 110 mA and scanning from 10° to 90° (2θ). The thermogravimetric analysis (TG) and derivative thermogravimetry (DTG) curves were determined using a STA 449 F3 Jupiter analyzer at a heating rate of 10 ℃/min. The BET specific surface area was determined by a Micromeritics ASAP 2020 apparatus and by physical adsorption of N2at -196 ℃.

    2.3 Catalytic test

    Selective hydrogenation of MA to GBL was carried out in a 60-mL stainless steel autoclave equipped with a magnetic stirrer and an electric temperature controller. In a typical experiment, the autoclave was charged with weighed amounts of catalyst, MA, and solvent. The autoclave was purged with H2for five times, and then pressurized with H2to the designed pressure. Under a stirring rate of 1 000 r/min, the reaction was conducted at the given temperature for a certain time. At the end of reaction, the autoclave was cooled down to room temperature and was slowly depressurized. The MA conversion and product selectivity were determined by a GC-7890 chromatograph(Agilent) equipped with a FID detector and a HP-5 capillary column. The reactant and product were identified by comparison with the standard samples and the GC-MS results.

    3 Results and Discussion

    3.1 Characterization of catalyst

    The XRD patterns of the as-prepared Ru/ZrO2(a), Ru/ZrO2-CoO(OH) (b) and Ru/CoO(OH) (c) catalysts are shown in Figure 2. It can be seen that the pattern of the Ru/ZrO2catalyst showed some broad and dispersive peaks, indicating that the structure of ZrO2was mainly amorphous. In addition, the most obvious peak at 2θ=31.4○corresponded to the maximum characteristic peak of monoclinic zirconia (m-ZrO2) (PDF#37-1484). This suggested that the short-range ordered structure of the amorphous state was similar to the crystal structure of m-ZrO2. The XRD pattern of the Ru/CoO(OH) catalyst exhibited the characteristic peaks of CoO(OH) (PDF#07-0169), appearing at 2θ=20.2○, 38.9○, 50.6○, 65.3○and 69.2○. As regards the Ru/ZrO2-CoO(OH) catalyst, a dispersive characteristic peak of m-ZrO2appeared at 2θ=31.4○. Simultaneously, the narrow, well defined characteristic peaks assigned to CoO(OH) appeared at 20.2○, 38.9○and 50.6○. No diffraction peaks of Ru species were identified in the XRD patterns of all the catalysts, indicating that Ru species were finely dispersed on the catalyst support.

    Figure 2 XRD patterns of catalysts: (a) Ru/ZrO2;(b) Ru/ ZrO2-CoO(OH)(35%); and (c) Ru/CoO(OH)

    The TG and DTG curves of the as-prepared Ru/ZrO2-CoO(OH)(35%) catalyst are illustrated in Figure 3. The thermal analysis of the catalyst showed two decomposition steps. The first step, from 43 ℃ to 100 ℃, with a mass loss of about 11% corresponding to the peak at around 90 ℃ on the DTG curve, was attributed to the removal of physically adsorbed water. The second step, from 110 ℃ to 320 ℃, with a mass loss of about 12% corresponding to the peak at about 300 ℃ on the DTG curve, was in accordance with the process of CoO(OH) conversion to Co3O4[25].

    Figure 3 TG and DTG curves of the prepared Ru/ZrO2-CoO(OH) (35%) catalyst

    3.2 Effect of CoO(OH) content

    Table 1 shows the catalytic performance of a series of the Ru/ZrO2-CoO(OH) catalysts with different CoO(OH) content for the hydrogenation of MA. For all the catalysts investigated here, 100% conversion of MA was obtained. However, the selectivity to GBL changed obviously with the decorated CoO(OH) content. It can be seen from Table 1 that all the decorated Ru/ZrO2-CoO(OH) catalysts exhibited higher GBL selectivity than the undecorated Ru/ZrO2or Ru/CoO(OH) catalysts, over which the GBL selectivity was only 65.1% and 50.1%, respectively. In addition, the GBL selectivity increased with an increasing CoO(OH) content, reaching a maximum value of 92.0% when the content of CoO(OH) was 35%. A further increase of the CoO(OH) content in the Ru/ZrO2-CoO(OH) catalyst led to a decrease in GBL selectivity. According to the specific surface area data of the investigated catalysts, decoration of CoO(OH) changed the catalyst specific surface area. The catalyst with a CoO(OH) content of 35% exhibited the largest specific surface area to achieve a highest GBL selectivity of 92.0%. So the Ru/ZrO2-CoO(OH)(35%) catalyst was used in the further investigations. The prominent catalytic behavior of the Ru/ZrO2-CoO(OH)(35%) catalyst might be related to its structure.

