• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation of Enhanced Oil-Water Separation in a Three-Stage Double-Stirring Extraction Tank

    2015-06-22 14:19:10ChaoZhangZimuZhaoQiuyueWangShuchanZhangTinganLiuYan
    中國煉油與石油化工 2015年4期

    Lü Chao; Zhang Zimu; Zhao Qiuyue; Wang Shuchan; Zhang Ting’an; Liu Yan

    (1. Key Laboratory of Ecological Utilization of Multi-metal Intergrown Ores of Ministry of Education & School of Materials and Metallurgy, Northeastern University; 2. Department of Mathematics, Northeast Petroleum University)

    Numerical Simulation of Enhanced Oil-Water Separation in a Three-Stage Double-Stirring Extraction Tank

    Lü Chao1,2; Zhang Zimu1; Zhao Qiuyue1; Wang Shuchan1; Zhang Ting’an1; Liu Yan1

    (1. Key Laboratory of Ecological Utilization of Multi-metal Intergrown Ores of Ministry of Education & School of Materials and Metallurgy, Northeastern University; 2. Department of Mathematics, Northeast Petroleum University)

    Numerical simulation of enhanced fluid flow characteristics in a three-stage double-stirring extraction tank was conducted with the coupling of an Eulerian multiphase flow model and a Morsi-Alexander interphase drag force model. Results show that the addition of a stirring device into the settler can efficiently reduce the volume fraction of out-of-phase impurity in the outlet, and accelerate the settling separation of oil-water mixture. Such addition can also effectively break down the oil-water-wrapped liquid droplets coming from the mixer, inhibit reflux from the outlet, and improve the oil-water separation. The addition of a stirring device induces ignorable power consumption compared with that by the mixer, and can thus facilitate the commercialized promotion of this novel equipment.

    three-stage extraction tank; double-stirring; numerical simulation; flow characteristics; power

    1 Introduction

    Oil-water separation is critical to solvent extraction process of rare earths, which can directly affect the yield and quality of the product[1]. During the extraction of rare earths, high separation efficiency after single extraction is totally unachievable, owing to the limitations in extraction allocation ratio and separation time. The accumulation of extractable components in the oil phase and the reservation of unextractable components in the water phase can be achieved only by repeatedly mixing the oil phase and the liquid-containing water phase in the extract, which will prolong the two-phase contact time. Multiple extraction tanks of this type are connected in a series to create a reverse flow of extracting agent and water-phase liquid, forming a counter-current cascade extraction to improve the extraction efficiency[2-4]. The rare earth separation industry has experienced great advances with the increasing demand from the rare earth market and the gradual innovation of separation technology. As a result, enterprises are urged to adopt more advanced extraction techniques and to improve the production stability and efficiency. Such demand also promotes the application of advanced rare earth extraction technology.

    As showed in Figure 1, the double-stirring settlement extraction tank[5-7]works as follows: A stirring device is added into the mixing-settling tank conventionally used in the rare earth industry, and then the oil-water separation during extraction is accelerated through stirring, thereby enhancing the production capability of individual equipment units. This study is based on the existing research on single-stage double-stirring settling extraction tanks. Specifically, on the basis of software FLUENT, the 3D flow field in two-phase rare earth extraction process in a magnified three-stage double-stirring extraction tank is analyzed by numerical simulation. The behaviors (mixing characteristics and separation characteristics) in liquidliquid two-phase movement in the three-stage extraction tank are studied via numerical simulation. The results arevery consistent with experimental results. On this basis, we have analyzed a detailed flow field in the reactor. It is proved that the addition of the stirring device significantly enhances the turbulent intensity and mixing effect in the reactor and can significantly accelerate the oil-water separation.

    Figure 1 One-stage double-stirring settlement extraction tank

    2 Mathematical Modeling

    2.1 Modeling and mesh division

    The physical properties of the water and oil phases used in the experiments are presented in Table 1.

    The one-stage experimental tank was designed as per a volume ratio of mixing tank: settling tank=1: 1.25. The dimensions of the extraction tank cover a mixer with a volume of 400 mm×400 mm×460 mm, a settler with a volume of 500 mm×400 mm×460 mm, and a clapboard with a 80 mm×40 mm2overflow hole installed between the mixer and the settler, with the liquid level height equating to 420 mm. The stirring paddle (a six-flat-blade disc turbine paddle) of the mixer was installed at the central part and the rotational speed of the paddle is set at 250 r/min. The distance between the stirring paddle (an open-type 45o paddle) and the overflow hole is 200 mm and the paddle’s off-bottom clearance is 140 mm, with the rotational speed of the paddle specified at 20 r/min in the reverse direction.

    The physical diagram of three-stage double-stirring extraction tank under magnification is shown in Figure 2a, while the simulated diagram of three-stage double-stirring extraction tank under magnification is presented in Figure 2b. The oil-phase trajectory in the magnified three-stage extraction tank is marked by the white arrowhead, while the water-phase trajectory is represented by the red arrowhead. The extracting agent flows conversely to the water phase, thereby improving the extraction efficiency.

