• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computational Fluid Dynamics Simulation of Liquid-Phase FCC Diesel Hydrotreating in Tubular Reactor

    2015-06-22 14:19:10LiHuaLiuNingqiangZengZhiyuZouYingWangJiming
    中國(guó)煉油與石油化工 2015年4期

    Li Hua; Liu Ningqiang; Zeng Zhiyu; Zou Ying; Wang Jiming

    (1.Research Institute of Petroleum Processing, East China University of Science and Technology, Shanghai 200237; 2. SINOPEC Changling Company, Yueyang 414012; 3. Hunan Changling Petrochemical S&T Developing Co., Ltd., Yueyang 414012; 4. China Petrochemical Corporation, Beijing 100728)

    Computational Fluid Dynamics Simulation of Liquid-Phase FCC Diesel Hydrotreating in Tubular Reactor

    Li Hua1,2; Liu Ningqiang1; Zeng Zhiyu3; Zou Ying1; Wang Jiming1,4

    (1.Research Institute of Petroleum Processing, East China University of Science and Technology, Shanghai 200237; 2. SINOPEC Changling Company, Yueyang 414012; 3. Hunan Changling Petrochemical S&T Developing Co., Ltd., Yueyang 414012; 4. China Petrochemical Corporation, Beijing 100728)

    The computational fluid dynamics (CFD) code, FLUENT, was used to simulate the liquid-phase FCC diesel hydrotreating tubular reactor with a ceramic membrane tube dispenser. The chemical reaction and reaction heat were added to the model by user-defined function (UDF), showing the distribution of temperature and content of sulfides, nitrides, bicyclic aromatics and monocyclic aromatics in different parts of the reaction bed. When the pressure was 6.5 MPa, the amount of mixing hydrogen was 0.84% (m), the space velocity was 2 h-1and the inlet temperature was 633K, the temperature reached a maximum at a height of 0.15 m, and the range of radial temperature reached its maximum (2.5 K) at a height of 0.15 m. It indicated that the proper ratio of height to diameter of catalyst bed in the tubular reactor was 5-6. The increase of inlet temperature, the mixing hydrogen and the decrease of space velocity led to the decrease in the content of bicyclic aromatics, sulfides and nitrides, and the increase in monocyclic aromatics content, while the high temperature increased. The results were in good agreement with experimental data, indicating to the high accuracy of the model.

    FCC diesel; tubular liquid-phase hydrogenation; computational fluid dynamics (CFD)

    1 Introduction

    The capacity of catalytic cracking units is quite enormous in China and the FCC diesel constitutes a high proportion of the total diesel pool. Due to the high aromatic and sulfur contents and low cetane number of FCC diesel, the hydrotreating technology is needed to meet the increasingly stringent environmental regulations. Currently, a new technology, the liquid-phase hydrotreating, has been commercialized. The process has canceled the recycle system of hydrogen; instead, it uses plenty of cycle oil carrying dissolved hydrogen to provide hydrogen for hydrogenation reactions. The liquid-phase hydrotreating technology overcomes the problems that diesel and hydrogen cannot be fully mixed and reaction conversion is low in the traditional trickle-bed[1]process, and meanwhile lowers the equipment investment and energy consumption. The SINOPEC Changling Company has improved the liquid-phase hydrotreating technology and developed a new technology of liquid-phase diesel hydrogenation in a tubular reactor. There are two cores in this technology. One is that it adds a nanoscale ceramic membrane dispenser at the inlet of the reactor, in order to make the hydrogen fully disperse in diesel and improve the interfacial contact. The other is that it can set many points to add the hydrogen at different parts of the reactor. This measure can decrease the amount of hydrogen added at the inlet of the reactor, avoiding the existence of hydrogen gas phase in the reaction and improving the hydrogen efficiency. Therefore, this technology can eliminate the system for circulating oil and hydrogen, decreasing the reactor diameter and reducing the investment and energy consumption.

    In this paper, the computational fluid dynamics software Fluent was used to simulate the liquid FCC diesel hydrogenation in the tubular reactor and describe the content of reactants and temperature distribution in different parts of the catalyst bed. It also validates the model through comparison between the simulation results and the experimental data, so as to provide guidance for the design ofmulti-part hydrogenation solutions and the realization of commercialization.

    2 CFD Model for the Fixed-Bed Reactor

    2.1 The geometry of reactor

    Due to the use of the ceramic membrane tube dispenser at the inlet of reactor, the hydrogen has achieved nanoscale dispersion in the oil phase. The hydrogen which exceeds the saturated dissolution can be dispersed in FCC diesel as fine bubbles within a certain time. As the bubbles flow with the FCC diesel at the same speed, the reactor is regarded as a liquid-solid two phase reactor.

    The simulation object is the liquid-phase hydrogenation fixed bed reactor in laboratory. The reactor geometry and structural dimensions are shown in Figure 1. The computational region is the reaction bed. Using the Gambit software to draw the mesh, the structure of the mesh is shown in Figure1. The number of meshes is 22080.

    Figure 1 Reactor geometry and mesh

    In order to meet the engineering demand of the simulation results, the space filled with catalyst particles in the fixedbed reactor is assumed as a continuous porous medium, which in CFD is modeled as a fluid region with extra terms in the momentum balance to allow for additional resistance to flow. Moreover, due to the complexity of fluid flow in the porous medium, the turbulent model is thoroughly discussed and simplified in the section. The detailed equations are presented in the following sections.

