馮小迪 冀明 史本康
【摘要】 目的:研究雌性糖尿病大鼠尿道中α1受體和NGF/proNGF的表達,探討糖尿病尿道功能障礙的發(fā)病機制。方法:利用膀胱尿道同步測壓檢測尿道舒張功能,分別用RT-qPCR、ELISA和Western blotting檢測糖尿病大鼠尿道中α1受體、NGF、proNGF和P75NTR受體基因及蛋白的表達水平。結果:糖尿病組膀胱內(nèi)壓(BP)最高值低于對照組,比較差異有統(tǒng)計學意義(P<0.05)。糖尿病組大鼠最小尿道充盈壓(UPP)高于對照組,應用α1受體拮抗劑坦索羅辛后UPP基線低于用藥前,比較差異均有統(tǒng)計學意義(P<0.05)。糖尿病組α1A和α1D基因及蛋白表達水平均高于對照組;糖尿病組NGF基因及蛋白表達水平均低于對照組,同時proNGF蛋白表達水平高于對照組,導致NGF/proNGF比值降低;糖尿病組P75NTR基因及蛋白表達水平均低于對照組,以上比較差異均有統(tǒng)計學意義(P<0.05)。兩組sortilin蛋白表達水平比較,差異無統(tǒng)計學意義(P>0.05)。結論:α1受體的高表達和NGF/proNGF比值降低可能在糖尿病尿道功能障礙的發(fā)病過程中起著重要作用,應用α1受體拮抗劑可以改善尿道功能。
【關鍵詞】 糖尿病大鼠; α1受體; NGF; proNGF; P75NTR受體; 尿流動力學
【Abstract】 Objective:To investigate the expression of α1-adrenoceptor and NGF/proNGF in the urethra of diabetic rats and to explore the pathogenesis of urethra dysfunction of diabetes.Method:The urethral diastolic function was determined by bladder urethral pressure measurement.The expression levels of gene and protein of α1-adrenoceptor,NGF,proNGF and P75NTR in the urethra of diabetic rats were measured by using real-time quantitative polymerase chain reaction(RT-qPCR),enzyme-linked immunosorbent assay(ELISA) and Western blotting.Result:The maximum value of intravesical pressure in the diabetic group was lower than that in the control group,the difference was statistically significant(P<0.05).The lowest urethral pressure(UPP) of the diabetic group was higher than that of the control group,the base line of UPP after the usage of Tamsulosin(α1-adrenoceptor antagonist) was lower than that before the drug use,the differences were statistically significant(P<0.05).The expression levels of gene and protein of α1A and α1D in the diabetic group were higher than those in the control group,the expression levels of gene and protein of NGF in the diabetic group were lower than those in the control group,but the protein expression level of proNGF in the diabetic group was higher than that in the control group,which made the specific value of NGF/proNGF lower,the expression levels of gene and protein of P75NTR in the diabetic group were lower than those in the control group,the differences above were all statistically significant(P<0.05).The difference in the protein expression level of sortilin between the two groups was not statistically significant(P>0.05).Conclusion:The high expression of α1-adrenoceptor and the reduction of NGF/proNGF value may play an important role in the pathogenic process of urethra dysfunction of diabetes,the application of α1-adrenoceptor antagonist can effectively improve the urethra function.
