武煥陽(yáng),丁詩(shī)華
1. 華南理工大學(xué)環(huán)境與能源學(xué)院,廣州 510006 2. 西南大學(xué)動(dòng)物科技學(xué)院 水產(chǎn)科學(xué)重慶市市級(jí)重點(diǎn)實(shí)驗(yàn)室,重慶 400715
硫丹的環(huán)境行為及水生態(tài)毒理效應(yīng)研究進(jìn)展
武煥陽(yáng)1,2,丁詩(shī)華2,*
1. 華南理工大學(xué)環(huán)境與能源學(xué)院,廣州 510006 2. 西南大學(xué)動(dòng)物科技學(xué)院 水產(chǎn)科學(xué)重慶市市級(jí)重點(diǎn)實(shí)驗(yàn)室,重慶 400715
有機(jī)氯農(nóng)藥硫丹作為一種典型的持久性有機(jī)污染物(POPs)曾廣泛應(yīng)用于農(nóng)業(yè)生產(chǎn),我國(guó)曾大量使用。硫丹作為一種重要的污染物通過(guò)地表徑流、淋、溶、干/濕沉降等方式進(jìn)入水體,在直接影響大型水生植物和浮游藻類(lèi)的同時(shí),給魚(yú)類(lèi)等水生動(dòng)物也帶來(lái)了一定的毒性效應(yīng)。由于其半衰期較長(zhǎng)、遷移能力強(qiáng)、富集性高,在水體環(huán)境中已普遍檢測(cè)出硫丹的存在,因此,對(duì)硫丹的水生生態(tài)安全性評(píng)價(jià)顯得十分重要。硫丹對(duì)水生生物具有高毒性,它可影響生物正常受體配體作用、損傷生物膜、影響活性氧代謝并具有潛在的內(nèi)分泌干擾作用。本文介紹了硫丹的環(huán)境行為效應(yīng),并綜述了硫丹對(duì)水生生物的毒性及幾種致毒機(jī)制,展望了該領(lǐng)域今后的研究重點(diǎn)和方向。
硫丹;POPs;水生生物;環(huán)境行為;毒理效應(yīng)
硫丹(endosulfan)分子式:C9H6Cl6O3S,又稱(chēng)賽丹或安殺丹,純品為白色晶體,易溶于氯仿、丙酮等有機(jī)溶劑。其在堿性介質(zhì)中不穩(wěn)定,可緩慢水解為硫丹二醇和二氧化硫,常見(jiàn)的α-硫丹和β-硫丹2種異構(gòu)體混合物比例約為7:3[1]。作為一種危害性極高的有機(jī)氯農(nóng)藥,硫丹曾廣泛用于棉花、煙草、茶葉和咖啡等農(nóng)業(yè)生產(chǎn)中。據(jù)統(tǒng)計(jì),全世界范圍使用硫丹總量為30.8萬(wàn)t[2-3]。由于具有較強(qiáng)的遷移作用,硫丹在生產(chǎn)、使用和廢棄過(guò)程中可通過(guò)污水、廢水、地表徑流或大氣沉降等最終進(jìn)入水環(huán)境中,且其在水體中的濃度水平危及水生生物和人類(lèi)的健康,因此硫丹在水體中的分布及其對(duì)水生生物的毒理效應(yīng)一直是人們關(guān)注的焦點(diǎn)[4]。然而從目前資料來(lái)看,關(guān)于硫丹在環(huán)境中的分布情況研究較多,而硫丹對(duì)水生生物的生理生化、內(nèi)分泌毒性、遺傳毒性及代謝機(jī)制等方面研究較少。本文綜述了近年來(lái)硫丹的環(huán)境行為及對(duì)水生生物的毒性作用研究,并分析今后的研究思路,對(duì)以后的研究熱點(diǎn)做了展望。
1.1 硫丹的環(huán)境行為及分布
環(huán)境中硫丹有2個(gè)來(lái)源:一是硫丹在農(nóng)業(yè)生產(chǎn)中大量使用,使一部分硫丹揮發(fā)進(jìn)入大氣,另一部分是黏附在農(nóng)作物上的硫丹在雨水沖刷、淋溶及地表徑流的作用下,被轉(zhuǎn)運(yùn)至土壤和水體中;二是硫丹生產(chǎn)工廠(chǎng)廢棄污染物排放使硫丹進(jìn)入水體和土壤環(huán)境中。硫丹2種異構(gòu)體均可被氧化、水解為硫丹硫酸鹽(endosulfan sulphate)和硫丹二醇(endosulfan diol)[5]。
硫丹具有較強(qiáng)的環(huán)境遷移能力,據(jù)報(bào)道,硫丹作為一種有機(jī)氯農(nóng)藥廣泛存在于大氣環(huán)境中,并可隨大氣環(huán)流遷移到全球各個(gè)地區(qū),高山地區(qū)、極地地區(qū)環(huán)境介質(zhì)中均發(fā)現(xiàn)硫丹及硫丹硫酸鹽存在。Pozo等[6]檢測(cè)到智利北部大氣硫丹濃度為4~101 pg·m-3,并發(fā)現(xiàn)硫丹主要生產(chǎn)使用地的北部地區(qū)大氣硫丹含量高于南部地區(qū)。加拿大西部高山地區(qū)大氣中也檢測(cè)出硫丹存在,且α-硫丹濃度高于β-硫丹濃度[7]。我國(guó)大氣中同樣發(fā)現(xiàn)硫丹,通過(guò)對(duì)我國(guó)的37個(gè)城市及3個(gè)背景點(diǎn)的空氣中有機(jī)氯進(jìn)行分析,α-硫丹和β-硫丹的濃度范圍分別為0~1 190 pg·d-1和0~422 pg·d-1[8],同時(shí)發(fā)現(xiàn),含量較高采樣點(diǎn)出現(xiàn)在棉花種植區(qū),表明農(nóng)業(yè)使用是我國(guó)空氣中硫丹的重要來(lái)源。
水環(huán)境中同樣有硫丹的存在,我國(guó)太湖中也檢測(cè)出硫丹,表1列出了世界上部分典型水體中硫丹的含量。
美國(guó)高海拔(3 024~3 030 m)湖泊沉積物中也檢測(cè)出硫丹硫酸鹽存在[13]。研究發(fā)現(xiàn)加拿大北極圈群島Devon島DV09地平線(xiàn)以上湖底沉積物中有α-硫丹存在,最高濃度達(dá)0.04 ng·g-1(干重),且流量為6.2 ng·(m2y)-1,自1990年起,這些湖泊沉積物硫丹含量在逐漸增加[14]。
表1 硫丹在部分水環(huán)境中的濃度Table 1 The concentration of endosulfan in the water environment
1.2 硫丹在水生生物體內(nèi)的蓄積
研究報(bào)道,水生生物體內(nèi)也已普遍檢測(cè)出硫丹。其中,我國(guó)華南沿海牡蠣(Crassostrea rivularis)體中硫丹含量為廣東:2.13 ng·g-1(濕重),海南:1.23 ng·g-1(濕重),廣西:0.76 ng·g-1(濕重)[15]。Kelly等[16]發(fā)現(xiàn)北極紅點(diǎn)鮭(Salvelinus alpinus)、環(huán)斑海豹(Phoca hispida)和白鯨(Delphinapterus leucas)體內(nèi)α-硫丹和β-硫丹含量分別為(0.12±0.09) ng·g-1(濕重)、(0.46±0.55) ng·g-1(濕重);(2.0±3.2) ng·g-1(濕重)、(1.7±2.1) ng·g-1(濕重)和(4.0±5.9) ng·g-1(濕重)、(6.5±2.8) ng·g-1(濕重)。而Stern等[24]發(fā)現(xiàn)加拿大北極群島雄性白鯨體內(nèi)硫丹硫酸鹽含量從3.7 ng·g-1(脂重)到94 ng·g-1(脂重)不等。加拿大北極群島Lancaster海峽和Jones海峽雄性白鯨體內(nèi)(28~94 ng·g-1)發(fā)現(xiàn)更高濃度的硫丹硫酸鹽,而B(niǎo)affin島Cumberland海峽和Frobisher灣的白鯨體內(nèi)硫丹硫酸鹽的含量為8.1~23 ng·g-1。據(jù)報(bào)道,印度超過(guò)60%的市售海水魚(yú)可檢測(cè)出硫丹,其濃度為5~22 ng·g-1(濕重)[17]。大量研究顯示,硫丹及其降解產(chǎn)物主要在動(dòng)物的肝臟、皮膚、脂肪及肌肉中分布[18]??梢?jiàn),除了毒物代謝器官,脂肪及皮膚也是硫丹主要分布區(qū)域,這可能是因?yàn)榱虻さ男链肌峙湎禂?shù)(logKow)顯示其進(jìn)入富含脂肪組織中的可能性較大,并可隨著胚胎中脂肪轉(zhuǎn)運(yùn)進(jìn)入卵細(xì)胞或者傳遞給下一代。
硫丹在水生生物體內(nèi)的濃度水平能直接反映水體中硫丹的污染情況,進(jìn)而可以評(píng)價(jià)其對(duì)生態(tài)系統(tǒng)的潛在危害。有研究表明,水體中β-硫丹較α-硫丹含量更高,這或許表明α-硫丹更容易被水生生物轉(zhuǎn)化、富集[19]。α-硫丹、β-硫丹的logKow分別為4.94和4.78,因此沉積物對(duì)α-硫丹的吸附作用較β-硫丹強(qiáng),α-硫丹生物富集能力略強(qiáng)于β-硫丹[20]。一般認(rèn)為當(dāng)有機(jī)化合物logKow>5時(shí),該化合物具有生物富集性。浮游動(dòng)物比浮游植物更易富集硫丹,而魚(yú)類(lèi)對(duì)硫丹富集能力明顯大于浮游生物[21]。生物富集系數(shù)(BCF)經(jīng)常用來(lái)評(píng)價(jià)污染物在水生生物體內(nèi)的富集效果。研究表明,黃脂鯉魚(yú)(Hyphessobrycon bifasciatus)對(duì)硫丹BCF高達(dá)11 000[22],淡水綠藻(Pseudokirchneriella subcapitatum)和淡水大型溞(Daphnia magna)對(duì)硫丹BCF分別為2 682和3 678[23],而野鯪(Labeo rohita)對(duì)硫丹BCF只有不到50[24],因此不同生物對(duì)硫丹富集能力存在較大差別。