    2.2 Governing equations

    Since there are solid and fluid phases in the porous medium, the flow is influenced by the solid matrix, which occupies space and extracts energy from the reaction zone. It is assumed that the solid is chemically inert. The main governing equations of the porous medium model are shown in Table 1.

    Table 1 Main governing equations of the porous medium model[2-3]

    2.3 Turbulent model

    In the present study, the value of Re for the porous medium is about 2.7—13.9 in the Forchheimer[5]area. In the porous medium, the fluid flow can change from the laminar flow to turbulence with the Reynolds number (Re) increased. Guardo, et al.[6-7]further investigated the influence of the turbulence model in CFD modeling of wallto-fluid heat transfer on packed beds. In Guardo, et al.’swork, five different RANS turbulence models including the Spalart-Allmaras model (one-equation model) were selected. In their work, the results obtained from the Spalart-Allmaras turbulence model showed better agreement than the two-equation RANS models. This could be explained by the fact that the Spalart-Allmaras model uses a coupling between the wall and the damping functions in the near-wall treatment, which does not include additional diffusion or dissipation terms in its formulation and does not present the stagnation point anomaly. The transport equation for is[8]:

    2.4 Boundary conditions

    At the reactor inlet, the velocity inlet is specified. The velocity, temperature and components at the reactor inlet can be calculated based on the boundary conditions of the reactor inlet. At the reactor outlet, the pressure outlet is specified. Furthermore, for the inner wall of the reactor, the fluids are assumed to obey the no slip boundary condition at the wall.

    On the other hand, the temperature at the inlet is controlled at a specific value in the experiment. Due to the presence of heat dissipation in the reactor, its radial temperature is different. The reaction heat is estimated according to the experimental data.

    The density of FCC diesel has been determined according to the Chinese national standard GB/T 1885—1998. The viscosity of FCC diesel has been calculated by Equation (2)[9].

    For the case which specifies that the wall temperature keeps constant and the flow is in the transition flow range, αfcan be calculated according to Equation (3)[10].

    2.5 Reaction kinetic model

    According to the experimental results, the total saturated hydrocarbons and aromatics have little change during the reaction in FCC diesel within the range of experimental conditions; because of the low content of tricyclic aromatics which show little change before and after the reaction, the changes in the content of total saturated hydrocarbons, aromatics and tricyclic aromatics are ignored. Only the changes in monocyclic aromatics, bicyclic aromatics, sulfides and nitrides are considered. The kinetic models of sulfides, nitrides, bicyclic aromatics and monocyclic aromatics are established as shown by Equations (4)—(7).

    Upon fitting each parameter through the Levenberg-Marquardt and global optimization[11], the results are shown in Equations (8)—(11), which are put into the Fluent by the user-defined function (UDF).

    Table 2 Physical parameters of FCC diesel and catalyst

    2.6 CFD modeling method

    The equations mentioned above are solved by the commercial CFD code Fluent 6.3.26 (Ansys Inc., USA) in a double precision mode. The pressure and the velocity are coupled by the SIMPLE algorithm. Calculation should be continued until the residuals are below the requirements[12].

    3 Results and Discussion

    3.1 Simulation of the content and temperature contours

    To confirm that the CFD results are independent of the mesh size, simulations are carried out at 7680, 22080 and 70770 meshes. The content of sulfur is 1 255.3 μg/g, 1 250 μg/g and 1 246.7 μg/g. The results are independent of the mesh size, so the simulation at 22080 meshes is discussed.

    When the pressure is 6.5 MPa, the amount of mixing hydrogen is 0.84%, the space velocity is 2 h-1, and the inlet temperature is 633 K. Figure 2 and Figure 4 show the content contour of the reactants and the temperature contour.

    In Figure 2, the different colors represent the different contents of the reactants. The contents of sulfides, nitrides and bicyclic aromatics are decreased and monocyclic aromatics are increased from the inlet to the outlet. The different sizes of the color areas represent the different change rates of the reactants. Figure 3 shows the contents of the reactants along the reactor bed. The rate for removal of sulfides is higher than the rate for removal of nitrides. They all stabilize at the outlet of the catalyst bed. Figure 6 shows the distribution of temperature along the reactor bed. The process of FCC diesel hydrogenation is an exothermic process. As the reaction goes on, the temperature increases along the height of the reactor bed. At the inlet of the reactor bed, the content of reactants is high, so the reaction rate and the exothermic rate are high also. When the temperature continues to increase, the exothermic rate slows down with the decrease of the reactant content, and the maximum temperature (643.3K) is determined at the height of 0.15 m due to the heat dissipation effect, which is by 10.3 K higher than the entrance temperature (Figure 5). After the location of the maximum temperature is determined, the reaction tem-perature, the content of the reactants and the reaction rate then decline, and the catalyst utilization rate also drops. In order to improve the desulfurization and denitrification rates and also improve the aromatics conversion rate, the conditions of hydrogenation reaction have to be changed. Since the maximum temperature appears at a height of 0.15 m and the ratio of height to diameter is 5.36, the suitable ratio of height to diameter in the catalyst bed should be 5—6, which also means that new hydrogenation points are required after the maximum temperature point in order to improve the condition of hydrogenation reaction.