    The above XRD and TG-DTG characterization tests showed that the catalyst contained rich water and surface hydroxyls, which provided the catalyst with strong hydrophilicity to be readily dispersed in aqueous solution. Both the high specific surface area and high dispersion of the catalyst made it capable of being in full contact with the substrate, so that the GBL selectivity was greatly increased. In addition, this finding is of economical and environmental significance since water is a cheap and safe solvent. Therefore, in the subsequent experiments, reaction conditions for the catalytic hydrogenation of MA over the Ru/ZrO2-CoO(OH)(35%) catalyst using water as the solvent were optimized.

    Table 1 Effect of CoO(OH) content on the hydrogenation of maleic anhydride

    3.3 Optimization of reaction conditions

    The effect of reaction temperature on hydrogenation of MA is shown in Figure 4. Under the surveyed range of temperatures, the conversion of MA always reached 100%, while the selectivity to GBL was affected signif icantly by the reaction temperature. It can be seen from Figure 4 that the selectivity to GBL increased with an increasing temperature, reaching a maximum (92.0%) at 180 ℃, and then decreased. At a low temperature, a poor selectivity to GBL was identified because of hydrolyzation of MA to succinic acid. For example, the selectivity to GBL was only 15.4% at 120 ℃. When the temperature was beyond 180 ℃, excessive hydrogenation of MA was found, leading to a decrease of GBL selectivity.

    The hydrogenation of MA over the Ru/ZrO2-CoO(OH) (35%) catalyst was carried out at a hydrogen pressure of 1.0—5.0 MPa. As shown in Figure 5, an 100% conversion of MA was obtained under the studied range of H2pressures. However, the selectivity to GBL varied evidently with changes in H2pressure. The selectivity to GBL increased from 59.4% to 92.0% as the H2pressure increased from 1.0 to 3.0 MPa, while the GBL selectivity decreased slightly when the H2pressure was higher than 3.0 MPa as a result of excessive hydrogenation.

    Figure 4 Effect of reaction temperature on the hydrogenation of maleic anhydride■—Conversion;●—Selectivity

    Figure 5 Effect of hydrogen pressure on the hydrogenation of maleic anhydride■—Conversion;●—Selectivity

    The effect of reaction time on the performance of the Ru/ZrO2-CoO(OH) (35%) catalyst is shown in Figure 6. It can be seen from Figure 6 that the yield of GBL attained 63.1% when the reaction time was only 2 h, indicating to the high catalytic activity of the catalyst. The selectivity to GBL increased with the extension of reaction time at first. The maximum GBL selectivity was achieved at a reaction time of 6 h (92.0%), and then theselectivity decreased slowly with the extension of reaction time, which was also related to the further hydrogenation reaction.

    Figure 6 Effect of reaction time on the hydrogenation of maleic anhydride■—Conversion;●—Selectivity

    4 Conclusions

    Selective hydrogenation of MA to GBL over ZrO2, CoO(OH), and ZrO2-CoO(OH) supported ruthenium catalysts was investigated. It was found that the decoration of CoO(OH) could greatly improve the catalytic selectivity to GBL, with the conversion of MA maitained at 100%. When the content of CoO(OH) was 35%, the Ru/ZrO2-CoO(OH) catalyst exhibited a highest specific surface area and a maximum selectivity to GBL. Under the optimized conditions involving a reaction temperature of 180 ℃, a hydrogen pressure of 3.0 MPa, and a reaction time of 6 h in the presence of water functioning as the solvent, the conversion of MA and the selectivity to GBL over the Ru/ZrO2-CoO(OH)(35%) catalyst reached 100% and 92.0%, respectively.

    Acknowledgements:The authors are grateful to the financial support from the Natural Science Foundation of China (No. 21303139), the Key Fund Project of Educational Department of Sichuan Province (No. 14ZA0126), and the Open Project of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province (No. CSPC2013-1).

    [1] Hu T J, Yin H B, Zhang R C, et al. Gas phase hydrogenation of maleic anhydride to γ-butyrolactone over Cu-Zn-Ti catalysts[J]. Catal Commun, 2007, 8(2): 193-199

    [2] Zhang R C, Yin H B, Zhang D Z, et al. Gas phase hydrogenation of maleic anhydride to tetrahydrofuran over Cu/ZnO/TiO2catalysts in the presence of n-butanol[J]. Chem Eng J, 2008, 140(1/3): 488-496

    [3] Guo S F, Tian W P, Shi L. Hydrogenation of maleic anhydride to succinic anhydride over nickel/clay catalysts[J]. Transition Met Chem, 2012, 37(8): 757-763