    As shown in Figure 3, the geometric model and meshes were plotted on GAMBIT and MIXSIM, which could improve the gridding quality from manual plotting and avoid some complicated setting of boundary conditions.

    Figure 3 Schematic grid

    The number of grids was controlled within an appropriate range (1.06 million) in order to save much time.

    2.2 Model selection

    Based on the software FLUENT, the finite volume method was used to solve the discrete equations. The Eulerian models[8-9]were used in numerical simulation of liquid-liquid system in the mixer-settler extraction tank. A dispersed turbulent multiphase flow model was used[10]. The maximum particle diameter in the oil phase was set at 300 μm. A moving reference frame[11-12]was used to process the rotation region of paddles. The fluid flow wasunsteady. The transmission term of control equations was estimated by a velocity-pressure coupled SIMPLE algorithm. The second-order windward format was used as the discrete format. The residual error convergence standard for any item was 10-3. The standard k-ε turbulence model[13-14]was used. The control equation of the standard k-ε equations is expressed as follows:

    where μtis the turbulent viscosity.

    The model parameters are assigned as follows:

    The interphase drag force used in this study is a Morsi-Alexander model[15]

    where the drag force is expressed as follows:

    in which

    2.3 Setting of boundary conditions

    When the flow rates are known, the time-averaged velocity at the inlet sectional normal direction, the volume fractions of oil phase and water phase, and the corresponding turbulence parameters can be estimated. Specifically, the inlet oil-phase velocity is 0.884 6 m/s, and the inlet waterphase velocity is 0.442 3 m/s, while the initial volume fraction ratio of oil-to-water is 2:1. The outlet was set as free outflow. The Flow Rate Weightings of oil phase and water phase at the outlet were set at 0.667 and 0.333, respectively, which guaranteed the mass conservation in the mixing extraction tank and the oil-water volume fraction ratio was stabilized at 2:1. The boundary conditions are set as follows: The non-slip walls had a default roughness of 0.5, and the boundary turbulence was treated by a standard wall function.

    3 Results and Discussion

    3.1 Analysis of outlet volume fraction changes

    Figure 4 shows the comparison between experimental results and numerical simulation outcome. Clearly, the volume fractions of out-of-phase at the outlet (volume fractions of oil-phase impurity at the water-phase outlet; volume fractions of water-phase impurity at the oil-phase outlet) are very consistent between the two types of tests, with errors equating to less than 10%. In particular, the volume fraction (0.46%) of water-phase impurity at the oil-phase outlet at a stirring speed of 40 r/min is very low, probably because of measurement errors during experiments. These results can confirm that the model selection and boundary condition setting in numerical simulation are appropriate. Thus, the numerical simulation is able to characterize the oil-water mixing and separation in the high-efficiency three-stage double-stirring settling extraction tank. The addition of a stirrer into the settler signif icantly reduces the volume fraction of out-of-phase impurity at the outlet, and accelerates the oil-water separation.

    Figure 4 Experimental results of outlet out-of-phase volume fraction at different rotation rates, and comparison with simulated results■—simulation results of volune fraction of water;●—experiment results of volune fraction of water;▲—simulation results of volume fraction of oil;▼—experiment results of voume fraction of oil

    As shown in Figure 3, at a stirring speed of 20 r/min, the volume fraction of out-of-phase impurity at the two-phase outlet is minimized. Thus, during numerical simulation, a stirring speed of 20 r/min is selected as the appropriate stirring intensity in the settler in the subsequent experiments.

    As shown in Figure 5, the stirring effect in the mixer is very significant, indicating to the complete mixing of oil-water phases. The oil-water two-phase mixing layer at different paddle shaft sections is quite wide when no stirring is applied in the settler (Figure 5a). The mixing layer shows evident lamination, and the settling process is mainly affected by gravity sedimentation. With the addition of stirring, the two-phase mixing layer at different paddle shaft sections is very narrow (Figure 5b). The water-oil mixing near the stirring paddle is broken by the stirring, so the two-phase wrapping is smashed. The oilwater separation efficiency is significantly improved by the joint action of stirring and gravitational settling.

    Figure 5 Volume fraction graphs: (a) without stirring, and (b) with stirring

    3.2 Analysis of flow state

    As shown in Figure 6, the trajectory of particles covers the whole mixer, which can verify that the stirring has efficient two-phase mixing effect and achieves complete mixing. The addition of stirring by the paddle can promote the extracting agent and liquid mixing in practice. The liquid after mixing, or namely the oil-water mixed liquid, enters the settler through the overflow hole. Under the stirring action by the stirring paddle in the settler, the liquid droplets formed from the oil-water inter-wrapping can accelerate the agglomeration and floating of oil phase, and also the agglomeration and sedimentation of water-phase droplets. The oil-phase and water-phase form small vortices in the upper and lower parts of the stirring paddle, respectively. When the volume of the settler can be reduced, prolonging the oil-water contact time is favorable to the two-phase separation.