【Key words】 Diabetic rats; α1-adrenoceptor; NGF; proNGF; p75NTR; Urodynamics
First-authors address:Hiser Medical Group of Qingdao City,Qingdao 266033,China
doi:10.3969/j.issn.1674-4985.2015.35.001
糖尿病膀胱病變主要以膀胱感覺受損、膀胱容量增加、逼尿肌收縮力受損和殘余尿量增加為特點,上述損害主要歸咎于糖尿病導致的外周神經(jīng)病變[1-4]。與糖尿病膀胱功能障礙相比,糖尿病尿道功能障礙的發(fā)病機制闡述不夠明確,之前的研究主要集中在尿流動力學角度[5-7]。研究表明,糖尿病可以提高尿道平滑肌對α1受體激動劑的敏感性,同時α1受體抑制劑可以緩解糖尿病尿道功能障礙,但是尿道α1受體的表達方面的研究沒有得到應有的重視[5,8]。早期的研究表明,糖尿病患者支配尿道平滑肌的副交感和交感神經(jīng)的病變可能最終導致尿道功能障礙。眾所周知,神經(jīng)生長因子(NGF)屬于神經(jīng)營養(yǎng)因子家族,存在于副交感和交感神經(jīng)系統(tǒng)中,對神經(jīng)元的存活、營養(yǎng)和發(fā)育起著重要的作用[9-11]。研究表明,NGF是由靶器官通過逆向軸漿運輸來營養(yǎng)神經(jīng)元,上述過程的缺失或弱化可能導致糖尿病神經(jīng)病變[12-13]。同其他NGF類似,組織首先合成NGF的前體proNGF,隨后經(jīng)過蛋白酶的剪切生成成熟的NGF。proNGF被認為與P75NTR受體有較高親和力,并且可以導致由P75NTR受體介導的神經(jīng)元凋亡[14-15]。因此尿道中NGF/proNGF和P75NTR受體的表達值得進一步研究。本文就此問題展開研究,現(xiàn)報道如下。
1 材料與方法
1.1 實驗動物 雌性Whistar大鼠30只,重量230~250 g,購自山東大學實驗動物中心(許可證號:SCXX20050015),采用隨機數(shù)字表法分為糖尿病組(DM)和對照組(control),每組15只。
1.2 方法
1.2.1 建立糖尿病大鼠模型 禁食18 h后,糖尿病組大鼠給予單次腹腔注射鏈脲菌素(STZ,Sigma公司)65 mg/kg,對照組注射同等體積枸櫞酸緩沖液。72 h后尾靜脈采血測血糖(羅氏卓越型血糖儀),確認空腹血糖大于300 mg/dL。
1.2.2 膀胱尿道同步測壓 建模成功8周后,等容條件下檢測膀胱內(nèi)壓(BP)及尿道充盈壓(UPP)。按照Torimoto等[7]設計的方法,在氟烷吸入麻醉下,以PE50聚乙烯導管置入頸靜脈以便給藥。下腹正中切口,分離兩側輸尿管,遠端結扎,近端分別曠置體外。取雙套管由膀胱頂部插入并固定于尿道內(nèi)口,外管為PE160,用以隔離膀胱和尿道,并可持續(xù)注入生理鹽水充盈尿道,內(nèi)管為PE50,用以測定尿道充盈壓。另外再置入一PE50導管于膀胱內(nèi),充盈膀胱并測定膀胱等容收縮壓。手術結束后,更換為烏拉坦麻醉,通過膀胱導管緩慢注入生理鹽水誘發(fā)膀胱收縮并記錄膀胱等容收縮壓,通過雙套管外管外0.075 mL/s持續(xù)注入生理鹽水灌注尿道,并經(jīng)內(nèi)管記錄尿道充盈壓。隨后靜脈應用坦索羅辛(0.5 mg/kg)后重復實驗。實驗結束后留取尿道標本。