    [4] Zhang D Z, Yin H B, Ge C, et al. Selective hydrogenation of maleic anhydride to γ-butyrolactone and tetrahydrofuran over Cu-Zn-Zr catalyst in the presence of ethanol[J]. J Ind Eng Chem, 2009, 15(4): 537-543

    [5] Zhang B, Zhu Y L, Ding G Q, et al. Modification of the supported Cu/SiO2catalyst by alkaline earth metals in the selective conversion of 1,4-butanediol to γ-butyrolactone[J]. Appl Catal A: Gen, 2012, 443/444: 191-201

    [6] Chaudhari R V, Rode C V, Deshpande R M, et al. Kinetics of hydrogenation of maleic acid in a batch slurry reactor using a bimetallic Ru–Re/C catalyst[J]. Chem Eng Sci, 2003, 58(3): 627-632

    [7] Deshpande R M, Buwa V V, Rode C V, et al. Tailoring of activity and selectivity using bimetallic catalyst in hydrogenation of succinic acid[J]. Catal Commun, 2002, 3(7): 269-274

    [8] Ohlinger C, Kraushaar-Czarnetzki B. Improved processing stability in the hydrogenation of dimethyl maleate to γ-butyrolactone, 1,4-butanediol and tetrahydrofuran[J]. Chem Eng Sci, 2003, 58(8): 1453-1461

    [9] Vaidya S H, Rode C V, Chaudhari R V. Bimetallic Pt-Sn/ γ-alumina catalyst for highly selective liquid phase hydrogenation of diethyl succinate to γ-butyrolactone[J]. Catal Commun, 2007, 8(3): 340-344

    [10] Fernández J R, Vega A, Díez F V. Partial oxidation of nbutane to maleic anhydride over VPO in a simulated circulating fluidized bed reactor[J]. Appl Catal A: Gen, 2010, 376(1/2): 76-82

    [11] Hara Y and Takahashi K. A novel production of γ-butyrolactone catalyzed by homogeneous ruthenium complexes[J]. Catal Surv Jpn, 2002, 6(1): 73-78

    [12] Wang Q, Cheng H Y, Liu R X, et al. Selective hydrogenation of maleic anhydride to γ-butyrolactone in supercritical carbon dioxide[J]. Catal Commun, 2009, 10(5): 592-595

    [13] Pillai U R and Sahle-Demessie E. Selective hydrogenation of maleic anhydride to γ-butyrolactone over Pd/Al2O3catalyst using supercritical CO2as solvent[J]. Chem Commun, 2002, 422-423

    [14] Jung S M, Godard E, Jung S Y, et al. Liquid-phase hydrogenation of maleic anhydride over Pd/SiO2: Effect of tinon catalytic activity and deactivation[J]. J Mol Catal A: Chem, 2003, 198(1/2): 297-302

    [15] Jeong H, Kim T H, Kim K I, et al. The hydrogenation of maleic anhydride to γ-butyrolactone using mixed metal oxide catalysts in a batch-type reactor[J]. Fuel Process Technol, 2006, 87(6): 497-503

    [16] Wang Q, Cheng H Y, Liu R X, et al. Influence of metal particle size on the hydrogenation of maleic anhydride over Pd/C catalysts in scCO2[J]. Catal Today, 2009, 148(3/4): 368-372

    [17] Messori M and Vaccari A. Reaction pathway in vapour phase hydrogenation of maleic anhydride and its esters to γ-butyrolactone[J]. J Catal, 1994, 150(1): 177-185

    [18] Zhang D Z, Yin H B, Zhang R C, et al. Gas phase hydrogenation of maleic anhydride to γ-butyrolactone by Cu-Zn-Ce catalyst in the presence of n-butanol[J]. Catal Lett, 2008, 122(1/2): 176-182

    [19] Yu Y, Guo Y L, Zhan W C, et al. Gas-phase hydrogenation of maleic anhydride to γ-butyrolactone at atmospheric pressure over Cu-CeO2-Al2O3catalyst[J]. J Mol Catal A: Chem, 2011, 337(1/2): 77-81

    [20] Lv J, Ma X B, Bai S L, et al. Hydrogenation of carbon monoxide over cobalt nanoparticles supported on carbon nanotubes[J]. Int J Hydrogen Energ, 2011, 36(4): 8365-8372

    [21] Song X G, Ding Y J, Chen W M, et al. Synthesis and characterization of silica-supported cobalt phosphide catalysts for CO hydrogenation[J]. Energ Fuel, 2012, 26(11): 6559-6566

    [22] Meyer C I, Regenhardt S A, Marchi A J, et al. Gas phase hydrogenation of maleic anhydride at low pressure over silica-supported cobalt and nickel catalysts[J]. Appl Catal A: Gen, 2012, 417/418: 59-65