不同形態(tài)的硫丹在環(huán)境中的降解速率不同,生物毒性也不相同。β-硫丹較α-硫丹降解慢,α-硫丹半衰期為7~75 d,而β-硫丹半衰期為33~376 d,研究表明,硫丹硫酸鹽是環(huán)境中硫丹的主要降解產(chǎn)物[25]。水中α-硫丹較β-硫丹更易降解為硫丹硫酸鹽[26],在土壤環(huán)境中也有同樣發(fā)現(xiàn),并且硫丹降解速率受土壤水分、溫度、含氧量、pH等環(huán)境因素影響,溫度較低、水分較小、含氧量低、pH較低情況下硫丹的降解速率較慢[27]。硫丹降解產(chǎn)物毒性較小,如:硫丹硫酸鹽對(duì)金魚(yú)(Carassius auratus)和雅羅魚(yú)(Leuciscus idus melanotus)48 h半數(shù)致死濃度(48 h LC50)接近100 μg·L-1,而α-硫丹 < 10 μg·L-1[28]。另外,硫丹與其他污染物的聯(lián)合毒性效應(yīng)更強(qiáng)。資料顯示,394 μg·L-1毒死蜱與4.5 μg·L-1、7.9 μg·L-1、1 μg·L-1硫丹共同作用下,太平洋樹(shù)蛙幼體(Pseudacris regilla)致死率顯著高于硫丹單一染毒[29]。2.1 硫丹的急性致毒效應(yīng)
幾乎所有水生生物對(duì)硫丹都非常敏感。水生無(wú)脊椎動(dòng)物是水生動(dòng)物中較低等的動(dòng)物類(lèi)群,表2列出了硫丹對(duì)一些水生無(wú)脊椎動(dòng)物的毒性值。
表2 硫丹對(duì)甲殼類(lèi)動(dòng)物毒性Table 2 Toxicity of endosulfan on shellfish
研究表明,硫丹對(duì)藻類(lèi)也有較高毒性,硫丹對(duì)近頭狀偽蹄型藻(Pseudokirchneriella subcapitatum)96 h EC50為428 μg·L-1[23]。此外,有研究顯示,不同的環(huán)境條件也可能影響硫丹對(duì)甲殼動(dòng)物的毒性。當(dāng)暴露環(huán)境中有底泥存在時(shí),硫丹對(duì)褐蝦(Penaeus aztecus)96 h LC50從無(wú)底泥存在時(shí)的0.2 μg·L-1提高到6.9 μg·L-1[37];斑節(jié)對(duì)蝦(Penaeus monodon)96 h LC50從無(wú)底泥存在時(shí)的1.6 μg·L-1降低到0.5 μg·L-1;96 h最低可觀(guān)察效應(yīng)濃度(LOEC)從無(wú)底泥存在時(shí)的1.038 μg·L-1降低到0.141 μg·L-1;96 h最低無(wú)可觀(guān)察效應(yīng)濃度(NOEC)從無(wú)底泥存在時(shí)的0.536 μg·L-1降低到 < 0.141 μg·L-1[38]。0.1 μg·L-1硫丹暴露96 h,美洲龍蝦幼體(Homarus americanus)代謝范圍較對(duì)照組顯著降低25%[39]。
硫丹對(duì)魚(yú)類(lèi)同樣具有較強(qiáng)毒性。研究顯示,硫丹對(duì)大部分魚(yú)類(lèi)的96 h LC50為0.09~4.4 μg·L-1[40],且淡水魚(yú)類(lèi)相對(duì)海水魚(yú)類(lèi)具有更高的耐受性,見(jiàn)表3。
根據(jù)毒性分級(jí),LC50< 1 000 μg·L-1為劇毒物質(zhì)。絕大部分魚(yú)類(lèi)對(duì)硫丹極為敏感,96 h LC50均在10 μg·L-1以下,可見(jiàn)硫丹對(duì)魚(yú)類(lèi)毒性極強(qiáng)。硫丹對(duì)不同魚(yú)類(lèi)LC50有所差異,可能原因有2種:一是受試動(dòng)物對(duì)硫丹的耐受程度不同,二是暴露試驗(yàn)的環(huán)境條件不同。另外,研究發(fā)現(xiàn),高等魚(yú)類(lèi)較低等魚(yú)類(lèi)對(duì)硫丹的耐受能力更強(qiáng)一些,這可能是因?yàn)楦叩若~(yú)類(lèi)的代謝器官更為發(fā)達(dá)、解毒系統(tǒng)更為完善,使毒物對(duì)機(jī)體的毒性作用更小。
2.2 干擾正常受體—配體的相互作用
受體是許多組織細(xì)胞的生物大分子,與化學(xué)物質(zhì)即配體相結(jié)合后形成受體—配體復(fù)合物,能產(chǎn)生一定的生物學(xué)效應(yīng)。許多毒物尤其是某些神經(jīng)毒物的毒性作用與其干擾正常受體—配體相互作用的能力有關(guān)。 目前有研究表明,硫丹可與γ-氨基丁酸(GABA)拮抗,從而抑制GABA受體聚集[45]。GABA是中樞神經(jīng)系統(tǒng)抑制性神經(jīng)遞質(zhì),硫丹作為GABA非競(jìng)爭(zhēng)性的拮抗物,可抑制GABA受體聚集,聚集程度的降低將導(dǎo)致神經(jīng)元細(xì)胞去極化,使動(dòng)物焦躁不安[46]。 膽堿能神經(jīng)是以乙酰膽堿(ACh)為神經(jīng)傳遞物質(zhì),在ACh完成傳遞任務(wù)后,若繼續(xù)存在,則將不斷刺激突觸后膜,引起神經(jīng)功能的紊亂,因此必須及時(shí)將之分解消除,這有賴(lài)于乙酰膽堿酯酶(AChE)對(duì)ACh的催化作用,AChE可將ACh分解為乙酸和膽堿,避免ACh積累對(duì)神經(jīng)的過(guò)多刺激。有機(jī)磷農(nóng)藥已被證實(shí)可抑制動(dòng)物膽堿酯酶(ChE)活性,使其失去分解ACh能力,導(dǎo)致ACh積聚,阻斷神經(jīng)傳導(dǎo),引起神經(jīng)功能紊亂[51]。研究顯示,3.3~5 μg·L-1硫丹暴露96 h,可顯著抑制橙色莫桑比克羅非魚(yú)(Oreochromis mossambicus)腦AChE活性[52]。同樣發(fā)現(xiàn),0.072~1.4 μg·L-1硫丹暴露,可顯著抑制四眼青鳉(Jenynsia multidentata)肌肉AChE活性,并發(fā)現(xiàn)隨著硫丹暴露質(zhì)量濃度升高或時(shí)間延長(zhǎng),其活動(dòng)能力明顯下降,游泳能力受到顯著影響[53]。2.4 μg·L-1硫丹暴露96 h,斑馬魚(yú)腦AChE活性顯著降低,較對(duì)照組下降近40%,其活動(dòng)能力同樣顯著降低[54]。
2.3 生物膜損傷作用
生物膜具有十分重要的生物功能,它可選擇地進(jìn)行物質(zhì)交換,以維持細(xì)胞內(nèi)部有一個(gè)相對(duì)穩(wěn)定的理化特性,并維持細(xì)胞內(nèi)自身穩(wěn)定。Na+、K+-ATP酶和Ca2+、Mg2+-ATP酶又稱(chēng)依賴(lài)ATP膜結(jié)合蛋白酶,對(duì)建立跨膜的離子梯度、維持細(xì)胞膜電位與細(xì)胞生理活動(dòng)、調(diào)節(jié)細(xì)胞滲透壓、控制細(xì)胞容量和正常代謝以及為其他離子和營(yíng)養(yǎng)物質(zhì)的轉(zhuǎn)運(yùn)提供動(dòng)力方面具有重要作用[55]。
表3 硫丹對(duì)部分魚(yú)類(lèi)的LC50Table 3 LC50 of endosulfan on fish
研究表明,硫丹可影響?hù)~(yú)類(lèi)ATP酶活性,從而影響細(xì)胞正常生物功能。2.2 μg·L-1硫丹暴露15 d,可激活寬額鱧(Channa gachua)Na+、K+-ATP酶和Mg2+-ATP酶活性;3.7 μg·L-1硫丹暴露30 d后,其肝臟、腎臟及肌肉ATP酶活性顯著受到抑制[56]。暴露于0.010~0.264 μg·L-1硫丹下,羅氏沼蝦仔蝦(Macrobrachium rosenbergii)Na+、K+-ATPase活性顯著升高[57]。翠鱧(Channa punctatus)鰓Na+、K+-ATP酶活性在1.2 μg·L-1硫丹暴露90 d后明顯降低[58]。大西洋鮭(Salmo salar)硫丹(4~710 μg·kg-1)經(jīng)口染毒14 d,鰓Na+、K+-ATP酶活性明顯降低,35 d后恢復(fù)到正常水平;腸Na+、K+-ATP酶活性14 d和35 d均被顯著抑制[59]。Velasco等[60]報(bào)道,0.16 μg·L-1和0.48 μg·L-1硫丹暴露14 d,可引起斑馬魚(yú)Na+、K+-ATP酶活性升高,并在28 d后恢復(fù)到正常水平,同時(shí)發(fā)現(xiàn)其鰓絲組織增生。
2.4 活性氧生成與氧化損傷機(jī)理
活性氧(ROS)是指在生物體內(nèi)與氧代謝有關(guān)的含氧自由基和易形成自由基的過(guò)氧化物總稱(chēng),如O2·-、·OH、H2O2、ROOH等。生物體自身生理活動(dòng)可產(chǎn)生ROS,如分解氧以提供能量的電子傳遞鏈過(guò)程、吞噬細(xì)胞吞噬作用以及外源物質(zhì)的分解過(guò)程,污染物也可誘導(dǎo)生物細(xì)胞內(nèi)外源性ROS形成[61]。