    As shown in Figure 7a, after 0.5 s, the stirring velocity is concentrated around the blades, but is non-uniformly distributed in the whole mixer. The trajectory shows the stirring in the whole tank is good, which is favorable to the two-phase mixing. As shown in Figure 7b, after 1 s, the stirring force keeps the oil-phase and water-phase in motion. The large-velocity areas in the mixer drift near the walls, dividing the liquid into upper and lower parts, which form two axial small-radius circumfluents on the section. As shown in Figure 7c, after 2 s, the stirring is increasingly complete. The axial circumfluents extend to the top and bottom, and their radii gradually increase with growing liquid flow vector. Under complete stirring, theliquid mainly experiences a coupling movement of radial rotating flow and axial circulation. Thus, the mixing at axial and radial directions is very complete. As shown in Figure 7d, after 3 s, when vortex is formed, the water-oil two-phase flow field is basically stabilized.

    Figure 6 Trajectory of particles

    Figure 7 Velocity graphs and isoline graphs in the mixer: (a) after 0.5 s; (b) after 1 s; (c) after 2 s; and (d) at 3 s

    As shown in Figure 8a, in the upper part of the nephograms of in-settler velocity, the oil-water separation is dominated by gravitational settling, while that in the middle part shows the velocity reflux to the mixer. The main reasons are that the high-speed stirring in the mixer accelerates the flow of two-phase mixing scatter band. Upon flowing to the outlet, the flow impacts against the wall to form reflux. The reflux causes chaos in the lower part of the water-phase velocity field, which is unfavorable to oil-water separation. As shown in Figure 8b, the rotation at the direction of the stirring paddle in the novel high-efficiency settling extraction tank effectively inhibits the reflux. The centrifugal force caused by the stirring rotation drives the water-phase liquid drops to deviate from the direction of the stirring paddle, or namely toward the outlet, which greatly improves the separation efficiency.

    Figure 8 Velocity graphs and isograms in the settler: (a) without stirring, and (b) with stirring

    3.3 Power analysis

    As shown in Table 2, the stirring paddle in the mixer produces a power of 106.3751 W. In comparison, when the rotation rate is increased from 10 r/min to 40 r/min, the power needed by the settler is relatively smaller, about 1/100 of that needed by the mixer. Thus, the power consumption due to addition of a stirrer into the settler can be ignored. In other words, the additional excess energy consumption can largely improve the oil-water separation efficiency, which is significant for the promotion of this novel extraction tank in the industry.

    Table 2 Power at different speed

    4 Conclusions

    The mixing effect, settling effect, and stirring power of a three-stage double-stirring settling extraction tank were studied via numerical simulation with the software FLUENT.

    1) Regarding the volume fraction of out-of-phase impurity at the outlet, the addition of a stirring device into the settler can effectively improve the oil-water separation effect.

    2) Analysis of flow field shows that at a stirring speed of 200 r/min the oil-water mixing is very complete, which is favorable to the complete contact between the extracting agent and the liquid in practice. The addition of a stirring device into the settler can break down the oil-waterwrapped droplets coming from the mixer, and efficiently inhibit the reflux from the outlet, thus accelerating the two-phase settling and separation.

    3) Analysis of power simulation shows that the power consumption due to the addition of a stirrer into the settler can be ignored in comparison with that in the mixer. This study theoretically underlies the promotion of multistage double-stirring extraction tanks in the industry.

    Acknowledgements:This research was financially supported by the National 863 Plan (2010AA03A405, and 2012AA062303), the National 973 Plan (2012CBA01205), the National Natural Science Foundation of China (U1202274, 51204040), the National Science and Technology Support Program (2012BAE01B02) and the Fundamental Research Funds for the Central Universities (N130702001 and N130607001).

    [1] Wang Shuchan, Zhang Ting’an, Zhang Zimu, et al. Effect of stirring on oil-water separation in rare earth mixer-settler[J]. China Petroleum Processing and Petrochemical Technology,2014, 16(3): 99-103

    [2] Chai Tianyou, Yang Hui. Situation and Developing trend of rare-earth countercurrent extraction processes control[J]. Journal of the Chinese Rare Earth Society, 2004, 22(4): 427-433

    [3] Nishizawa Hideyuki, Tahara Kayoko, Shinobu Motegi, et al. True moving bed chromatography: solid–liquid multi-stage counter-current extraction[J]. Journal of Chromatography A, 1999, 849(1): 61-69

    [4] Zhou Jing, Ye Feng. Simulation and verification of string class experiment method of current contact extraction by Aspen Plus[J]. Computers and Applied Chemistry, 2008, 25(4): 441-444 (in Chinese)

    [5] Wang Shuchan, Zhang Ting’an, Zhao Qiuyue, et al. Experimental study on aqueous phase entrainment in a mixersettler with double stirring model[J]. China Petroleum Processing and Petrochemical Technology, 2013, 15(2): 59-62