    Figure 2 Mass fraction contour (a: sulfides; b: nitrides; c: bicyclic aromatics; d: monocyclic aromatics)

    Figure 3 Distribution of reactants content along the reaction bed■—sulfide;●—nitride;▲—bicyclic aromatic;▼—monocyclic aromatic

    Figure 4 Temperature contour

    Figure 6 shows that the radial temperature varies at different height of the reactor bed. The temperature at the tube center is higher than that of the wall. At the height of 0.15 m, the range of radial temperature reaches a maximum value (2.5K).

    3.2 Effects of operating conditions on the hydrogenation process

    3.2.1 The effect of inlet temperature

    At a space velocity of 2 h-1with 0.84% of mixing hydrogen, Figure 7 shows the simulation results obtained at different inlet temperatures. It is shown that the increase of inlet temperature can lead to decreased content of bicyclic aromatics, sulfides and nitrides and increased content of monocyclic aromatics. The inlet temperature has more sensitive effect on the content of the monocyclic aromatics and bicyclic aromatics than nitrides. The increase of the inlet temperature can also lead to the increase of the maximum temperature. The maximum temperature rise reaches 14.2 K when the inlet temperature is 653 K, and the minimum temperature rise is 6.9 K when the inlet temperature is only 603 K. Because higher inlet temperature can lead to higher reaction rate and higher exothermic rate, the temperature rise is relatively high. Moreover, it is also shown that the location of the maximum temperature does not change obviously.

    3.2.2 The effect of the amount of mixing hydrogen

    At a space velocity of 2 h-1and an inlet temperature of 633 K, Figure 8 shows the simulation results obtained at different amounts of mixing hydrogen. It is shown that the increase of mixing hydrogen can lead to a decreasing content of bicyclic aromatics, sulfides and nitrides and an increasing content of monocyclic aromatics. The amount of mixing hydrogen shows a more sensitive effect on the simulation results. Higher mixing hydrogen amount would be much better for the desulfurization and denitrification reactions, and also more beneficial to the conversion of bicyclic aromatics and monocyclic aromatics[13-16]. The increase in the amount of mixing hydrogen can also lead to the increase of the maximum temperature. The maximum temperature rise reaches 15.6 K when the mixing hydrogen dosage is 1.12%, and the minimum temperature rise is 3.3 K when the mixing hydrogen amount is 0.42%. Because higher mixing hydrogen can lead to higher reaction rate and high-er exothermic rate, the temperature rise is relatively high. Moreover, it is also shown that the location of the maximum temperature will slightly move backward.

    Figure 5 Temperature distribution along the reactor bed (r=0.014 m)

    Figure 6 Temperature distribution along the radial direction of the reactor■—H=0.05 m;●—H=0.10 m;▲—H=0.15 m;▼—H=0.20 m; —H=0.25 m

    Table 3 Comparison of experimental values and simulation values

    3.2.3 The effect of space velocity

    At a mixing hydrogen amount of 0.84% (m) and an inlet temperature of 633 K, Figure 9 shows the simulation results at different space velocities. It is shown that the increase of space velocity can lead to the increasing content of bicyclic aromatics, sulfides and nitrides and the decreasing content of monocyclic aromatics. High space velocity is not conducive to the reaction outcome. The increase of space velocity can lead to the decrease of maximum temperature. The maximum temperature rise is 12.5 K when the space velocity is 1 h-1, and the minimum temperature rise reaches 9.0 K when the space velocity is 5 h-1. When the space velocity increases, the volume flow rate of the material as well as the Reynolds number in the reactor bed increase also, resulting in the increase of both the axial and radial heat transfer rates. Therefore, the radial temperature difference would reduce, while the hot spot temperature decreases and its position moves backward.

    Figure 7 Effect of the inlet temperature on the simulation results■—603 K;●—613 K;▲—623 K;▼—633 K; —653 K

    Figure 8 Effect of the mixing hydrogen amount on the simulation results■—0.42%;●—0.56%;▲—0.71%;▼—0.84%; —1.12%

    4 Conclusions

    (1) The content of sulfides, nitrides, bicyclic aromatics decreases and the monocyclic aromatics content increases from the inlet to the outlet. The content of reactants shows different rate of changes at different height of the reactor bed. The rate for removal of sulfides is higher than that of the nitrides. However, they all stabilize at the outlet of the reactor bed.

    (2) The temperature is different along the radial direction of the reactor bed, and the maximum temperature difference is 2.5 K. The temperature is also different along the axial direction of the reactor. When the pressure is 6.5 MPa, the amount of mixing hydrogen is 0.84 m%, and the space velocity is 2 h-1, while the inlet temperature is 633 K. The maximum temperature (643.3 K) appears at a height of 0.15 m, which is by 10.3 K higher compared with the entrance temperature. After the location of the maximum temperature is determined, the temperature, the content of the reactants and the reaction rate all decrease, while the utilization rate of catalytic drops. In order to improve the rate of desulfurization and denitrification reactions and aromatic conversion, the conditions of hydrogenation should be changed. Since the maximum temperatureappears at a height of 0.15 m and the ratio of height to diameter is 5.36, a suitable ratio of height to diameter should be 5—6 in catalyst packing. It also means that new hydrogenation points are required in order to improve the condition of hydrogenation reaction.