體內(nèi)的ROS具有一定的功能,如免疫和信號(hào)轉(zhuǎn)導(dǎo)過(guò)程,但由于它有未成對(duì)電子,自由基和自由原子非常活潑,因此過(guò)多的ROS就會(huì)有破壞作用,導(dǎo)致正常細(xì)胞和組織的損壞。正常情況下細(xì)胞內(nèi)的抗氧化酶類(lèi)SOD、CAT、GSH-Px等可以清除ROS,而當(dāng)ROS的產(chǎn)生與清除平衡被擾亂,細(xì)胞無(wú)法及時(shí)清除時(shí),就會(huì)導(dǎo)致機(jī)體氧化損傷[62]。ROS過(guò)量生成可干擾多種信號(hào)轉(zhuǎn)導(dǎo)通路,從而影響細(xì)胞凋亡,如MAPKs信號(hào)通路、ERK1/2通路、Nrf2-Keap1通路、JNK/SPAK通路等。研究表明,硫丹等機(jī)氯農(nóng)藥通過(guò)生成大量的ROS,可明顯激活ERK1/2通路,激活的ERK通過(guò)磷酸化抗凋亡分子,同時(shí)激活轉(zhuǎn)錄因子,以刺激表達(dá)存活相關(guān)基因而產(chǎn)生抗凋亡作用[63]。
已有研究表明,硫丹可誘導(dǎo)斑馬魚(yú)[64]和草魚(yú)(Ctenopharyngodon idellus)[65]肝臟Ⅰ相(APND;ERND)和Ⅱ相(GST)解毒酶活性升高,進(jìn)而影響正常生理機(jī)能。硫丹暴露可誘導(dǎo)水芪草(Myriophyllum quitense)[66]、大型溞(Daphnia magna)[30]、虹鱒(Oncorhynchus mykiss)[67]、四眼青鳉(Jenynsia multidentata)[68]、斑馬魚(yú)[45-69]、草魚(yú)[70-71]、奧尼羅非魚(yú)(Oreochromis niloticus)[72]、中華大蟾蜍(Bufo bufo)[73]、鬼針草蟾(Bidens laevis)[74]、菲律賓蛤仔(Venerupis philippinarum)[75]等水生生物機(jī)體產(chǎn)生過(guò)量ROS,并產(chǎn)生氧化脅迫,表現(xiàn)為機(jī)體組織SOD、CAT、GSH-Px、GST等抗氧化酶活性的非正常變化,LPO升高,嚴(yán)重導(dǎo)致細(xì)胞NDA損傷、凋亡、組織病變甚至個(gè)體死亡。
2.5 內(nèi)分泌干擾作用
研究表明硫丹對(duì)內(nèi)分泌系統(tǒng)存在潛在的影響,對(duì)人類(lèi)和生物具有較大的負(fù)面影響,其能夠干擾生物體內(nèi)源激素的合成、釋放、轉(zhuǎn)運(yùn)、結(jié)合和代謝,從而影響機(jī)體的內(nèi)環(huán)境穩(wěn)定、生殖、發(fā)育及行為。體外毒性試驗(yàn)顯示,硫丹可以激活雌激素受體α(ERα)的AF2功能,使孕酮受體(PR)水平升高和雌激素響應(yīng)基層細(xì)胞增殖[76]。通過(guò)對(duì)ERα轉(zhuǎn)染HeLa細(xì)胞系研究發(fā)現(xiàn),硫丹與雌二醇競(jìng)爭(zhēng)結(jié)合ERα,并可反饋激活ERα,誘導(dǎo)ERE依賴(lài)基因表達(dá)[77]。研究表明,硫丹暴露可下調(diào)胡子鯰(Clarias batrachus)卵巢泛素與Esco2蛋白表達(dá),上調(diào)黑素皮質(zhì)素受體-2蛋白表達(dá)[78];2.5 μg·L-1硫丹與33 μg·L-1氟他胺共同影響下,幼體胡子鯰睪丸發(fā)育相關(guān)轉(zhuǎn)錄因子(dmrt1、sox9a、wt1)、類(lèi)固醇生成酶(11-hsd2、17-hsd12、P450c17)、類(lèi)固醇激素合成急性調(diào)節(jié)蛋白、孤核受體(nr2c1、Ad4BP/SF-1)基因表達(dá)量顯著降低[79]。硫丹是一種類(lèi)雌激素,可模擬雌激素的生理作用促進(jìn)子宮正常發(fā)育[80]。硫丹對(duì)魚(yú)類(lèi)也有類(lèi)雌激素作用,硫丹暴露可誘導(dǎo)斑馬魚(yú)胚胎及幼體卵黃蛋白原(VTG)表達(dá)[81]。對(duì)大西洋鮭(Salmo salar)肝細(xì)胞卵透明帶(ZP)和VTG基因表達(dá)研究[82]也有類(lèi)似作用。正常情況下,只有性成熟的雌性動(dòng)物卵子發(fā)生階段在雌二醇的控制下才能產(chǎn)生ZP和VTG。雄魚(yú)體內(nèi)含有VTG后,雄性特征會(huì)逐步退化,雌性特征會(huì)逐步明顯,雄魚(yú)逐漸雌性化。
甲狀腺是動(dòng)物重要的內(nèi)分泌器官,其分泌的甲狀腺激素T3、T4具有重要的生理功能:促進(jìn)組織分化、生長(zhǎng)與發(fā)育,作用于細(xì)胞核受體,刺激DNA轉(zhuǎn)錄過(guò)程,促進(jìn)mRNA形成,加速蛋白質(zhì)與各種酶生成,增強(qiáng)碳水化合物利用,促進(jìn)脂肪酸及脂肪合成等。魚(yú)類(lèi)甲狀腺素對(duì)代謝活動(dòng)、生長(zhǎng)、滲透壓調(diào)節(jié)、生殖、體色、中樞神經(jīng)活動(dòng)和行為等方面都有影響[83]。某些有機(jī)氯農(nóng)藥可直接與甲狀腺激素受體結(jié)合,激活受體或抑制受體,使激素不能發(fā)揮正常功能。研究顯示,硫丹可影響?hù)~(yú)類(lèi)的甲狀腺激素水平。0.1 μg·L-1硫丹暴露35 d,尼羅羅非魚(yú)(Oreochromis niloticus)血漿T4水平顯著降低,T3水平變化不明顯[84]。同樣研究表明,硫丹可不同程度影響薩羅羅非魚(yú)(Sarotherodon mossambicus)血清T3、T4水平[85]。有研究顯示,硫丹是通過(guò)干擾肝臟Ⅰ型脫碘酶和Ⅲ型脫碘酶活性來(lái)影響甲狀腺激素水平[86]。魚(yú)類(lèi)血漿T3的濃度與腎臟、肝臟中脫碘酶的活性密切相關(guān)[87]。此外,硫丹還可引起魚(yú)類(lèi)催乳激素、皮質(zhì)醇、胰島素水平變化,從而間接影響?hù)~(yú)類(lèi)滲透壓調(diào)節(jié)、應(yīng)激反應(yīng)及碳水化合物代謝等功能[85]。
本文總結(jié)了近年來(lái)硫丹的環(huán)境分布,并介紹了其對(duì)水生生物的毒性及致毒機(jī)制。由于硫丹與環(huán)境的相互作用復(fù)雜,已有的研究結(jié)果和認(rèn)識(shí)還存在一定的局限性,因此有必要進(jìn)一步加強(qiáng)硫丹對(duì)水生生物整個(gè)生命周期及在多種環(huán)境污染物共存條件下硫丹對(duì)水生生物的生理生化及生態(tài)學(xué)研究。另外,應(yīng)進(jìn)一步深入研究硫丹污染脅迫下,特別是低劑量長(zhǎng)期暴露下,生物體內(nèi)生理生化反應(yīng)及分子機(jī)制,對(duì)于進(jìn)一步揭示硫丹生物毒性的分子和細(xì)胞作用機(jī)制及其與機(jī)體健康的內(nèi)在聯(lián)系具有重要的意義。
[1] United Nations Environment Programme. Consideration of a Newly Proposed Chemical, Endosulfan, for Inclusion in Annexes A, B or C of the Convention [C]. Stockholm Convention on Persistent Organic Pollutants Review Committee Third Meeting, 2007
[2] Li Y F, Macdonald R W. Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: A review [J]. Science of the Total Environment, 2005, 342(1): 87-106
[3] Jia H, Li Y F, Wang D, et al. endosulfan in China 1: Gridded usage inventories [J]. Environmental Science and Pollution Research, 2009, 16(3): 295-301
[4] Miles C J, Pfeuffer R J. Pesticides in canals of South Florida [J]. Archives of Environmental Contamination and Toxicology, 1997, 32(4): 337-345
[5] Walse S S, Scott G I, Ferry J L, et al. Stereoselective degradation of aqueous endosulfan in modular estuarinemesocosms: Formation of endosulfan γ-hydroxycarboxylate [J]. Journal of Environmental Monitoring, 2003, 5: 373-379
[6] Pozo K, Harner T, Shoeib M, et al. Passive-sampler derived air concentrations of persistent organic pollutants on a north-south transect in Chile [J]. Environmental Science & Technology, 2004, 38(24): 6529-6537