    [6] Lü Chao, Zhang Zimu, Zhao Qiuyue, et al. Numerical simulation on mixing time of high efficient clarification and extraction tank with double stirring[J]. Journal of Northeastern University: Natural Science, 2014, 35(6): 809-812 (in Chinese)

    [7] Lü Chao, Zhang Zimu, Zhao Qiuyue, et al. Numerical simulation on fluid flow characteristics of the settler in efficient clarification and extraction tank with double stirring[J]. Journal of North-eastern University: Natural Science, 2014, 35(11): 1570-1573 (in Chinese)

    [8] Zhou Hua. Numerical analysis of the 3-D flow field of pressure atomizers with V-shaped cut at orifice[J]. Journal of Hydrodynamics, 2011, 23(2): 187-192

    [9] Belhadef A, Vallet A, Amielh M, et al. Pressure-swirl atomization: Modeling and experimental approaches[J]. International Journal of Multiphase Flow, 2012, 39: 13-20

    [10] Kaushal D R, Kumar A, Tomita Yuji, et al. Flow of monodispersed particles through horizontal bend[J]. International Journal of Multiphase Flow, 2013, 52: 71-91

    [11] Craig K J, Nieuwoudt M N, Niemand L J. CFD simulation of anaerobic digester with variable sewage sludge rheology[J]. Water Research, 2013, 47(13): 4485-4497

    [12] Zhang Tao, Yang Chenjun, Song Baowei. Investigations on the numerical simulation method for the open-water performance of contra-rotating propellers based on the MRF model[J]. Journal of Ship Mechanics, 2010, 14(8): 847-853 (in Chinese)

    [13] El-Amin M, Sun S, Heidemann W, et al. Analysis of a turbulent buoyant confined jet modeled using realizable k–ε model[J]. Heat and Mass Transfer, 2010, 46(8): 943-947

    [14] Das Shyam S, Sahu Akshaya K, Padmakumar G, et al. CFD analysis of thermal stratification and sensitivity study of model parameters for k–ε model in a cylindrical hot plenum[J]. Nuclear Engineering and Design, 2012, 250: 417-435

    [15] Mori S A, Alexander A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55(2): 193-208

    The Project “Development of Package Technology for Producing Biodiesel from Microalgae” Passed SINOPEC’s Technical Assessment

    On August 7, 2015 the project “Development of package technology for producing biodiesel from microalgae”, which was jointly undertaken by the SINOPEC Research Institute of Petroleum Processing (RIPP), the Fushun Research Institute of Petroleum and Petrochemicals (FRIPP), and relevant institutions subordinated to Chinese Academy of Sciences (CAS), has passed the technical assessment organized by the Science and Technology Division of the Sinopec Corp. The Specialist Assessment Committee was comprised of the leaders and experts from the Science and Technology Division of the Sinopec Corp., CAS, the SINOPEC Shanghai Engineering Company, the SINOPEC Shijiazhuang Refining and Chemical Branch Company, the Beijing Normal University, and the Wuhan University.

    The meeting attendees after having listened to the work reports made by the project performers have engaged in serious assessment and discussions, while unanimously recognizing that this project has accomplished the survey, screening, establishment of a microalgae data bank and genetic breeding, coupled with development of the technique for massive culture of oil-producing microalgae in open pool and the technique for closed-type culture of oil-producing microalgae to form a package technology for producing biodiesel from microalgae, which will lay a solid foundation for the forthcoming exploratory application of microalgae.

    date: 2015-07-20; Accepted date: 2015-08-02.

    Dr. Zhang Ting’an, Telephone: +86-24-83690459; E-mail: zta2000@163.net.