    [23] Wen C, Cui Y Y, Yin A Y, et al. Remarkable improvement of catalytic performance for a new cobalt-decorated Cu/ HMS catalyst in the hydrogenation of dimethyloxalate[J]. Chem Cat Chem, 2013, 5(1): 138-141

    [24] Lin J, Chen J, Su W P. Rhodium-cobalt bimetallic nanoparticles: a catalyst for selective hydrogenation of unsaturated carbon-carbon bonds with hydrous hydrazine[J]. Adv Synth Catal, 2013, 355(1): 41-46

    [25] Singh Gaur R P, Hydrogen reduction of heterogenite to make sub-micron cobalt metal powder for hard metal applications[J]. Int J Refract Met H, 2012, 35: 300-305

    Application of Coalescence Separation Technology in Manufacture of Nitrobenzene

    The commercial application project for reducing the sodium content in raw nitrobenzene which was performed by the Research Institute of the SINOPEC Nanjing Chemical Company (NCC) has passed the appraisal organized by the Science and Technology Division of the Sinopec Corp. The appraisal team has recognized that the overall technology of this project has reached the internationally advanced level.

    This project has for the first time adopted the coalescence separation technique in washing and separation of nitrobenzene, while concurrently developing a new process for reducing sodium content to less than 6 wppm in raw nitrobenzene. The said process has been tested in commercial scale on the 180 kt/a nitrobenzene unit at NCC, with the process unit running uninterruptedly and smoothly. The results of application of this achievement have revealed that the average sodium content in nitrobenzene has decreased from 18.42 μg/g to 5.42 μg/g, which was equal to a 70.6% reduction in sodium content, while the average phenate content was decreased from 2.32 μg/g to 1.17 μg/g, which was a 49.6% reduction in phenate, resulting in an increased security of the processing system. NCC has applied for 2 Chinese invention patents on this technology, among which one invention patent has been awarded to NCC by the China Patent Office.

    date: 2015-10-14; Accepted date: 2015-10-31.

    Professor Zhou Yafen, Telephone: +86-817-2568081; E-mail: cwnuzyf@163.com.