[7] Daly G L, Lei Y D, Teixeira C, et al. Pesticides in western Canadian mountain air and soil [J]. Environmental Science & Technology, 2007, 41(17): 6020-6025
[8] Liu X, Zhang G, Li J, et al. Seasonal patterns and current sources of DDTs, chlordanes, hexachlorobenzene, and endosulfan in the atmosphere of 37 Chinese cities [J]. Environmental Science & Technology, 2009, 43(5): 1316-1321
[9] Gregor D J, Gummer W D. Evidence of atmospheric transport and deposition of organochlorine pesticides and polychlorinated biphenyls in Canadian Arctic snow [J]. Environmental Science & Technology, 1989, 23: 561-565
[10] Weber J, Halsall C J, Muir D C G, et al. Endosulfan and γ-HCH in the Arctic: An assessment of surface seawater concentrations and airsurface exchange [J]. Environmental Science & Technology, 2006, 40(24): 7570-7576
[11] Muir D C G, Alaee M, Teixeira C, et al. Newcontaminants in the Arctic and Subarctic Atmospheric and Aquatic Environments [R]. CEPA Resources Report-FY 2006-2007. Burlington ON: Environment Canada, Aquatic Ecosystem Protection Research Division, 2007
[12] Qiu X H, Zhu T, Wang F, et al. Air-water gas exchange of organochlorine pesticides in Taihu Lake China [J]. Environmental Science & Technology, 2008, 42(6): 1928-1932
[13] Usenko S, Landers D H, Appleby P G, et al. Current and historical deposition of PBDEs, pesticides, PCBs, and PAHs to Rocky Mountain national park [J]. Environmental Science & Technology, 2007, 41(21): 7235-7241
[14] Stern G A, Braekevelt E, Helm P A, et al. Modem and historical fluxes of halogenated organic contaminants to a lake in the Canadian arctic, as determined from annually laminated sediment cores [J]. Science of the Total Environment, 2005, 342(1-3): 223-2243
[15] 甘居利, 柯常亮, 陳潔文, 等. 華南沿海近江牡蠣體中硫丹殘留特征研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2014, 33(2): 271-275
Gan J L, Ke C L, Chen J W, et al. Residues ofendosulfan in ostrea oysters (Crassostrea rivularis) from near sea water of South China [J]. Journal of Agro-Environment Science, 2014, 33(2): 271-275 (in Chinese)
[16] Kelly B C, Ikonomou M G, Blair J D, et al. Food web-specific biomagnification of persistent organic pollutants [J]. Science, 2007, 317(5835): 236-239
[17] Muralidharan S, Dhananjayan V, Jayanthi P, et al. Organochlorine pesticides in commercial marine fishes of Coimbatore, India and their suitability for human consumption [J]. Environmental Research, 2009, 109(1): 15-21
[18] Johansen P, Muir D C G, Amund G, et al. Human exposure to contaminants in the traditional Greenland diet [J]. Science of the Total Environment, 2004, 331(1-3): 189-206
[19] Zhang Z L, Hong H S, Zhou J L, et al. Fate and assessment of persistent organic pollutants in water and sediment from Minjiang River estuary, Southeast China [J]. Chemosphere, 2003, 52(9): 1423-1430
[20] Shen L, Wania F, Ying D L, et al. Atmospheric distribution and long-range transport behaviour of organochlorine pesticides in North America [J]. Environmental Science & Technology, 2005, 39(2): 409-420
[21] Weber J, Halsall C J, Muir D, et al. endosulfan, a global pesticide: A review of its fate in the environment and occurrence in the Arctic [J]. Science of the Total Environment, 2010, 408(15): 2966-2984
[22] Jonsson C M, Toledo M C F. Bioaccumulation and elimination of endosulfan in the fish Yellow Tetra (Hyphessobrycon bifasciatus) [J]. Bulletin of Environmental Contamination and Toxicology, 1993, 50(4): 572-577
[23] DeLorenzo M E, Taylor L A, Lund S A, et al. Toxicity and bioconcentration potential of the agricultural pesticide endosulfan in phytoplankton and zooplankton [J]. Archives of Environmental Contamination and Toxicology, 2002, 42(2): 173-181
[24] Ramaneswari K, Rao L M. Bioconcentration of endosulfan and monocrotophos by Labeo Rohita and Channa Punciaia [J]. Bulletin of Environmental Contamination and Toxicology, 2000, 65(5): 618-622
[25] Laabs V, Amelung W, Pinto A A, et al. Pesticides in surface water, sediment, and rainfall of the northeastern Pantanal basin, Brazil [J]. Journal of Environmental Quality, 2002, 31(5): 1636-1648