    (3) The increase of the inlet temperature and the mixing hydrogen amount, and the decrease of space velocity can lead to the decrease in the content of bicyclic aromatics, sulfides and nitrides and the increase in the content of monocyclic aromatics. They also can lead to high temperature rise.

    Nomenclature

    ui— liquid velocity, m/s

    Sm—quality source term

    Si—momentum source term

    p—pressure, Pa

    d—tube inner diameter, m

    dp—particle diameter, m

    Yi—mass fraction of i

    Ri—reaction rate, kg/m3·s

    Di,m—diffusion coefficient, m2/s

    Ef—liquid calories, kg·m2/s2

    ES—solid heat, kg/m2·s2

    Figure 9 Effect of space velocity on the results■—1 h-1;●—2 h-1;▲—3 h-1;▼—4 h-1; —5 h-1

    ke—total heat transfer coefficient, W/m·K

    hi—enthalpy change, J/kg

    Sf—energy source term

    kf—liquid thermal conductivity, W/m·K

    ks—solid thermal conductivity, W/m·K

    υ—viscosity, m/s2

    Nu—Nusel number

    C—mass fraction of sulfides

    XH2—mass fraction of H2

    Cp,l—liquid heat capacity, J·kg/K

    Ys—content of sulfide

    CDA—content of bicyclic aromatic

    CMA—content of monocyclic aromatic

    k0—pre-exponential factor

    n1—sulfide reaction order

    m1—H2reaction order

    n2—nitride reaction order

    m2—H2reaction order

    n3—bicyclic aromatic reaction order

    m3—H2reaction order

    E—activation energy, kJ/mol

    ρ—density, kg/m3

    τij—stress tensor, N/m2

    μ—viscosity, Pa·s

    ε—porosity

    ρs—solid density, kg/m3

    αf—convective heat transfer coefficient, W/m2·K

    [1] Bharvanl R R, Henderson R S. Revamp your hydrotreater for deep desulfurization: clean fuels[J]. Hydrocarbon Processing, 2002, 81(2): 61-64

    [2] Wakao N, Kagei S. Heat and Mass Transfer in Packed Beds[M]. Taylor & Francis, 1982

    [3] Sun S, Lan X, Ma S, et al. Numerical simulation of the transfer and reaction processes in catalytic reforming fixed bed reactors[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2008, 24(1): 38 (in Chinese)

    [4] Ergun S. Fluid flow through packed columns[J]. Chem. Eng. Prog, 1952, 48: 89-94

    [5] Bear J, Corapcioglu V. Fundamentals of Transport Phenomena in Porous Media[M]. M. Nijhoff: The Netherlands, 1984: 199-254

    [6] Guardo A, Coussirat M, Larrayoz MA, et al. CFD flow and heat transfer in nonregular packing for fixed bed equipment design[J]. Ind Eng Chem, 2004, 43(22): 7049-7056

    [7] Guardo A, Coussirat M, Larrayoz M A, et al. Influence of the turbulence model in CFD modeling of wall-to-fluid heat transfer in packed beds[J]. Chemical Engineering Science, 2005, 60(6): 1733-1742

    [8] Spalart P, Allmaras S. A one-equation turbulence model for aerodynamic flows[R]. American Institute of Aeronautics and Astronautics AIAA-92-0439, 1992

    [9] Xu Chunming, Yang Chaohe. Petroleum Refining Engineering[M]. Beijing: Petroleum Industry Press, 2009: 59-73 (in Chinese)

    [10] Wang Yundong, Luo Guangsheng, Liu Qian. The Principle of Transfer Processes[M]. Beijing: Tsinghua University Press, 2002: 211-213 (in Chinese)

    [11] Wang Hongtao, Wang Hua, Chai Xianfeng. Study on kinetic model of diesel hydrodesulfurization[J]. Chemical Industry and Engineering Progress, 2009, 28(5): 769-772 (in Chinese)

    [12] FLUENT User Manual 6.3. Fluent Inc

    [13] Liu Lihua, Liu Shuqun. Ni2P-MoS2/γ-Al2O3catalyst for deep hydrodesulfurization via the hydrogenation reaction pathway[J]. China Petroleum Processing and Petrochemical Technology, 2014, 16(4): 12-18

    [14] Chen Wenyi, Zou Kai, Wang Xiuwen, et al. Correlation of properties and compositions of hydrotreated lube base oil[J]. Petroleum Processing and Petrochemicals, 2014, 45(10): 94-98 (in Chinese)

    [15] Shao Zhicai, Zhao Xinqiang, Liu Tao, et al. Commercial application of the second generation RHT catalysts for hydroprocessing the residue with low sulfur and high nitrogen contents[J]. China Petroleum Processing and Petrochemical Technology, 2014, 16(1): 1-7

    [16] Yang Huibin, Zhang Qing, Jiang Hongbo, et al. Thermodynamics of 2-methylphenanthrene hydrogenation reaction[J]. Petroleum Processing and Petrochemicals, 2014, 45(6): 15-19 (in Chinese)

    date: 2015-06-02; Accepted date: 2015-07-23.

    Professor Zou Ying, Telephone: +86-21-64252816; E-mail: yzou@ecust.edu.cn.