    熟女电影av网| 观看av在线不卡| 免费少妇av软件| 一本久久精品| 最近最新中文字幕免费大全7| 五月伊人婷婷丁香| 岛国毛片在线播放| 晚上一个人看的免费电影| 欧美zozozo另类| 亚洲精品乱久久久久久| 高清黄色对白视频在线免费看 | 久久久久久久大尺度免费视频| 国产黄片视频在线免费观看| 国产一区二区在线观看日韩| 成人毛片60女人毛片免费| 久久这里有精品视频免费| 亚洲国产成人一精品久久久| 亚洲婷婷狠狠爱综合网| 国产精品一区二区在线不卡| av免费在线看不卡| 国产av精品麻豆| 日本欧美视频一区| 日韩一区二区三区影片| 啦啦啦中文免费视频观看日本| 99久久精品热视频| 久久久久久九九精品二区国产| 国产高清不卡午夜福利| 91狼人影院| a级一级毛片免费在线观看| 精品亚洲成a人片在线观看 | 亚洲成人av在线免费| 久久久a久久爽久久v久久| 国产精品久久久久久精品电影小说 | 亚洲激情五月婷婷啪啪| av福利片在线观看| 国产成人精品福利久久| h视频一区二区三区| 少妇精品久久久久久久| 蜜桃亚洲精品一区二区三区| 美女cb高潮喷水在线观看| 高清不卡的av网站| 青青草视频在线视频观看| 日韩中文字幕视频在线看片 | 久久精品国产亚洲网站| 久久精品久久精品一区二区三区| 一本色道久久久久久精品综合| 久久99热这里只有精品18| 五月伊人婷婷丁香| 美女脱内裤让男人舔精品视频| 日日摸夜夜添夜夜添av毛片| 日韩成人伦理影院| 欧美老熟妇乱子伦牲交| 成人午夜精彩视频在线观看| 少妇的逼水好多| 免费人成在线观看视频色| 中文在线观看免费www的网站| 亚洲图色成人| 亚洲精品456在线播放app| 国产亚洲精品久久久com| 久久综合国产亚洲精品| 高清av免费在线| 日本色播在线视频| freevideosex欧美| 国产精品偷伦视频观看了| 亚洲av中文av极速乱| 美女脱内裤让男人舔精品视频| 最近最新中文字幕大全电影3| 中文字幕制服av| 99久久精品国产国产毛片| 啦啦啦中文免费视频观看日本| 综合色丁香网| 亚洲精品国产色婷婷电影| 亚洲精品乱久久久久久| 国产精品无大码| 我的老师免费观看完整版| 国产在线视频一区二区| 欧美97在线视频| 女的被弄到高潮叫床怎么办| 亚洲婷婷狠狠爱综合网| 免费观看无遮挡的男女| 国产黄片视频在线免费观看| 高清不卡的av网站| 中文精品一卡2卡3卡4更新| 免费不卡的大黄色大毛片视频在线观看| 看非洲黑人一级黄片| 黄片无遮挡物在线观看| 精品人妻视频免费看| 中文欧美无线码| 久久久亚洲精品成人影院| 国产免费福利视频在线观看| 身体一侧抽搐| 欧美激情国产日韩精品一区| 久久毛片免费看一区二区三区| 少妇的逼水好多| 欧美变态另类bdsm刘玥| 人人妻人人看人人澡| 国产精品国产av在线观看| 精品人妻一区二区三区麻豆| 蜜桃亚洲精品一区二区三区| 国产爽快片一区二区三区| 精品99又大又爽又粗少妇毛片| 99热6这里只有精品| 亚洲精品第二区| 欧美 日韩 精品 国产| 国产欧美日韩一区二区三区在线 | 伦理电影大哥的女人| 国产在线免费精品| 三级经典国产精品| 人体艺术视频欧美日本| 午夜福利在线观看免费完整高清在| 国产成人一区二区在线| 久久av网站| 国产有黄有色有爽视频| 日本-黄色视频高清免费观看| 人妻一区二区av| kizo精华| 精品一品国产午夜福利视频| 99热这里只有是精品在线观看| 下体分泌物呈黄色| 51国产日韩欧美| 一级黄片播放器| 欧美日韩亚洲高清精品| 亚洲av成人精品一区久久| 99热这里只有是精品在线观看| 18禁裸乳无遮挡免费网站照片| 久久国产亚洲av麻豆专区| 欧美xxxx黑人xx丫x性爽| 日韩免费高清中文字幕av| 毛片女人毛片| 亚洲国产精品成人久久小说| 在线免费观看不下载黄p国产| 亚洲国产色片| 亚洲国产色片| 麻豆精品久久久久久蜜桃| 亚洲国产成人一精品久久久| 内地一区二区视频在线| 久久久久久久国产电影| 新久久久久国产一级毛片| 亚洲三级黄色毛片| av在线app专区| 一级黄片播放器| 青青草视频在线视频观看| 舔av片在线| 男女国产视频网站| 亚洲精品国产成人久久av| 激情 狠狠 欧美| 人人妻人人添人人爽欧美一区卜 | 日本av免费视频播放| 国产av码专区亚洲av| 