    有码 亚洲区| 久久青草综合色| 中文字幕亚洲精品专区| 中文精品一卡2卡3卡4更新| 久久99蜜桃精品久久| 在线看a的网站| 一级毛片黄色毛片免费观看视频| 色94色欧美一区二区| 午夜福利在线观看免费完整高清在| 成年美女黄网站色视频大全免费 | 欧美精品人与动牲交sv欧美| 精品久久久久久久久av| 一区二区三区乱码不卡18| 欧美 日韩 精品 国产| av视频免费观看在线观看| 日本免费在线观看一区| 极品人妻少妇av视频| 中国国产av一级| 狂野欧美激情性bbbbbb| 97在线人人人人妻| 欧美日韩综合久久久久久| 精品久久久久久久久亚洲| √禁漫天堂资源中文www| 大香蕉97超碰在线| 国产高清三级在线| 久久99一区二区三区| 一级毛片 在线播放| 久久韩国三级中文字幕| 熟妇人妻不卡中文字幕| 国产精品一区二区在线观看99| 日本av免费视频播放| 精品一区在线观看国产| 久久99热6这里只有精品| 欧美变态另类bdsm刘玥| 久久99精品国语久久久| 亚洲欧洲精品一区二区精品久久久 | 国产熟女午夜一区二区三区 | 国产在视频线精品| 少妇精品久久久久久久| 午夜福利在线观看免费完整高清在| 色婷婷av一区二区三区视频| 亚洲va在线va天堂va国产| 内地一区二区视频在线| 久久久国产精品麻豆| 看非洲黑人一级黄片| 久久久久久久精品精品| 亚洲国产欧美日韩在线播放 | 亚洲高清免费不卡视频| 黑人巨大精品欧美一区二区蜜桃 | 少妇的逼水好多| 国产女主播在线喷水免费视频网站| 看非洲黑人一级黄片| 久久6这里有精品| 国产精品一二三区在线看| 日韩欧美一区视频在线观看 | 麻豆成人午夜福利视频| 水蜜桃什么品种好| 精品国产乱码久久久久久小说| 成人毛片60女人毛片免费| .国产精品久久| 老司机影院毛片| 观看免费一级毛片| 91精品国产九色| 国产爽快片一区二区三区| 婷婷色av中文字幕| 国产欧美日韩一区二区三区在线 | 日本黄色片子视频| 乱码一卡2卡4卡精品| a级片在线免费高清观看视频| 国产永久视频网站| 精品一区在线观看国产| 欧美成人精品欧美一级黄| 中国美白少妇内射xxxbb| 国内少妇人妻偷人精品xxx网站| 国产男人的电影天堂91| 久久国内精品自在自线图片| 日韩电影二区| 欧美精品一区二区大全| 国产精品欧美亚洲77777| 亚洲综合精品二区| 国产伦精品一区二区三区四那| 人体艺术视频欧美日本| 免费久久久久久久精品成人欧美视频 | 久久人妻熟女aⅴ| av免费在线看不卡| 黄色视频在线播放观看不卡| 人人妻人人爽人人添夜夜欢视频 | 国产 精品1| 国产成人精品一,二区| 欧美日韩一区二区视频在线观看视频在线| 欧美少妇被猛烈插入视频| 大香蕉97超碰在线| 日日摸夜夜添夜夜添av毛片| 久久精品久久久久久噜噜老黄| 国产成人免费无遮挡视频| 午夜精品国产一区二区电影| 夜夜看夜夜爽夜夜摸| 国产精品国产三级国产av玫瑰| 性色avwww在线观看| 少妇精品久久久久久久| 2022亚洲国产成人精品| 卡戴珊不雅视频在线播放| 成年av动漫网址| h日本视频在线播放| 哪个播放器可以免费观看大片| 欧美国产精品一级二级三级 | 国产精品.久久久| 人人妻人人澡人人看| 99九九线精品视频在线观看视频| 99久久精品国产国产毛片| 免费观看性生交大片5| 国产精品成人在线| 亚洲精品乱码久久久久久按摩| 亚洲熟女精品中文字幕| 亚洲伊人久久精品综合| 国产成人精品婷婷| 日本av手机在线免费观看| 欧美日韩av久久| 伊人久久国产一区二区| 插逼视频在线观看| xxx大片免费视频| 久久久久精品性色| 亚洲精华国产精华液的使用体验| 免费观看无遮挡的男女| 日本欧美国产在线视频| 中文字幕亚洲精品专区| 涩涩av久久男人的天堂| 性高湖久久久久久久久免费观看| av免费观看日本| 一级毛片久久久久久久久女| 国产片特级美女逼逼视频| 老熟女久久久| 九草在线视频观看| 少妇高潮的动态图| 晚上一个人看的免费电影| 欧美日韩亚洲高清精品| 午夜影院在线不卡| 一级爰片在线观看| 最近的中文字幕免费完整| tube8黄色片| 成年人免费黄色播放视频 | 国内少妇人妻偷人精品xxx网站| 久久久久精品久久久久真实原创| 日韩制服骚丝袜av| 丰满乱子伦码专区| 五月天丁香电影| 蜜桃久久精品国产亚洲av| 久久亚洲国产成人精品v| 高清黄色对白视频在线免费看 | 晚上一个人看的免费电影| 