1.2.3 酶聯(lián)免疫吸附試驗(ELISA) 尿道組織低溫快速勻漿后加入1 mL pH7.4 Tris/EDTA緩沖液(用前新鮮加入cocktail蛋白酶抑制劑混合物),4 ℃,12 000 r/min,離心5 min,取上清。BCA法測樣本上清液的總蛋白濃度,作為目標蛋白NGF的參照。四倍體積杜氏磷酸緩沖液(DPBS 0.02% KCl,0.8% NaCl,0.02% KH2PO4,0.115% Na2HPO4,0.0133% CaCl2·2H2O及0.01%MgCl2·6H2O,pH 7.35)稀釋樣本,1∶50加入1 mol/L HCl,調(diào)節(jié)樣品pH值至2.0~3.0,充分酸化樣品,以利于受體上的NGF的解離;充分混合后于室溫下(25 ℃)下靜置;加入等體積的1 mol/L NaOH,調(diào)節(jié)pH至7.6;酸化后的樣本于-20 ℃保存。應用大鼠NGF ELISA試劑盒(美國Promega公司)檢測樣本NGF含量[16]。
1.2.4 實時定量PCR(RT-qPCR) Trizol法(美國Invitrogen公司)提取大鼠尿道組織RNA,紫外分析測定RNA的濃度及純度。應用Toyobo反轉錄試劑盒反轉錄得到互補DNA。引物設計和合成交由濟南博尚生物公司完成,引物序列如下:α1A receptor:forward 5-ACTGGATTCGCAGGACATTCT-3,reverse 5-TGGCTGCCGTTCTTCCTAGT-3;α1Dreceptor:forward 5-GGCACAGACAGGCACAATGA-3,reverse 5-CTGTTGCTCTTCCGCTCTGG-3;NGF:forward 5-AACAGGACTCACAGGAGCAA-3,reverse 5-CTTCCTGCTGAGCACACACA-3;p75:forward 5CGTGAACCAGACGCCCCCAC-3,reverse 5-CACGCTTGGTCAGGGGCAGG-3;β-tubulin: forward 5GCCAGAGTGGTGCAGGAAATA-3,reverse 5-TCACCACGTCCAGGACAGAGT-3。使用羅氏RT-qPCR擴增儀,應用Takara SYBR Green試劑盒,采用兩步法實時定量PCR,每次在延伸階段讀取吸光度值,(1)95° C預變性30 s;(2)95° C變性5 s,60° C退火20 s,共40循環(huán)。計算每個樣本的目的/內(nèi)參比值,確定目的基因的表達水平。
1.2.5 蛋白電泳(Western blotting) 尿道組織冰上快速勻漿,RIPA裂解液冰上裂解30 min,12 000 r/min 4 ℃離心20 min,BCA法測定總蛋白濃度,加入5×上樣緩沖液煮沸4 min后-20 ℃保存。配置10%凝膠,每孔30 μg上樣,待溴酚藍電泳至凝膠底部時切斷電流,將蛋白電轉至PVDF膜上,5%奶粉封閉1 h后,加入一抗(兔抗大鼠α1A和α1D多克隆抗體,兔抗大鼠NGF抗體1∶500,兔抗大鼠P75受體抗體1∶500,兔抗大鼠β-Tubulin內(nèi)參抗體1∶500)4 ℃過夜,TBST洗膜后加入羊抗兔二抗1∶4000 25 ℃ 2 h,Millipore發(fā)光液顯色,Kodak2000M曝光系統(tǒng)采集和分析圖像。
1.3 統(tǒng)計學處理 采用Excel建立數(shù)據(jù),SPSS 18.0進行統(tǒng)計學分析,計量資料以(x±s)表示,比較采用t檢驗(t檢驗),以P<0.05表示差異有統(tǒng)計學意義。
2 結果
2.1 大鼠一般狀況 糖尿病組大鼠多飲、多食、多尿癥狀顯著,體重較對照組逐漸降低,解剖過程中發(fā)現(xiàn)腹部皮下脂肪含量較少,兩組8周體重、膀胱尿道濕重、血糖及每日尿量比較,差異均有統(tǒng)計學意義(P<0.05),見表1。