免费大片黄手机在线观看| av视频免费观看在线观看| 免费人成在线观看视频色| 成年av动漫网址| 国产久久久一区二区三区| 丝袜喷水一区| 久久久精品免费免费高清| 老女人水多毛片| 免费黄频网站在线观看国产| 18禁动态无遮挡网站| 亚洲国产成人一精品久久久| 99久久人妻综合| 97精品久久久久久久久久精品| 丰满少妇做爰视频| 国语对白做爰xxxⅹ性视频网站| 18禁在线无遮挡免费观看视频| 精品久久久久久久末码| 毛片一级片免费看久久久久| 高清不卡的av网站| 99久久综合免费| 日韩亚洲欧美综合| 精品人妻熟女av久视频| 久久精品久久久久久久性| 简卡轻食公司| 亚洲精品国产av成人精品| 2021少妇久久久久久久久久久| 人妻系列 视频| 丝瓜视频免费看黄片| 国产欧美日韩精品一区二区| 欧美激情极品国产一区二区三区 | 久久这里有精品视频免费| 欧美人与善性xxx| 美女脱内裤让男人舔精品视频| 久久99精品国语久久久| 日韩制服骚丝袜av| 丰满乱子伦码专区| 欧美成人一区二区免费高清观看| 性色avwww在线观看| 一本久久精品| 最后的刺客免费高清国语| 日本一二三区视频观看| 亚洲婷婷狠狠爱综合网| 王馨瑶露胸无遮挡在线观看| 在现免费观看毛片| 少妇熟女欧美另类| 国产一级毛片在线| 一级av片app| 欧美成人午夜免费资源| 建设人人有责人人尽责人人享有的 | 国产av国产精品国产| 久久久久网色| 男女啪啪激烈高潮av片| 久久精品人妻少妇| 久久久久视频综合| 久久6这里有精品| 免费观看无遮挡的男女| 2021少妇久久久久久久久久久| 97精品久久久久久久久久精品| 亚洲精品成人av观看孕妇| 国产精品久久久久久精品古装| 亚洲av不卡在线观看| 国产 一区 欧美 日韩| 伦精品一区二区三区| 国产成人精品福利久久| 1000部很黄的大片| 免费观看a级毛片全部| 最近最新中文字幕免费大全7| 视频中文字幕在线观看| 亚洲av免费高清在线观看| 老熟女久久久| 91精品一卡2卡3卡4卡| 夜夜看夜夜爽夜夜摸| 欧美日韩在线观看h| 少妇人妻久久综合中文| 男女边吃奶边做爰视频| 女人十人毛片免费观看3o分钟| 国模一区二区三区四区视频| 久久久色成人| 妹子高潮喷水视频| 老熟女久久久| 精品一品国产午夜福利视频| 91狼人影院| 夫妻性生交免费视频一级片| 永久网站在线| 亚洲真实伦在线观看| 免费av中文字幕在线| 欧美zozozo另类| 久久精品夜色国产| 美女视频免费永久观看网站| 精品久久久噜噜| 亚洲,欧美,日韩| 国产精品久久久久久久电影| 日本色播在线视频| 亚洲国产欧美人成| 亚洲自偷自拍三级| 成人18禁高潮啪啪吃奶动态图 | 国产 精品1| 国产高清三级在线| 一个人看的www免费观看视频| 男人舔奶头视频| 亚州av有码| 一级毛片我不卡| 最近的中文字幕免费完整| 亚洲人成网站在线播| 熟女av电影| 我的老师免费观看完整版| 草草在线视频免费看| 在线观看免费高清a一片| 我要看黄色一级片免费的| 在线免费观看不下载黄p国产| 一个人免费看片子| 亚洲,欧美,日韩| 在线观看av片永久免费下载| 一本—道久久a久久精品蜜桃钙片| 免费观看无遮挡的男女| 人妻系列 视频| 国产日韩欧美在线精品| 十八禁网站网址无遮挡 | 在线天堂最新版资源| 最近最新中文字幕免费大全7| 夜夜骑夜夜射夜夜干| 亚洲美女搞黄在线观看| 欧美+日韩+精品| 久久久亚洲精品成人影院| 免费不卡的大黄色大毛片视频在线观看| 黄色怎么调成土黄色| 亚洲精品第二区| 亚洲不卡免费看| 女人久久www免费人成看片| 精华霜和精华液先用哪个| 观看美女的网站| 建设人人有责人人尽责人人享有的 | 少妇 在线观看| 国产日韩欧美亚洲二区| 不卡视频在线观看欧美| 午夜日本视频在线| 伦理电影免费视频| 亚洲精品日本国产第一区| 亚洲不卡免费看| 在线天堂最新版资源| 一边亲一边摸免费视频| 亚洲欧美中文字幕日韩二区| 内地一区二区视频在线| 岛国毛片在线播放| 国产黄频视频在线观看| 中文精品一卡2卡3卡4更新| 日韩免费高清中文字幕av| 国产久久久一区二区三区| 国产欧美亚洲国产| 黄片wwwwww| 啦啦啦视频在线资源免费观看| 欧美3d第一页| 国产精品一区二区在线观看99| 国产乱人视频| 亚洲欧美成人综合另类久久久| 亚洲精品久久午夜乱码| 51国产日韩欧美| 亚洲性久久影院| 久久精品国产自在天天线| 久久人人爽人人爽人人片va| 热99国产精品久久久久久7| 在线观看一区二区三区激情| 精品国产露脸久久av麻豆| 欧美精品一区二区免费开放| 一级毛片电影观看| 国产69精品久久久久777片| 人人妻人人看人人澡| 精品国产三级普通话版| 午夜激情福利司机影院| 国产高清不卡午夜福利| 国产精品av视频在线免费观看| 最近的中文字幕免费完整| 内射极品少妇av片p| 日韩av在线免费看完整版不卡| 国产欧美另类精品又又久久亚洲欧美| 啦啦啦视频在线资源免费观看| 婷婷色av中文字幕| 岛国毛片在线播放| www.