九九爱精品视频在线观看| 国内少妇人妻偷人精品xxx网站| 美女脱内裤让男人舔精品视频| 99久久精品热视频| 好男人视频免费观看在线| 中文字幕制服av| 久久av网站| freevideosex欧美| 国产男女内射视频| 中文乱码字字幕精品一区二区三区| 亚洲图色成人| 黄色一级大片看看| 少妇人妻一区二区三区视频| 国国产精品蜜臀av免费| 午夜福利影视在线免费观看| 亚洲av不卡在线观看| 国产精品人妻久久久久久| 亚洲av欧美aⅴ国产| 少妇人妻 视频| 亚洲高清免费不卡视频| 久久精品国产亚洲av天美| 国产欧美亚洲国产| 精品国产乱码久久久久久小说| 啦啦啦中文免费视频观看日本| 国产亚洲一区二区精品| 亚洲久久久国产精品| 日本与韩国留学比较| 精品久久国产蜜桃| 午夜老司机福利剧场| 51国产日韩欧美| 亚洲欧美成人精品一区二区| a级毛片在线看网站| 国产亚洲午夜精品一区二区久久| 老司机影院成人| 男女无遮挡免费网站观看| 亚洲av二区三区四区| 亚洲天堂av无毛| 校园人妻丝袜中文字幕| 超碰97精品在线观看| 国产乱人偷精品视频| 国产毛片在线视频| 如日韩欧美国产精品一区二区三区 | 精品久久久噜噜| 欧美三级亚洲精品| 午夜激情久久久久久久| 亚洲欧美日韩另类电影网站| 黄色欧美视频在线观看| 99国产精品免费福利视频| 国产高清国产精品国产三级| 高清不卡的av网站| 婷婷色av中文字幕| 在线观看免费视频网站a站| 精品国产露脸久久av麻豆| 精品一区二区免费观看| 国精品久久久久久国模美| 国产69精品久久久久777片| 亚洲精品一二三| 免费高清在线观看视频在线观看| 亚洲国产精品一区三区| 狂野欧美激情性bbbbbb| 秋霞伦理黄片| 精品熟女少妇av免费看| 精品一区二区免费观看| 六月丁香七月| 香蕉精品网在线| 国产成人午夜福利电影在线观看| 日韩av不卡免费在线播放| 国产亚洲91精品色在线| 午夜激情福利司机影院| 国产熟女欧美一区二区| 在线观看国产h片| 日日啪夜夜爽| 亚洲真实伦在线观看| 国产免费一区二区三区四区乱码| a级片在线免费高清观看视频| 国产成人免费观看mmmm| 香蕉精品网在线| 亚洲精品aⅴ在线观看| 美女xxoo啪啪120秒动态图| 亚洲美女搞黄在线观看| 亚洲欧美精品专区久久| 精品人妻熟女av久视频| 色网站视频免费| 9色porny在线观看| 国产av一区二区精品久久| 国产欧美日韩综合在线一区二区 | 国模一区二区三区四区视频| 亚洲精品一二三| 国产精品国产三级国产av玫瑰| 国产69精品久久久久777片| 午夜福利在线观看免费完整高清在| 免费观看性生交大片5| 久久婷婷青草| 久久99蜜桃精品久久| 久久 成人 亚洲| 亚洲精品一区蜜桃| 免费看光身美女| 国产淫语在线视频| 最近中文字幕2019免费版| 搡女人真爽免费视频火全软件| 精品久久久精品久久久| 夜夜爽夜夜爽视频| 久久久亚洲精品成人影院| 国产精品人妻久久久影院| av卡一久久| 国产精品久久久久久久久免| 国产精品欧美亚洲77777| 国产免费一区二区三区四区乱码| 伊人久久国产一区二区| 亚洲欧美一区二区三区黑人 | 伊人久久精品亚洲午夜| 亚洲av欧美aⅴ国产| 色视频在线一区二区三区| 久久久久久人妻| 精品国产一区二区三区久久久樱花| 亚洲精品色激情综合| 一级黄片播放器| 少妇高潮的动态图| av免费在线看不卡| 国产精品99久久99久久久不卡 | a级一级毛片免费在线观看| 国产精品福利在线免费观看| 亚洲欧美日韩卡通动漫| 三上悠亚av全集在线观看 | 91在线精品国自产拍蜜月| 一本大道久久a久久精品| 97精品久久久久久久久久精品| 欧美成人午夜免费资源| 黄色一级大片看看| 国产成人免费观看mmmm| 久久人人爽人人片av| h日本视频在线播放| 我的女老师完整版在线观看| 日本欧美国产在线视频| 在线播放无遮挡| 国产伦精品一区二区三区视频9| 一本大道久久a久久精品| 国产伦理片在线播放av一区| 色婷婷av一区二区三区视频| 亚洲四区av| 成年女人在线观看亚洲视频| 亚洲av国产av综合av卡| 精品少妇久久久久久888优播| 久久久国产欧美日韩av| 亚洲精品久久久久久婷婷小说| 能在线免费看毛片的网站| 成人午夜精彩视频在线观看| 日韩精品有码人妻一区| 51国产日韩欧美| 美女脱内裤让男人舔精品视频| 成人漫画全彩无遮挡| 高清毛片免费看| 