    菩萨蛮人人尽说江南好唐韦庄| 国产1区2区3区精品| 纵有疾风起免费观看全集完整版| 国产伦理片在线播放av一区| 韩国精品一区二区三区| 老司机深夜福利视频在线观看 | 天堂8中文在线网| 欧美日韩一级在线毛片| 国产免费现黄频在线看| 精品乱码久久久久久99久播| 黑人巨大精品欧美一区二区蜜桃| 欧美精品亚洲一区二区| 欧美少妇被猛烈插入视频| 成年人免费黄色播放视频| 激情视频va一区二区三区| 久久99热这里只频精品6学生| 国产男女内射视频| bbb黄色大片| 母亲3免费完整高清在线观看| 黄色视频不卡| 热99久久久久精品小说推荐| 精品亚洲成a人片在线观看| 精品国产超薄肉色丝袜足j| netflix在线观看网站| 真人做人爱边吃奶动态| 国产精品欧美亚洲77777| 两性夫妻黄色片| 免费观看av网站的网址| 国产在线观看jvid| 好男人电影高清在线观看| 欧美成人午夜精品| 99久久99久久久精品蜜桃| 欧美大码av| 免费不卡黄色视频| 嫁个100分男人电影在线观看| 国产亚洲精品久久久久5区| 99国产精品免费福利视频| 精品一品国产午夜福利视频| 丝瓜视频免费看黄片| 免费在线观看影片大全网站| 亚洲国产精品成人久久小说| 成年人午夜在线观看视频| 午夜久久久在线观看| 亚洲人成电影免费在线| 一级,二级,三级黄色视频| 精品免费久久久久久久清纯 | a级毛片在线看网站| 99国产综合亚洲精品| 国产91精品成人一区二区三区 | 777久久人妻少妇嫩草av网站| 国产免费一区二区三区四区乱码| 一级毛片女人18水好多| 天堂8中文在线网| 日本一区二区免费在线视频| 欧美精品一区二区大全| 国内毛片毛片毛片毛片毛片| 国产一区二区三区综合在线观看| 热99久久久久精品小说推荐| 人妻 亚洲 视频| 国产日韩欧美在线精品| 婷婷色av中文字幕| 又紧又爽又黄一区二区| 欧美国产精品va在线观看不卡| 亚洲av成人一区二区三| 亚洲 欧美一区二区三区| 久久人人爽av亚洲精品天堂| 欧美日韩一级在线毛片| 秋霞在线观看毛片| 中国美女看黄片| 咕卡用的链子| 热99久久久久精品小说推荐| 一区二区三区四区激情视频| 欧美在线一区亚洲| 亚洲av日韩精品久久久久久密| 久久久欧美国产精品| 久久精品国产亚洲av香蕉五月 | 日韩熟女老妇一区二区性免费视频| 亚洲中文av在线| 欧美激情极品国产一区二区三区| www.av在线官网国产| 国产欧美日韩精品亚洲av| 久久亚洲国产成人精品v| 国产91精品成人一区二区三区 | 精品福利观看| 9热在线视频观看99| 久久人人爽人人片av| 亚洲精品成人av观看孕妇| 9191精品国产免费久久| 精品高清国产在线一区| 啦啦啦中文免费视频观看日本| 久久人人爽av亚洲精品天堂| 国产1区2区3区精品| 国产99久久九九免费精品| 美女福利国产在线| 日日爽夜夜爽网站| 啦啦啦中文免费视频观看日本| 脱女人内裤的视频| 亚洲精品久久午夜乱码| 国精品久久久久久国模美| 天天躁日日躁夜夜躁夜夜| 99国产精品一区二区三区| 欧美激情久久久久久爽电影 | 亚洲精品美女久久av网站| 美女高潮喷水抽搐中文字幕| 一本一本久久a久久精品综合妖精| 亚洲男人天堂网一区| 美女视频免费永久观看网站| 亚洲专区国产一区二区| 97人妻天天添夜夜摸| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲精品在线美女| 久久久精品区二区三区| 亚洲精品国产区一区二| 中文字幕制服av| 精品人妻1区二区| 免费黄频网站在线观看国产| 美女午夜性视频免费| 久久精品aⅴ一区二区三区四区| 亚洲成人国产一区在线观看| a级片在线免费高清观看视频| 99re6热这里在线精品视频| 女性生殖器流出的白浆| 成在线人永久免费视频| 欧美xxⅹ黑人| 1024视频免费在线观看| 91国产中文字幕| 亚洲天堂av无毛| 极品人妻少妇av视频| 成人国语在线视频| e午夜精品久久久久久久| 女人精品久久久久毛片| 日韩中文字幕视频在线看片| 久久久精品94久久精品| 久久99热这里只频精品6学生| 99九九在线精品视频| 丁香六月欧美| 精品少妇内射三级| 91九色精品人成在线观看| 欧美激情久久久久久爽电影 | 91字幕亚洲| 亚洲中文av在线| 亚洲精品一二三| 啦啦啦 在线观看视频| 欧美日韩亚洲综合一区二区三区_| 国产亚洲精品久久久久5区| 一级,二级,三级黄色视频| 后天国语完整版免费观看| 