2.2 膀胱尿道同步測壓 尿流動力學檢測顯示(圖1),對照組和糖尿病組BP基線大致相等,分別為(13.36±1.34)cm H2O和(12.24±1.57)cm H2O,比較差異無統(tǒng)計學意義(P>0.05)。糖尿病組BP最高值(32.61±2.24)cm H2O顯著低于對照組的(46.80±3.18)cm H2O,比較差異有統(tǒng)計學意義(P<0.05)。糖尿病組BP基線在坦索羅辛應用后為(13.06±0.94)cm H2O,BP最高值在坦索羅辛應用后為(31.97±2.31)cm H2O,與應用前比較差異均無統(tǒng)計學意義(P>0.05)。對照組和糖尿病組UPP基線大致相等,分別為(50.13±1.27)cm H2O和(51.10±1.92)cm H2O,比較差異無統(tǒng)計學意義(P>0.05)。糖尿病組UPP最低值(35.21±2.67)cm H2O高于對照組的(16.80±1.28)cm H2O,比較差異有統(tǒng)計學意義(P<0.05)。應用坦索羅辛后,糖尿病組UPP基線(26.95±1.52)cm H2O顯著低于應用坦索羅辛前,同時UPP最低值(15.74±2.43)cm H2O也顯著低于應用坦索羅辛前,比較差異均有統(tǒng)計學意義(P<0.05)。
2.3 ELISA試驗結果 糖尿病組NGF蛋白表達水平(52.05±7.77)pg/μg低于對照組的(99.59±10.76)pg/μg,比較差異有統(tǒng)計學意義(P<0.05),見圖2。
2.4 RT-qPCR測定結果 糖尿病組大鼠尿道組織中NGF基因表達水平(0.164±0.020)低于對照組的(0.283±0.051),比較差異有統(tǒng)計學意義(P<0.05)。糖尿病組大鼠尿道組織中α1A基因表達水平(0.372±0.062)高于對照組的(0.095±0.013),α1D基因表達水平(0.289±0.045)高于對照組的(0.127±0.014),比較差異均有統(tǒng)計學意義(P<0.05)。糖尿病組大鼠P75NTR受體基因表達水平(0.020±0.0067)低于對照組的(0.048±0.0103),比較差異有統(tǒng)計學意義(P<0.05),見圖3。
基因表達
2.5 蛋白電泳(Western blotting) 糖尿病組大鼠尿道組織中α1A蛋白表達水平(3.08±0.114)高于對照組的(0.34±0.059),α1D蛋白表達水平(2.47±0.214)高于對照組的(0.29±0.064),比較差異均有統(tǒng)計學意義(P<0.05)。糖尿病組大鼠P75NTR受體蛋白表達水平(0.528±0.135)低于對照組的(1.007±0.113),比較差異有統(tǒng)計學意義(P<0.05)。對照組和糖尿病組sortilin蛋白表達水平分別為(1.147±0.093)和(1.056±0.135),比較差異無統(tǒng)計學意義(P>0.05),見圖4。
3 討論
本研究表明糖尿病可以導致尿道功能障礙,同時應用α1受體激動劑可以改善癥狀,通過檢測尿道組織中α1受體的表達情況可以來解釋上述現(xiàn)象。已有研究表明,交感和副交感神經(jīng)在尿道平滑肌的神經(jīng)支配中起著重要的作用,其中NGF起著橋梁的作用,同時NGF也對維持膀胱和尿道的感覺起重要作用。因此筆者研究NGF/proNGF通路,并且發(fā)現(xiàn)糖尿病大鼠尿道中NGF表達降低,proNGF表達上升。
眾所周知,尿道括約肌包括交感和副交感神經(jīng)支配的平滑肌,還有軀體運動神經(jīng)支配的橫紋肌。α1受體介導交感神經(jīng)支配的尿道平滑肌收縮,NO介導副交感神經(jīng)支配的尿道平滑肌舒張[5,7-8]。在本研究中,測量UPP的同時并未應用筒箭毒消除橫紋肌的影響,但是α1受體拮抗劑的作用足以說明α1受體在糖尿病尿道功能障礙中起著重要作用。