人妻夜夜爽99麻豆av| 青春草亚洲视频在线观看| 免费看日本二区| 老司机影院毛片| 美女国产视频在线观看| 女性被躁到高潮视频| 亚洲欧美成人精品一区二区| 免费观看a级毛片全部| 丰满迷人的少妇在线观看| 久久久久久久久久久丰满| 在线天堂最新版资源| 在线观看三级黄色| 亚洲欧美清纯卡通| 成人午夜精彩视频在线观看| av在线观看视频网站免费| 五月玫瑰六月丁香| 日韩亚洲欧美综合| 女性被躁到高潮视频| 成人美女网站在线观看视频| 91久久精品电影网| 亚洲精品久久午夜乱码| 亚洲国产毛片av蜜桃av| 免费高清在线观看视频在线观看| 黑人高潮一二区| 亚洲人与动物交配视频| h日本视频在线播放| 男女边吃奶边做爰视频| 久久国内精品自在自线图片| 97超碰精品成人国产| 少妇丰满av| 国产 精品1| 伦理电影大哥的女人| 国产成人精品婷婷| 国产精品蜜桃在线观看| 免费观看av网站的网址| 色婷婷av一区二区三区视频| 99热全是精品| 不卡视频在线观看欧美| 五月玫瑰六月丁香| 国产69精品久久久久777片| 人人妻人人澡人人爽人人夜夜| 有码 亚洲区| 夜夜骑夜夜射夜夜干| 99热这里只有是精品50| 男人舔奶头视频| 一二三四中文在线观看免费高清| 中文字幕制服av| 国产女主播在线喷水免费视频网站| av一本久久久久| av在线app专区| 国产女主播在线喷水免费视频网站| 少妇裸体淫交视频免费看高清| 在线观看一区二区三区激情| 蜜臀久久99精品久久宅男| 春色校园在线视频观看| 成年人免费黄色播放视频 | 少妇人妻 视频| 国产老妇伦熟女老妇高清| 少妇的逼水好多| 日本wwww免费看| 久久精品久久久久久久性| 欧美三级亚洲精品| 午夜免费鲁丝| 中文字幕久久专区| 美女主播在线视频| 麻豆成人午夜福利视频| 女性生殖器流出的白浆| 少妇的逼好多水| 亚洲av不卡在线观看| 精品熟女少妇av免费看| 国产亚洲一区二区精品| 看免费成人av毛片| 日韩制服骚丝袜av| 99久国产av精品国产电影| 亚洲av二区三区四区| 成人影院久久| videos熟女内射| 日韩中字成人| 国产 精品1| 亚洲av日韩在线播放| 国产精品三级大全| 久久国产精品男人的天堂亚洲 | 黄色配什么色好看| 欧美精品国产亚洲| 高清毛片免费看| 国产真实伦视频高清在线观看| 我要看黄色一级片免费的| 黄色日韩在线| 噜噜噜噜噜久久久久久91| 国产高清三级在线| 亚洲av.av天堂| 一级av片app| 亚洲精品自拍成人| 国产淫片久久久久久久久| 欧美变态另类bdsm刘玥| 亚洲怡红院男人天堂| 久久久久久久大尺度免费视频| 日韩av在线免费看完整版不卡| 夜夜骑夜夜射夜夜干| 看免费成人av毛片| 2018国产大陆天天弄谢| 欧美成人精品欧美一级黄| 91午夜精品亚洲一区二区三区| 日本爱情动作片www.在线观看| 在线播放无遮挡| √禁漫天堂资源中文www| 国产一区有黄有色的免费视频| 少妇人妻一区二区三区视频| 熟女人妻精品中文字幕| 三级经典国产精品| 中文精品一卡2卡3卡4更新| 国产精品久久久久久精品古装| 久久久久久久久久久久大奶| 亚洲婷婷狠狠爱综合网| 欧美+日韩+精品| 高清av免费在线| 亚洲不卡免费看| 看非洲黑人一级黄片| 亚洲欧美日韩另类电影网站| 男女边摸边吃奶| 天堂俺去俺来也www色官网| 精华霜和精华液先用哪个| 丝瓜视频免费看黄片| 最近最新中文字幕免费大全7| 久久国产精品男人的天堂亚洲 | 日韩不卡一区二区三区视频在线| 久久久国产欧美日韩av| 夫妻午夜视频| 久久精品国产亚洲av涩爱| 国产精品久久久久久av不卡| 伦理电影大哥的女人| 日本av手机在线免费观看| 另类亚洲欧美激情| 2018国产大陆天天弄谢| 国产日韩欧美在线精品| 亚洲av.av天堂| 高清毛片免费看| 美女主播在线视频| 香蕉精品网在线| 日本色播在线视频| 成人二区视频| 午夜av观看不卡| 麻豆乱淫一区二区| 亚洲精品,欧美精品| 五月天丁香电影| 亚洲国产日韩一区二区| 九色成人免费人妻av| 中文在线观看免费www的网站| 国内揄拍国产精品人妻在线| 亚洲精品456在线播放app| 免费观看在线日韩| videossex国产| 久久女婷五月综合色啪小说| 精品少妇内射三级| 亚洲欧美日韩东京热| 国产日韩一区二区三区精品不卡 | 日韩成人av中文字幕在线观看| 午夜视频国产福利| 午夜激情久久久久久久| 