色视频.com| 97热精品久久久久久| 国产高清三级在线| 亚洲欧美一区二区三区黑人 | 免费看日本二区| 麻豆成人av视频| 婷婷色综合大香蕉| 国产精品久久久久久av不卡| 久热久热在线精品观看| 日韩成人伦理影院| 国产精品秋霞免费鲁丝片| 三级国产精品片| 免费观看av网站的网址| 国产高清有码在线观看视频| 久久久久久久亚洲中文字幕| 男的添女的下面高潮视频| 免费av中文字幕在线| 国产人妻一区二区三区在| 美女中出高潮动态图| 91午夜精品亚洲一区二区三区| 精品久久国产蜜桃| 婷婷色综合www| 日韩电影二区| 国产乱人视频| 国产精品精品国产色婷婷| 国产v大片淫在线免费观看| 国产精品一区二区在线观看99| 一级毛片 在线播放| 国产精品嫩草影院av在线观看| a级一级毛片免费在线观看| 亚洲欧美精品专区久久| 嫩草影院新地址| 免费黄网站久久成人精品| 欧美区成人在线视频| 成人18禁高潮啪啪吃奶动态图 | 十八禁网站网址无遮挡 | 精华霜和精华液先用哪个| 男男h啪啪无遮挡| 蜜桃在线观看..| 美女国产视频在线观看| 我要看黄色一级片免费的| 女人久久www免费人成看片| 中国国产av一级| 黄色欧美视频在线观看| 五月伊人婷婷丁香| 亚洲人与动物交配视频| av天堂中文字幕网| 在线观看美女被高潮喷水网站| 国产成人a区在线观看| 成人国产麻豆网| 久久精品夜色国产| av在线蜜桃| 一区二区三区乱码不卡18| 国产成人午夜福利电影在线观看| 亚洲国产精品专区欧美| 久久人人爽人人片av| 黑丝袜美女国产一区| 亚洲精品久久午夜乱码| 久久久精品免费免费高清| 亚洲美女视频黄频| 国产乱来视频区| 永久免费av网站大全| 精品久久国产蜜桃| 日日啪夜夜爽| 你懂的网址亚洲精品在线观看| 超碰av人人做人人爽久久| 熟妇人妻不卡中文字幕| 亚洲精品视频女| 黄色怎么调成土黄色| 午夜视频国产福利| 国产精品国产三级国产av玫瑰| 特大巨黑吊av在线直播| 这个男人来自地球电影免费观看 | 性色av一级| 欧美精品人与动牲交sv欧美| 激情五月婷婷亚洲| 亚洲国产毛片av蜜桃av| 婷婷色综合大香蕉| 国产在视频线精品| 岛国毛片在线播放| 欧美日韩视频高清一区二区三区二| 国产淫语在线视频| 我的女老师完整版在线观看| 91精品国产九色| 黑丝袜美女国产一区| 亚洲精品国产色婷婷电影| 美女中出高潮动态图| 少妇人妻久久综合中文| 美女视频免费永久观看网站| 久久热精品热| 亚洲欧美日韩卡通动漫| 美女中出高潮动态图| 少妇人妻一区二区三区视频| 18禁在线无遮挡免费观看视频| 成人一区二区视频在线观看| 91aial.com中文字幕在线观看| 美女内射精品一级片tv| 美女中出高潮动态图| 蜜臀久久99精品久久宅男| 大片免费播放器 马上看| 黄色欧美视频在线观看| 99久久精品热视频| 亚洲精品成人av观看孕妇| 性高湖久久久久久久久免费观看| 午夜激情久久久久久久| 妹子高潮喷水视频| 亚洲国产高清在线一区二区三| 丰满迷人的少妇在线观看| 尤物成人国产欧美一区二区三区| 我的老师免费观看完整版| 免费观看性生交大片5| av在线老鸭窝| 亚洲欧美精品专区久久| 国产免费一区二区三区四区乱码| 亚洲在久久综合| 一级二级三级毛片免费看| 免费人成在线观看视频色| 最新中文字幕久久久久| 水蜜桃什么品种好| 久久女婷五月综合色啪小说| 多毛熟女@视频| 高清毛片免费看| 午夜免费男女啪啪视频观看| 中文字幕久久专区| 搡女人真爽免费视频火全软件| 国产成人aa在线观看| 国产成人精品福利久久| 亚洲av福利一区| 三级国产精品片| 插逼视频在线观看| 亚洲精品国产成人久久av| av黄色大香蕉| 