[26] Leonard A W, Hyne R V, Lim R P, et al. Fate and toxicity of endosulfan in Namoi River water and bottom sediment [J]. Journal of Environmental Quality, 2001, 30(3): 750-759
[27] Ghadiri H, Rose C W. Degradation of endosulfan in a clay soil from cotton farms of western Queensland [J]. Journal of Environmental Management, 2001, 62(2): 155-169
[28] USEPA. ECOTOX User Guide: Ecotoxicology Database System, Version 4.0. United States Environmental Protection Agency; 2007c. [EB/OL]. [2011-10-16]. http://www.epa.gov/ecotox. htm
[29] Dimitrie D A, Sparling D W. Joint toxicity of chlorpyrifos and endosulfan to Pacific Treefrog (Pseudacris regilla) Tadpoles [J]. Archives of Environmental Contamination and Toxicology, 2014, 67: 444-452
[30] Barata C, Varo I, Navarro J C, et al. Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds [J]. Comparative Biochemistry and Physiology: Part C, 2005, 140(2): 175-186
[31] Bhavan P S, Zayapragassarazan Z, Geraldine P, et al. Acute toxicity tests of endosulfan and carbaryl for the freshwater prawn, Macrobrachium malcolmsonii (H.Milne Edwards) [J]. Environmental Science and Pollution Research, 1997, 16(5): 5-7
[32] Sumith J A, Parkpian P, Leadprathom N, et al. Dredging influenced sediment toxicity of endosulfan and lindane on black tiger shrimp (Penaeus monodon Fabricius) in Chantaburi River estuary in Thailand [J]. International Journal of Sediment Research, 2009, 24(4): 455-464
[33] Schimmel S C, Patrick J M, Wilson A J, et al. Acute Toxicity to and Bioconcentration of Endosulfan by Estuarine Animals [M]. USA: ASTM STP634, American Society for Testing and Material, Philadelphia, 1977: 241-252
[34] Wirth E F, Lund S A, Fulton M H, et al. Determination of acute mortality in adults and sublethal embryo responses of Palaemonetes pugio to endosulfan and methoprene exposure [J]. Aquatic Toxicology, 2001, 53(1): 9-18
[35] Johnson W W, Finley M T. Handbook of Acute Toxicity of Chemicals to Fish and Aquatic Invertebrates [M]. Washington DC: Resource Publication 137. U.S. Department of Interior, Fish and Wildlife Service, 1980: 6-56
[36] 陳尚朝, 陳敏東, 宋玉芝, 等. 2種有機(jī)殺蟲(chóng)劑對(duì)中華絨螯蟹毒性研究[J]. 環(huán)境科學(xué)與技術(shù), 2014, 37(9): 5-9
Chen S C, Chen M D, Song Y Z, et al.Toxic effects of two organic pesticides on Eriocheir sinensis [J]. Environmental Science & Technology, 2014, 37(9): 5-9 (in Chinese)
[37] McLeese D W, Metcalfe C D. Toxicities of eight organochlorine compounds in sediment and seawater to Crangon septemspinosa [J]. Bulletin of Environmental Contamination and Toxicology, 1980, 25(6): 921-928
[38] Sumith J A, Parkpian P. Behaviour of Endosulfan and Lindane During Sediment Elutriate and Water Spike Toxicity Tests Under Saline Conditions [M]. Sri Lanka: Annals of the Sri Lanka Department of Agriculture, Vol. 10, 2008: 231-243
[39] Daoud D, Fairchild W L, Comeau M, et al. Impact of an acute sublethal exposure of endosulfan on early juvenile lobster (Homarus americanus) [J]. Aquatic Science and Technology, 2014, 2(2): 14-40
[40] 胡國(guó)成, 許木啟, 戴家銀, 等. 硫丹對(duì)水生生物毒理效應(yīng)的研究進(jìn)展[J]. 中國(guó)水產(chǎn)科學(xué), 2007, 14(6): 1042-1047
Hu G C, Xu M Q, Dai J Y, et al. Progress in the study of toxicological effects of endosulfan on aquatic organisms [J]. Journal of Fishery Sciences of China, 2007, 14(6): 1042-1047 (in Chinese)
[41] Pandey S, Nagpure N S, Kumar R, et al. Genotoxicity evaluation of acute doses of endosulfan to freshwater teleost Channa punctatus (Bloch) by alkaline single-cell gel electrophoresis [J]. Ecotoxicology and Environmental Safety, 2006, 65(1): 56-61
[42] Capkin E, Altinok I, Karahan S, et al. Water quality and fish size affect toxicity of endosulfan, an organochlorine pesticide, to rainbow trout [J]. Chemosphere, 2006, 64(10): 1793-1800
[43] 胡國(guó)成, 甘煉, 吳天送, 等. 硫丹對(duì)斑馬魚(yú)的毒性效應(yīng)[J]. 動(dòng)物學(xué)雜志, 2008, 43(4): 1-6
Hu G C, Gan L, Wu T S, et al. Toxicological effects of endosulfan on Danio rerio [J]. Chinese Journal of Zoology, 2008, 43(4): 1-6 (in Chinese)