国产熟女午夜一区二区三区| 狂野欧美激情性xxxx| 多毛熟女@视频| 我的亚洲天堂| 国产成人精品久久二区二区免费| 热99国产精品久久久久久7| 91九色精品人成在线观看| 欧美精品啪啪一区二区三区 | 99国产精品一区二区三区| 午夜激情av网站| 飞空精品影院首页| 99国产极品粉嫩在线观看| 国产免费av片在线观看野外av| 国产亚洲欧美在线一区二区| 国产有黄有色有爽视频| 男女边摸边吃奶| 一区在线观看完整版| 国产成人欧美在线观看 | 国产亚洲av高清不卡| 麻豆乱淫一区二区| 欧美日韩亚洲高清精品| 国产亚洲av片在线观看秒播厂| 少妇被粗大的猛进出69影院| 大香蕉久久网| 最近最新中文字幕大全免费视频| 国产黄色免费在线视频| 欧美精品av麻豆av| 免费在线观看日本一区| av电影中文网址| 亚洲熟女毛片儿| 在线亚洲精品国产二区图片欧美| 亚洲成人免费av在线播放| 男人添女人高潮全过程视频| 亚洲成av片中文字幕在线观看| 国产av精品麻豆| 十八禁人妻一区二区| 国产一区二区在线观看av| 亚洲国产中文字幕在线视频| 亚洲色图综合在线观看| 欧美日韩国产mv在线观看视频| 又紧又爽又黄一区二区| 精品人妻一区二区三区麻豆| 亚洲 国产 在线| 久久精品熟女亚洲av麻豆精品| 91麻豆精品激情在线观看国产 | 午夜视频精品福利| 国产在线一区二区三区精| 欧美变态另类bdsm刘玥| 岛国毛片在线播放| av有码第一页| 国产福利在线免费观看视频| 成人手机av| 成人国语在线视频| 久久ye,这里只有精品| 免费一级毛片在线播放高清视频 | 亚洲 欧美一区二区三区| 亚洲精品av麻豆狂野| 亚洲成人手机| 欧美日韩av久久| 美女视频免费永久观看网站| 亚洲成人免费av在线播放| 亚洲精品一二三| 久久人妻熟女aⅴ| 欧美日韩一级在线毛片| 欧美日韩一级在线毛片| 老司机午夜福利在线观看视频 | 久久精品熟女亚洲av麻豆精品| 他把我摸到了高潮在线观看 | 少妇 在线观看| 婷婷色av中文字幕| 亚洲成人免费av在线播放| 人人妻人人爽人人添夜夜欢视频| 五月开心婷婷网| 亚洲黑人精品在线| 欧美日韩一级在线毛片| 99热网站在线观看| 日本猛色少妇xxxxx猛交久久| 老司机影院成人| 天天躁日日躁夜夜躁夜夜| 美女国产高潮福利片在线看| 12—13女人毛片做爰片一| 久久狼人影院| 91精品三级在线观看| 国产精品一区二区在线观看99| 国产伦人伦偷精品视频| 18在线观看网站| 欧美日韩一级在线毛片| 777米奇影视久久| 久久久久久久久免费视频了| 国产99久久九九免费精品| xxxhd国产人妻xxx| a级毛片黄视频| 亚洲国产成人一精品久久久| 国产xxxxx性猛交| 亚洲,欧美精品.| 免费观看人在逋| 亚洲人成电影观看| 菩萨蛮人人尽说江南好唐韦庄| 中文精品一卡2卡3卡4更新| 看免费av毛片| 老司机亚洲免费影院| 国产亚洲精品一区二区www | 亚洲欧美精品综合一区二区三区| 九色亚洲精品在线播放| 亚洲少妇的诱惑av| 久久中文看片网| 成在线人永久免费视频| 久久人妻熟女aⅴ| 久久香蕉激情| 2018国产大陆天天弄谢| 日日夜夜操网爽| 亚洲欧美一区二区三区久久| av免费在线观看网站| 婷婷成人精品国产| 久久狼人影院| 在线天堂中文资源库| 母亲3免费完整高清在线观看| 久久这里只有精品19| 99久久精品国产亚洲精品| 搡老乐熟女国产| 一本综合久久免费| 国产亚洲一区二区精品| 精品一品国产午夜福利视频| 高清视频免费观看一区二区| 性色av乱码一区二区三区2| 亚洲精品日韩在线中文字幕| 夜夜夜夜夜久久久久| 国产精品一区二区免费欧美 | 久久天堂一区二区三区四区| 国产亚洲欧美在线一区二区| 中亚洲国语对白在线视频| 亚洲成国产人片在线观看| 9色porny在线观看| 亚洲国产精品成人久久小说| 国产在线一区二区三区精| 成年人免费黄色播放视频| 午夜福利免费观看在线| 国产精品成人在线| 国产男人的电影天堂91| 老司机影院成人| 久久国产精品男人的天堂亚洲| 久久99一区二区三区| 色综合欧美亚洲国产小说| 在线十欧美十亚洲十日本专区| 少妇精品久久久久久久| 亚洲欧美精品自产自拍| 亚洲综合色网址| 女性被躁到高潮视频| 日韩 欧美 亚洲 中文字幕| 男女免费视频国产| 亚洲国产中文字幕在线视频| 欧美乱码精品一区二区三区| 黄色 视频免费看| 亚洲第一青青草原| 大型av网站在线播放| 18禁黄网站禁片午夜丰满| 色综合欧美亚洲国产小说| 黑人欧美特级aaaaaa片| 国产精品免费视频内射| 国产成人系列免费观看| 国产精品.