婷婷色麻豆天堂久久| 大片免费播放器 马上看| 免费看不卡的av| 中国三级夫妇交换| 国产精品伦人一区二区| 永久免费av网站大全| 天天躁日日操中文字幕| 熟女av电影| 一本色道久久久久久精品综合| 国产69精品久久久久777片| 日本黄大片高清| 午夜福利视频精品| 久久久欧美国产精品| 最近最新中文字幕免费大全7| 男人狂女人下面高潮的视频| 寂寞人妻少妇视频99o| 王馨瑶露胸无遮挡在线观看| 欧美变态另类bdsm刘玥| 99久久中文字幕三级久久日本| 国产精品伦人一区二区| 三级国产精品欧美在线观看| 日日摸夜夜添夜夜爱| 亚洲欧美成人精品一区二区| 大码成人一级视频| 亚洲人成网站在线播| 亚洲av中文av极速乱| 久久久久网色| 色网站视频免费| 亚洲精品久久午夜乱码| av视频免费观看在线观看| 99久久中文字幕三级久久日本| 一级av片app| 午夜福利高清视频| 六月丁香七月| 精品少妇黑人巨大在线播放| 九色成人免费人妻av| 直男gayav资源| 欧美精品一区二区免费开放| 亚洲国产色片| 国产av码专区亚洲av| 免费观看无遮挡的男女| 久久亚洲国产成人精品v| 精品午夜福利在线看| av在线老鸭窝| 3wmmmm亚洲av在线观看| 欧美3d第一页| 91午夜精品亚洲一区二区三区| 毛片女人毛片| 最近中文字幕2019免费版| 女人十人毛片免费观看3o分钟| 欧美日本视频| 国产男人的电影天堂91| 涩涩av久久男人的天堂| 婷婷色综合大香蕉| 丰满少妇做爰视频| 国产免费又黄又爽又色| 亚洲精品亚洲一区二区| 亚洲av电影在线观看一区二区三区| 成年免费大片在线观看| 内射极品少妇av片p| 草草在线视频免费看| 午夜老司机福利剧场| 中文字幕久久专区| 日韩av在线免费看完整版不卡| 欧美一区二区亚洲| 欧美成人精品欧美一级黄| 少妇高潮的动态图| 99久久中文字幕三级久久日本| 丝袜脚勾引网站| 亚洲,欧美,日韩| 草草在线视频免费看| 五月天丁香电影| 在线观看免费视频网站a站| 亚洲美女黄色视频免费看| 国产高清有码在线观看视频| 国产久久久一区二区三区| 我的老师免费观看完整版| 国产视频首页在线观看| 亚洲精品乱码久久久v下载方式| 高清午夜精品一区二区三区| 麻豆国产97在线/欧美| 久久精品久久久久久久性| 精品酒店卫生间| 亚洲精品乱久久久久久| 亚洲人与动物交配视频| 岛国毛片在线播放| 又粗又硬又长又爽又黄的视频| 久久人人爽人人片av| 三级经典国产精品| 黑人猛操日本美女一级片| 亚洲三级黄色毛片| 久久久久视频综合| 国产 一区 欧美 日韩| 美女国产视频在线观看| 99久久人妻综合| 视频区图区小说| 亚洲精品国产av蜜桃| 观看av在线不卡| 亚洲精品中文字幕在线视频 | 亚洲精品一区蜜桃| 3wmmmm亚洲av在线观看| 精品99又大又爽又粗少妇毛片| 一区在线观看完整版| 欧美3d第一页| 欧美亚洲 丝袜 人妻 在线| 国产精品99久久99久久久不卡 | 亚洲国产精品专区欧美| 久久久久久人妻| 日韩中字成人| 欧美极品一区二区三区四区| 久久国产乱子免费精品| 国产精品久久久久久精品古装| 欧美日韩在线观看h| 欧美3d第一页| 亚洲欧美日韩无卡精品| 久久久久性生活片| av在线观看视频网站免费| 久久人人爽人人片av| 亚洲真实伦在线观看| 亚洲成人一二三区av| 久久国产乱子免费精品| 国产精品伦人一区二区| 久久精品久久久久久噜噜老黄| 涩涩av久久男人的天堂| 一级a做视频免费观看| 少妇的逼水好多| 国产精品欧美亚洲77777| 秋霞伦理黄片| 成人18禁高潮啪啪吃奶动态图 | 男的添女的下面高潮视频| 国产 精品1| 亚洲精品日韩在线中文字幕| 性色av一级| 国产一区二区在线观看日韩| 免费黄网站久久成人精品| 最新中文字幕久久久久| 又爽又黄a免费视频| 一本色道久久久久久精品综合| 最近最新中文字幕大全电影3| 久久久久视频综合| 成年女人在线观看亚洲视频| 一级a做视频免费观看| 久热这里只有精品99| 欧美另类一区| 97超碰精品成人国产| 18禁在线播放成人免费| 欧美+日韩+精品| 午夜福利视频精品| av.在线天堂| 国内精品宾馆在线| 亚洲精品亚洲一区二区| 国产精品国产三级国产专区5o| 亚洲av欧美aⅴ国产| 午夜激情福利司机影院| 国产精品成人在线| 中文字幕亚洲精品专区|