[44] Hii Y S, Lee M Y, Chuah T S, et al. Acute toxicity of organochlorine insecticide endosulfan and its effect on behaviour and some hematological parameters of Asian swamp eel (Monopterus albus, Zuiew) [J]. Pesticide Biochemistry and Physiology, 2007, 89(1): 46-53
[45] Dutta H M, Arends D A. Effects of endosulfan on brain acetylcholinesterase activity in juvenile bluegill sunfish [J]. Environmental Research Letters, 2003, 91(3): 157-162
[46] 李思雯, 肖蓉, 程李芳, 等. 硫丹和高效氯氟氰菊酯對(duì)葛氏鱸塘鱧的急性毒性研究[J]. 安徽農(nóng)業(yè)科學(xué), 2014, 42(11): 3282-3283, 3286
Li S W, Xiao R, Cheng L F, et al. Study on the acute toxicity of endosulfan and lambda-cyhalothrin on Perccottus glenii [J]. Journal of Anhui Agricultural Sciences, 2014, 42(11): 3282-3283, 3286 (in Chinese)
[47] 武煥陽(yáng), 靳濤, 丁詩(shī)華, 等. 硫丹對(duì)草魚(yú)魚(yú)種的急性毒性效應(yīng)[J]. 水產(chǎn)科學(xué), 2012, 31(1): 37-40
Wu H Y, Jin T, Ding S H, et al. Acute toxicity of endosulfan to juvenile grass carp Ctenopharyngodon idellus [J]. Fisheries Science, 2012, 31(1): 37-40 (in Chinese)
[48] Carriger J F, Hoang T C, Rand G M, et al. Acute toxicity and effects analysis of endosulfan sulfate to freshwater fish species [J]. Archives of Environmental Contamination and Toxicology, 2011, 60(2): 281-289
[49] Jia Z, Misra H P. Developmental exposure to pesticides zineb and/or endosulfan renders the nigrostriatal dopamine system more susceptible to these environmental chemicals later in life [J]. Neurotoxicology, 2007, 28(4): 727-735
[50] Scremin O U, Chialvo D R, Lavarello S, et al. The environmental pollutant endosulfan disrupts cerebral cortical function at low doses [J]. Neurotoxicology, 2011, 32(1): 31-37
[51] Garg U K, Pal A K, Jha G J, et al. Pathophysiological effects of chronic toxicity with synthetic pyrethroid, organophosphate and chlorinated pesticides in broiler chicks [J]. International Immunopharmacology, 2004, 4(13): 709-722
[52] Kumar N, Prabhu P A J, Pal A K, et al. Anti-oxidative and immuno-hematological status of Tilapia (Oreochromis mossambicus) during acute toxicity test of endosulfan [J]. Pesticide Biochemistry and Physiology, 2011, 99(1): 45-52
[53] Ballesteros M L, Durando P E, Nores M L, et al. endosulfan induces changes in spontaneous swimming activity and acetylcholinesterase activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes) [J]. Environmental Pollution, 2009, 157(5): 1573-1580
[54] Pereira V M, Bortolotto J W, Kist L W, et al. endosulfan exposure inhibits brain AChE activity and impairs swimming performance in adult zebrafish (Danio rerio) [J]. Neurotoxicology, 2012, 33(3): 469-475
[55] Piovavroval N B. Effects of cadmium on ciliary and ATPase activity in the gills of freshwater mussel Anodonta cygnea [J]. Comparative Biochemistry and Physiology, 1992, 103(3): 27-30
[56] Sharma R M. Effect of endosulfan on adenosine triphosphatase (ATPase) activity in liver, kidney, and muscles of Channa gachua [J]. Bulletin of Environmental Contamination and Toxicology, 1988, 41(3): 317-323
[57] 熊昭娣, 戴習(xí)林, 謝劍, 等. 硫丹對(duì)羅氏沼蝦溞狀幼體及仔蝦的急性毒性作用[J]. 廣東農(nóng)業(yè)科學(xué), 2013, 11: 111-114
Xiong Z D, Dai X L, Xie J, et al.Acute toxicity of endosulfan to zoea and postlarve of Macrobrachium rosenbergii [J]. Guangdong Agricultural Sciences, 2013, 11: 111-114 (in Chinese)
[58] Sarma K, Pal A K, Sahu N P, et al. Dietary high protein and vitamin C mitigates endosulfan toxicity in the spotted murrel, Channa punctatus (Bloch, 1793) [J]. Science of the Total Environment, 2009, 407(12): 3668-3673
[59] Glover C N, Petri D, Tollefsen K E, et al. Assessing the sensitivity of Atlantic salmon (Salmo salar) to dietary endosulfan exposure using tissue biochemistry and histology [J]. Aquatic Toxicology, 2007, 84(3): 346-355
[60] Velasco S Y M, Handy R D, Katherine A, et al. endosulfan affects health variables in adult zebrafish (Danio rerio) and induces alterations in larvae development [J]. Comparative Biochemistry and Physiology, Part C, 2011, 153: 1-9
[61] Valavanidis A, Vlahogianni T, Dassenakis M, et al. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants [J]. Ecotoxicology and Environmental Safety, 2006, 64(2): 178-189