丁香六月天网| 91aial.com中文字幕在线观看| 亚洲欧美日韩另类电影网站| 美女主播在线视频| 中国美白少妇内射xxxbb| 国产男女超爽视频在线观看| 国产精品欧美亚洲77777| 国产免费又黄又爽又色| 日韩中文字幕视频在线看片| 国产在线一区二区三区精| av福利片在线| 香蕉精品网在线| 欧美日韩视频精品一区| 在线 av 中文字幕| 精品国产一区二区三区久久久樱花| 亚洲欧美日韩卡通动漫| 欧美激情国产日韩精品一区| 中国国产av一级| 久久精品熟女亚洲av麻豆精品| 亚洲自偷自拍三级| videos熟女内射| 国产伦精品一区二区三区视频9| 国产日韩欧美视频二区| 欧美最新免费一区二区三区| 日日爽夜夜爽网站| 日韩成人伦理影院| 亚洲欧洲精品一区二区精品久久久 | 国产视频内射| 亚洲美女黄色视频免费看| 欧美日韩亚洲高清精品| 国产精品秋霞免费鲁丝片| 亚洲精品一区蜜桃| 久久久久视频综合| 麻豆成人av视频| 在线观看国产h片| 国产精品不卡视频一区二区| 丰满乱子伦码专区| 午夜视频国产福利| 色视频www国产| av网站免费在线观看视频| 国产黄色视频一区二区在线观看| 99精国产麻豆久久婷婷| 一二三四中文在线观看免费高清| 国产精品99久久久久久久久| 丰满迷人的少妇在线观看| 午夜视频国产福利| av一本久久久久| 尾随美女入室| 成人漫画全彩无遮挡| 亚洲欧美成人精品一区二区| 91久久精品国产一区二区三区| 国产成人午夜福利电影在线观看| 国产高清国产精品国产三级| 久久久久久久久久人人人人人人| 久久久久精品性色| 少妇丰满av| 日本欧美视频一区| 伦理电影免费视频| 波野结衣二区三区在线| 麻豆成人午夜福利视频| 看非洲黑人一级黄片| 成人综合一区亚洲| 国产综合精华液| 黄色日韩在线| 乱系列少妇在线播放| 日韩一本色道免费dvd| 亚洲精品456在线播放app| 色吧在线观看| 熟女av电影| 午夜91福利影院| 国产极品天堂在线| 国产精品熟女久久久久浪| 国产成人精品福利久久| 性色avwww在线观看| 精品99又大又爽又粗少妇毛片| 免费av不卡在线播放| 久久人人爽av亚洲精品天堂| 精品少妇黑人巨大在线播放| 最近中文字幕高清免费大全6| 欧美激情极品国产一区二区三区 | 丝袜在线中文字幕| 国产成人91sexporn| 少妇精品久久久久久久| 国产成人精品婷婷| 少妇的逼水好多| 国产亚洲午夜精品一区二区久久| 亚洲欧美成人精品一区二区| 国产综合精华液| 日韩,欧美,国产一区二区三区| 久久99热这里只频精品6学生| 黄色配什么色好看| videossex国产| 欧美三级亚洲精品| 人妻少妇偷人精品九色| 人妻夜夜爽99麻豆av| 国产精品99久久99久久久不卡 | 99精国产麻豆久久婷婷| 最近手机中文字幕大全| 全区人妻精品视频| 免费大片18禁| 蜜桃在线观看..| 最近中文字幕高清免费大全6| 国产av一区二区精品久久| 最近最新中文字幕免费大全7| 极品少妇高潮喷水抽搐| 亚洲av.av天堂| 亚洲第一av免费看| 精品久久国产蜜桃| 中文资源天堂在线| 日本av手机在线免费观看| 日韩熟女老妇一区二区性免费视频| 男男h啪啪无遮挡| 精品国产一区二区三区久久久樱花| 国内精品宾馆在线| 22中文网久久字幕| 亚洲av综合色区一区| 精品久久久久久久久亚洲| 亚洲精品国产av蜜桃| av免费在线看不卡| 青春草视频在线免费观看| 久久影院123| 精品人妻熟女毛片av久久网站| 亚洲成人手机| 亚洲av二区三区四区| 亚洲av免费高清在线观看| 久久免费观看电影| 麻豆精品久久久久久蜜桃| 最新中文字幕久久久久| 十八禁高潮呻吟视频 | 成人综合一区亚洲| 18禁在线播放成人免费| 久久精品国产亚洲av涩爱| 少妇猛男粗大的猛烈进出视频| 你懂的网址亚洲精品在线观看| 一级毛片我不卡| 久久99一区二区三区| 亚洲精品第二区| av播播在线观看一区| 国产91av在线免费观看| 99热国产这里只有精品6| 亚洲图色成人| 国产成人91sexporn| 日韩电影二区| 青青草视频在线视频观看| 亚洲成色77777| 国产精品熟女久久久久浪| 免费人妻精品一区二区三区视频| 特大巨黑吊av在线直播| 国产精品国产三级国产av玫瑰| 日韩欧美一区视频在线观看 | 赤兔流量卡办理| 91精品伊人久久大香线蕉| 黄片无遮挡物在线观看| 大又大粗又爽又黄少妇毛片口|