NGF在交感神經(jīng)和外周感覺神經(jīng)的存活、生長和發(fā)育過程中起著重要的作用,與其他神經(jīng)營養(yǎng)因子家族成員類似,組織首先合成30 KD proNGF,隨后剪切合成14 KD成熟NGF。上述過程可以解釋某些組織中NGF基因和蛋白的表達不一致。在中樞和外周神經(jīng)組織中主要以porNGF的形式存在,成熟NGF的含量極低,之前的研究表明靶器官到神經(jīng)的NGF的逆行軸漿運輸可能在糖尿病神經(jīng)病變中起著重要作用,同時proNGF介導神經(jīng)元凋亡[12,14]。本研究同之前的幾項研究結果一致,糖尿病大鼠組織中NGF的基因和蛋白表達水平均顯著降低[17-18]。基于上述結果,曾有多項實驗嘗試外源性補充NGF來治療糖尿病神經(jīng)病變,取得一定療效[19]。
組織中存在兩類NGF受體:高親和力的酪氨酸激酶受體A(TrkA)和P75NTR受體。前者與磷酯酶C、絲氨酸激活的蛋白激酶和PI3K通路相偶聯(lián),下游的效應器包括蛋白激酶B(Akt)、Bad、Foekhead1、Bcl-2和cAMP反應元件結合蛋白。其中,Akt在促進神經(jīng)元存活過程中起著重要的作用[20]。盡管NGF可獨立激活TrkA介導的信號通路,但是研究表明NGF結合P75NTR受體可以強化上述過程[21-23]。Roux等[24]的研究表明,P75NTR受體可以激活Akt通路,促進PC12細胞的存活。本研究記過表明NGF及其P75NTR受體表達的降低在糖尿病神經(jīng)病變發(fā)病過程中起著重要作用,這與其他相關研究結果相吻合[18]。
與成熟NGF不同,proNGF對P75NTR受體的親和力高于TrkA受體。P75NTR受體和sortilin組成proNGF的結合位點。缺乏sortilin的情況下,proNGF剪切合成為成熟NGF。proNGF誘導神經(jīng)元凋亡的具體機制仍未闡明,一種可能的機制是proNGF與sortilin/P75NTR結合形成三聚體,激活下游c-Jun N末端激酶-3、caspase-6和caspase-9,或者通過非細胞介導的TNF-α的釋放來誘導凋亡[25]。在對前腦的研究中發(fā)現(xiàn)激活PI3K/Akt和絲裂原激活的蛋白激酶/Erk途徑可以有效抑制proNGF介導的細胞凋亡,揭示了激活Trk是神經(jīng)元存活和凋亡力量對比中的一個關鍵點,提示proNGF通過抑制Akt和Erk的激活來促進凋亡[26]。在本研究中,糖尿病大鼠尿道中proNGF的表達顯著提高。假定神經(jīng)組織中NGF和proNGF之間存在一個平衡,后者的增加抑制Akt和Erk通過,從而導致神經(jīng)元的凋亡。P75NTR受體對神經(jīng)元的作用存在較大爭議,筆者認為其主要起正面作用,促進神經(jīng)元存活。
失去交感神經(jīng)的支配可以導致α1受體的上調(diào)。Baglole等[27]發(fā)現(xiàn)急性去交感神經(jīng)可以上調(diào)小腸絨毛α1受體的表達。按照上述研究,可以推測NGF/proNGF通路的損傷導致交感神經(jīng)支配的障礙,進而導致α1受體的上調(diào),上述過程可能是糖尿病尿道功能障礙的發(fā)病機制。
本研究表明糖尿病可以導致尿道功能障礙,應用α1受體拮抗劑可以改善尿道功能。尿道中NGF/proNGF通路的改變導致外周神經(jīng)的損傷及α1受體表達的上調(diào)。總之,α1受體的表達上調(diào)和NGF/proNGF通路的改變在糖尿病尿道功能障礙中起著重要的作用。
參考文獻
[1] Rose A,Thimme A,Halfar C,et al.Severity of urinary incontinence of nursing home residents correlates with malnutrition, dementia and loss of mobility[J].Urologia Internationalis,2013,91(2):165-169.