[62] Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine [M]. Oxford: Oxford University Press, 1999: 543
[63] Ledirac N, Antherieu S, d'Uby A D, et al. Effects of organochlorine insecticides on MAP kinase pathways in human HaCat keratinocytes: Key role of reactive oxygen species [J]. Toxicological Sciences, 2005, 86(2): 444-452
[64] Dong M, Zhu L S, Shao B, et al. The effects of endosulfan on cytochrome P450 enzymes and glutathione S-transferases in zebrafish (Danio rerio) livers [J]. Ecotoxicology and Environmental Safety, 2013, 92(1): 1-9
[65] 武煥陽(yáng), 靳濤, 許莉佳, 等. 硫丹對(duì)草魚(yú)Ⅰ相Ⅱ相酶活性及DNA損傷的影響[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2012, 28(1): 54-60
Wu H Y, Jin T, Xu L J, et al. Effects of endosulfan on phase Ⅰ and Ⅱ enzyme activities and DNA damage of Ctenopharyngodon idellus [J]. Rural Eco-Environment, 2012, 28(1): 54-60 (in Chinese)
[66] Menone M L, Pesce S F, Díaz M P, et al. endosulfan induces oxidative stress and changes on detoxication enzymes in the aquatic macrophyte Myriophyllum quitense [J]. Phytochemistry, 2008, 69(5): 1150-1157
[67] Dorval J, Leblond V S, Hontela A, et al. Oxidative stress and loss of cortisol secretion in adrenocortical cells of rainbow trout (Oncorhynchus mykiss) exposed in vitro to endosulfan, an organochlorine pesticide [J]. Aquatic Toxicology, 2003, 63(3): 229-241
[68] Ballesteros M L, Wunderlin D A, Bistoni M A, et al. Oxidative stress responses in different organs of Jenynsia multidentata exposed to endosulfan [J]. Ecotoxicology and Environmental Safety, 2009, 72(1): 199-205
[69] Shao B, Zhu L S, Dong M, et al. DNA damage and oxidative stress induced by endosulfan exposure in zebrafish (Danio rerio) [J]. Ecotoxicology, 2012, 21(5): 1533-1540
[70] 武煥陽(yáng), 丁詩(shī)華, 唐毅, 等. 硫丹對(duì)草魚(yú)外周血紅細(xì)胞微核及核異常的影響[J]. 淡水漁業(yè), 2011, 41(5): 28-34
Wu H Y, Ding S H, Tang Y, et al. Effects of endosuifan on micronuclei and nuclear anomalies in peripheral blood erythrocytes of Ctenopharyngodon idellus [J]. Freshwater Fisheries, 2011, 41(5): 28-34 (in Chinese)
[71] 武煥陽(yáng), OSCAR Ortegon, 許莉佳, 等. 硫丹對(duì)草魚(yú)乙酰膽堿酯酶及抗氧化酶活性的影響[J]. 生態(tài)環(huán)境學(xué)報(bào), 2011, 20(10): 1496-1502
Wu H Y, Oscar O, Xu L J, et al. Effects of endosulfan on activities of acetylcholinesterase and antioxidant enzyme of Ctenopharyngodon idellus [J]. Ecology and Environmental Sciences, 2011, 20(10): 1496-1502 (in Chinese)
[72] Tellez B M C, Santerre A, Casas S J, et al. Oxidative stress in macrophages from spleen of Nile tilapia (Oreochromis niloticus) exposed to sublethal concentration of endosulfan [J]. Fish & Shellfish Immunology, 2009, 27(2): 105-111
[73] Brunelli E, Bernabòa I, Berg C, et al. Environmentally relevant concentrations of endosulfan impair development, metamorphosis and behaviour in Bufo bufo tadpoles [J]. Aquatic Toxicology, 2009, 91(2): 135-142
[74] Pérez D J, Menone M L, Camadro E L, et al. Genotoxicity evaluation of the insecticide endosulfan in the wetland macrophyte Bidens laevis L. [J]. Environmental Pollution, 2008, 153(3): 695-698
[75] 陶顏霞. 菲律賓蛤仔(Venerupis philippinarum)在硫丹脅迫下毒性效應(yīng)與分子生物標(biāo)志物的研究[D]. 青島: 中國(guó)海洋大學(xué), 2013: 26-28
Tao Y X. Study of toxicity effects and molecular biomarkers of clam Venerupis philippinarum exposed to endosulfan [D]. Qingdao: Ocean University of China, 2013: 26-28 (in Chinese)
[76] Hunter D S, Hodges L C, Vonier P M, et al. Estrogen receptor activation via activation function 2 predicts agonism of xenoestrogens in normal and neoplastic cells of the uterine myometrium [J]. Cancer Research, 1999, 59: 3090-3099
[77] Lemaire G, Mnif W, Mauvais P, et al. Activation of alpha- and beta-estrogen receptors by persistent pesticides in reporter cell lines [J]. Life Sciences, 2006, 79(12): 1160-1169
[78] Laldinsangi C, Vijayaprasadarao K, Rajakumar A, et al. Two-dimensional proteomic analysis of gonads of air-breathing catfish, Clarias batrachus after the exposure of endosulfan and malathion [J]. Environmental Toxicology and Pharmacology, 2014, 37(3): 1006-1014
[79] Rajakumar A, Singh R, Chakrabarty S, et al. endosulfan and flutamide impair testicular development in the juvenile Asian catfish, Clarias batrachus [J]. Aquatic Toxicology, 2012, 110-111: 123-132