久久久| 老鸭窝网址在线观看| 日本撒尿小便嘘嘘汇集6| 久久国产亚洲av麻豆专区| 亚洲精品在线美女| 午夜免费观看性视频| 精品国产一区二区三区久久久樱花| 最黄视频免费看| 黄片播放在线免费| 97人妻天天添夜夜摸| 男女午夜视频在线观看| 午夜福利乱码中文字幕| 免费高清在线观看日韩| 日韩有码中文字幕| 色视频在线一区二区三区| 亚洲欧美激情在线| 精品视频人人做人人爽| 久久中文字幕一级| 亚洲国产av新网站| 久久99热这里只频精品6学生| 精品少妇一区二区三区视频日本电影| 久久国产精品男人的天堂亚洲| 成人亚洲精品一区在线观看| 成人手机av| 搡老乐熟女国产| 一二三四在线观看免费中文在| 亚洲精品久久成人aⅴ小说| 久久人妻熟女aⅴ| 老司机福利观看| 一本大道久久a久久精品| 18禁观看日本| www.av在线官网国产| 日韩大码丰满熟妇| √禁漫天堂资源中文www| 曰老女人黄片| 日本欧美视频一区| 欧美精品一区二区大全| 亚洲综合色网址| 欧美激情久久久久久爽电影 | 美女中出高潮动态图| 俄罗斯特黄特色一大片| 国产麻豆69| 99久久综合免费| av福利片在线| 久久免费观看电影| 亚洲avbb在线观看| 国产99久久九九免费精品| 啦啦啦啦在线视频资源| 国产真人三级小视频在线观看| 亚洲精品久久成人aⅴ小说| 天堂中文最新版在线下载| 可以免费在线观看a视频的电影网站| 亚洲精品国产av成人精品| 午夜免费成人在线视频| 老司机影院毛片| 亚洲国产av影院在线观看| 大片免费播放器 马上看| www.自偷自拍.com| 精品乱码久久久久久99久播| 男女边摸边吃奶| 青春草亚洲视频在线观看| av免费在线观看网站| 久久亚洲精品不卡| 欧美精品一区二区大全| 日韩大片免费观看网站| 国产成人a∨麻豆精品| 韩国精品一区二区三区| 色94色欧美一区二区| 日韩制服骚丝袜av| 久久综合国产亚洲精品| 亚洲五月色婷婷综合| 80岁老熟妇乱子伦牲交| 国产成人精品无人区| 国产极品粉嫩免费观看在线| 午夜免费鲁丝| 丝袜在线中文字幕| 久久狼人影院| 日韩熟女老妇一区二区性免费视频| 日韩人妻精品一区2区三区| 日本撒尿小便嘘嘘汇集6| 人人澡人人妻人| 一区二区三区激情视频| 国产淫语在线视频| 免费女性裸体啪啪无遮挡网站| 成人国语在线视频| 国产精品久久久久成人av| 一个人免费看片子| 欧美在线黄色| 亚洲欧美精品自产自拍| 男女免费视频国产| 老司机午夜福利在线观看视频 | 国产成人精品久久二区二区免费| 亚洲一区中文字幕在线| avwww免费| 亚洲一码二码三码区别大吗| www.熟女人妻精品国产| 欧美激情久久久久久爽电影 | 丝袜脚勾引网站| 精品国产一区二区三区四区第35| 天天操日日干夜夜撸| 美女扒开内裤让男人捅视频| 色老头精品视频在线观看| 精品视频人人做人人爽| 亚洲国产欧美一区二区综合| 国产精品免费大片| 老司机在亚洲福利影院| 成年动漫av网址| 丝袜人妻中文字幕| av网站在线播放免费| 亚洲avbb在线观看| 91精品国产国语对白视频| 精品国产国语对白av| 一级a爱视频在线免费观看| 午夜免费成人在线视频| 国产精品av久久久久免费| 老司机午夜福利在线观看视频 | 欧美一级毛片孕妇| 一区二区三区乱码不卡18| av网站免费在线观看视频| 午夜激情久久久久久久| 黑人巨大精品欧美一区二区mp4| 丝袜美腿诱惑在线| 我的亚洲天堂| 精品人妻在线不人妻| 首页视频小说图片口味搜索| 欧美日韩黄片免| 国产精品久久久久久人妻精品电影 | 夫妻午夜视频| 精品人妻一区二区三区麻豆| 亚洲五月婷婷丁香| 老熟妇乱子伦视频在线观看 | 国产欧美日韩综合在线一区二区| 丝袜脚勾引网站| 国产男女超爽视频在线观看| 黄色a级毛片大全视频| 日韩电影二区| 老司机午夜十八禁免费视频| 午夜两性在线视频| 国产福利在线免费观看视频| 午夜福利视频精品| 无限看片的www在线观看| 91精品三级在线观看| 法律面前人人平等表现在哪些方面 | 亚洲精品美女久久av网站| 精品国产一区二区久久| a级毛片黄视频| 久久人妻熟女aⅴ| 黄色毛片三级朝国网站| 亚洲精品一二三| 久久久国产一区二区| 国产精品久久久久久精品古装| 亚洲av欧美aⅴ国产| 99久久综合免费| 99国产精品免费福利视频| 免费av中文字幕在线| 午夜影院在线不卡| 亚洲伊人久久精品综合| 久久久精品区二区三区| av网站免费在线观看视频| 亚洲自偷自拍图片 自拍| 国产精品自产拍在线观看55亚洲 | 国产一区二区三区在线臀色熟女 | 老司机在亚洲福利影院| 久久女婷五月综合色啪小说| 精品少妇久久久久久888优播| 久久久精品免费免费高清| 女人精品久久久久毛片| 男人舔女人的私密视频| 超色免费av| 秋霞在线观看毛片| 亚洲国产精品一区二区三区在线| 午夜福利影视在线免费观看| 90打野战视频偷拍视频| 黑人欧美特级aaaaaa片| 久热这里只有精品99| 国产麻豆69| 成年av动漫网址| 久9热在线精品视频| 丰满饥渴人妻一区二区三| 美女大奶头黄色视频| 超碰成人久久| 免费高清在线观看日韩| 亚洲 欧美一区二区三区| 久久天堂一区二区三区四区| 亚洲国产欧美在线一区| 精品亚洲成国产av| 国产麻豆69| 国产深夜福利视频在线观看| 免费人妻精品一区二区三区视频| 欧美乱码精品一区二区三区| 国产欧美日韩一区二区三 | 欧美日韩精品网址| 男女免费视频国产| 欧美人与性动交α欧美软件| 精品国产一区二区三区久久久樱花| 久久 成人 亚洲| 久久久水蜜桃国产精品网| 黄色a级毛片大全视频| 亚洲,欧美精品.| 青春草亚洲视频在线观看| 一区福利在线观看| 国产精品亚洲av一区麻豆| 日本91视频免费播放| 日本撒尿小便嘘嘘汇集6| 久久人人97超碰香蕉20202| 国产欧美日韩综合在线一区二区| 婷婷色av中文字幕| 亚洲五月婷婷丁香| 国产视频一区二区在线看| 老鸭窝网址在线观看| 国产精品99久久99久久久不卡| 高清黄色对白视频在线免费看| 欧美国产精品va在线观看不卡| 日韩欧美免费精品| 99久久99久久久精品蜜桃| av有码第一页| 日日爽夜夜爽网站| 女人久久www免费人成看片| 久久国产亚洲av麻豆专区| 国产精品九九99| 久久国产亚洲av麻豆专区| 成人亚洲精品一区在线观看| 国产免费一区二区三区四区乱码| 黄色视频,在线免费观看| 美女福利国产在线| 大香蕉久久网| 国产成人a∨麻豆精品| 国产一区二区三区在线臀色熟女 | 精品第一国产精品| 久久国产精品男人的天堂亚洲| 亚洲美女黄色视频免费看| 国产亚洲av高清不卡| 在线观看免费日韩欧美大片| 亚洲欧美激情在线| 中文欧美无线码| 性色av一级| 久久久国产成人免费| 午夜视频精品福利| 国产熟女午夜一区二区三区| 亚洲精品国产av蜜桃| 国产成人av教育| 韩国精品一区二区三区| 国产成人一区二区三区免费视频网站| 中文字幕制服av| 国产成人一区二区三区免费视频网站| 999久久久国产精品视频| 菩萨蛮人人尽说江南好唐韦庄| 丁香六月天网| 在线av久久热| 亚洲第一av免费看| 国产男女内射视频| 热99久久久久精品小说推荐| 国产成人啪精品午夜网站| 青春草视频在线免费观看| 午夜激情久久久久久久| 国产日韩欧美亚洲二区| 精品欧美一区二区三区在线| av欧美777| 2018国产大陆天天弄谢| 蜜桃在线观看..| 男女国产视频网站| 亚洲,欧美精品.| 亚洲国产中文字幕在线视频| 日韩视频在线欧美| 国产精品免费大片| 亚洲成人国产一区在线观看| 久久国产精品人妻蜜桃| 十八禁网站网址无遮挡| 美女福利国产在线| 黄频高清免费视频| 97人妻天天添夜夜摸| 最新的欧美精品一区二区| 欧美成人午夜精品| 国产熟女午夜一区二区三区| 久久人人97超碰香蕉20202| 日韩大片免费观看网站| 欧美黑人精品巨大| 制服人妻中文乱码| 精品人妻熟女毛片av久久网站| 中文字幕高清在线视频| 少妇裸体淫交视频免费看高清 | 极品人妻少妇av视频| 国产亚洲av片在线观看秒播厂| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩中文字幕国产精品一区二区三区 | 一区二区三区激情视频| 久9热在线精品视频| 99久久人妻综合| 777米奇影视久久| 国产精品久久久人人做人人爽| 9色porny在线观看| 国产一区二区三区综合在线观看| 男男h啪啪无遮挡| 亚洲国产精品一区二区三区在线| 亚洲精品一卡2卡三卡4卡5卡 | 午夜免费鲁丝| 国产精品一区二区在线观看99| 老司机深夜福利视频在线观看 | 国产精品99久久99久久久不卡| 国产精品偷伦视频观看了| 亚洲专区中文字幕在线| 最新在线观看一区二区三区| 国产精品香港三级国产av潘金莲| av天堂久久9| 成人免费观看视频高清| 丰满少妇做爰视频| 啪啪无遮挡十八禁网站| 久久久精品区二区三区|