[80] Varayoud J, Monje L, Bernhardt T, et al. endosulfan modulates estrogen-dependent genes like a non-uterotrophic dose of 17β-estradiol [J]. Reproductive Toxicology, 2008, 26(2): 138-145
[81] Chow W S, Chan W K L, Chan K M, et al. Toxicity assessment and vitellogenin expression in zebrafish (Danio rerio) embryos and larvae acutely exposed to bisphenol A, endosulfan, heptachlor, methoxychlor and tetrabromobisphenol A [J]. Journal of Applied Toxicology, 2013, 33(7): 670-678
[82] Kr?vel A V, S?fteland L, Torstensen B E, et al. endosulfan in vitro toxicity in Atlantic salmon hepatocytes obtained from fish fed either fish oil or vegetable oil [J]. Comparative Biochemistry and Physiology, Part C, 2010, 151(2): 175-186
[83] 林浩然. 魚(yú)類(lèi)生理學(xué)(第二版)[M]. 廣州: 廣東高等教育出版社, 2007: 241
[84] Coimbra A M, Figueiredo F A, Reis H M A, et al. Nile tilapia (Oreochromis niloticus), liver morphology, CYP1A activity and thyroid hormones after endosulfan dietary exposure [J]. Pesticide Biochemistry and Physiology, 2007, 89(3): 230-236
[85] Thangavel P, Sumathiral K, Maheswari S, et al. Hormone profile of an edible, freshwater teleost, Sarotherodon mossambicus (Peters) under endosulfan toxicity [J]. Pesticide Biochemistry and Physiology, 2010, 97(3): 229-234
[86] Coimbra A M, Reis H M A, Darras V A, et al. Circulating thyroid hormone levels and iodothyronine deiodinase activities in Nile Tilapia (Oreochromis niloticus) following dietary exposure to endosulfan and aroclor 1254 [J]. Comparative Biochemistry and Physiology, Part C, 2005, 141(1): 8-14
[87] Mol K A, Vandergeyten S, Darras V M, et al. Characterization of iodothyronine outer ring and inner ring deiodinase activities in the blue tilapia, Oreochromis aureus [J]. Endocrinology, 1997, 138(5): 1787-1793
◆
Research Progress in the Environmental Behavior and Water Ecotoxicological Effects of Endosulfan
Wu Huanyang1,2, Ding Shihua2,*
1. College of Environment and Energy, South China University of Technology, Guangzhou 510006, China 2. College of Animal Science and Technology, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
15 October 2014 accepted 6 February 2015
As a typical persistent organic pollutants, endosulfan, the organochlorine pesticide, has been widely used in agricultural production in China. Endosulfan could go into the water envronment through the surface runoff, leaching and wet/dry deposition, which will have a direct impact on aquatic macroohytes and planktonic algae, and produce a certain amount of toxic effects on fish and other aquatic animals as well. Because of its longer half-life period, better migration abilities and higher enrichment, endosulfan could be detectable widely in the water body, herein the safety evaluation of endosulfan in the aquatic ecosystem is very important. Endosulfan is so highly-toxic to aquatic organisms that it could have influences on normally biological receptor-ligand function, membrane damage, active oxygen metabolism and have a potential role of endocrine disruption. The environmental behavior effects and several toxic mechanisms of endosulfan on aquatic organisms will be reviewed, and the future prospects in this filed will be also discussed.
endosulfan; POPs; aquatic organisms; environmental behaviors; toxicology effects
國(guó)家自然科學(xué)基金項(xiàng)目(30670226);重慶市科委農(nóng)業(yè)科技成果轉(zhuǎn)化資金項(xiàng)目(cstc2013jcsf-nycgzhA80008)
武煥陽(yáng)(1986-),男,博士,研究方向?yàn)榄h(huán)境生態(tài)毒理學(xué),E-mail: wuhuanyang@163.com;
*通訊作者(Corresponding author), E-mail: shhding@yahoo.com.cn
10.7524/AJE.1673-5897.20141015002
2014-10-15 錄用日期:2015-02-06
1673-5897(2015)2-113-10
X171.5
A
丁詩(shī)華(1966—),男,遺傳學(xué)博士,教授,從事水產(chǎn)動(dòng)物生理及研究環(huán)境生態(tài)學(xué)研究,發(fā)表學(xué)術(shù)論文50余篇。
武煥陽(yáng), 丁詩(shī)華. 硫丹的環(huán)境行為及水生態(tài)毒理效應(yīng)研究進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào), 2015, 10(2): 113-122
Wu H Y, Ding S H. Research progress in the environmental behavior and water ecotoxicological effects of endosulfan [J]. Asian Journal of Ecotoxicology, 2015, 10(2): 113-122 (in Chinese)