[2] Frimodt-M?ller C.Diabetic cystopathy:epidemiology and related disorders[J].Annals of Internal Medicine,1980,92(2 Pt 2):318-321.
[3] Ueda T,Yoshimura N,Yoshida O.Diabetic cystopathy:relationship to autonomic neuropathy detected by sympathetic skin response[J].Journal of Urology,1997,157(2):580-584.
[4] Mitsui T,Kakizaki H,Kobayashi S,et al.Vesicourethral function in diabetic patients:association of abnormal nerve conduction velocity with vesicourethral dysfunction[J].Neurourology & Urodynamics,1999,18(6):639-645.
[5] Yang Z G,Dolber P C,F(xiàn)raser M O.Diabetic urethropathy compounds the effects of diabetic cystopathy[J].J Urol,2007,178(5):2213-2219.
[6] Liu G,Lin Y,Yamada Y,et al.External urethral sphincter activity in diabetic rats[J].Neurourology & Urodynamics,2008,27(5):429-434.
[7] Torimoto K,F(xiàn)raser M O,Hirao Y,et al.Urethral dysfunction in diabetic rats[J].The Journal of Urology,2004,171(5):1959-1964.
[8] Kazumasa T,Yoshihiko H,Hiroko M,et al.alpha1-Adrenergic mechanism in diabetic urethral dysfunction in rats[J].J Urol,2005,173(3):1027-1032.
[9] Levi-Montalcini R.The nerve growth factor 35 years later[J].Science,1987,237(4819):1154-1162.
[10] Thoenen H,Barde Y A.Physiology of nerve growth factor[J].Physiological Reviews,1980,60(4):1284-1335.
[11] Smith P G,Warn J D,Steinle J J,et al.Modulation of parasympathetic neuron phenotype and function by sympathetic innervation[J].Autonomic Neuroscience,2002,96(1):33-42.
[12] Hellweg R,Raivich G,Hartung H D,et al.Axonal transport of endogenous nerve growth factor(NGF) and NGF receptor in experimental diabetic neuropathy[J].Experimental Neurology,1994,130(1):24-30.
[13] Hellweg R,Hartung H D.Endogenous levels of nerve growth factor(NGF) are altered in experimental diabetes mellitus:a possible role for NGF in the pathogenesis of diabetic neuropathy[J].Journal of Neuroscience Research,1990,26(2):258-267.
[14] Lee R,Kermani P,Teng K K,et al.Regulation of cell survival by secreted proneurotrophins[J].Science,2001,294(5548):1945-1948.
[15] Frédéric L J,Bertrand M J,Olivier D B,et al.ProNGF induces TNFalpha-dependent death of retinal ganglion cells through a p75NTR non-cell-autonomous signaling pathway[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(8):3817-3822.
[16] ?oker Gurkan A,Arisan S,Arisan E D,et al.Association between IL-1RN VNTR,IL-1β-511 and IL-6(-174,-572,-597) gene polymorphisms and urolithiasis[J].Urologia Internationalis,2013,91(2):220-226.
[17] Sasaki K,Chancellor M B,Phelan M W,et al.Diabetic cystopathy correlates with a long-term decrease in nerve growth factor levels in the bladder and lumbosacral dorsal root ganglia[J].Journal of Urology,2002,168(3):1259-1264.
[18] Tong Y C,Cheng J T.Changes in bladder nerve-growth factor and p75 genetic expression in streptozotocin-induced diabetic rats[J].British Journal of Urology International,2005,96(9):1392-1396.
[19] Goins W F,Yoshimura N,Phelan M W,et al.Herpes simplex virus mediated nerve growth factor expression in bladder and afferent neurons:potential treatment for diabetic bladder dysfunction[J].Journal of Urology,2001,165(5):1748-1754.
[20] Kaplan D R,Miller F D.Neurotrophin signal transduction in the nervous system[J].Current Opinion in Neurobiology,2000,10(3):381-391.
[21] Bibel M,Hoppe E,Barde Y A.Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR[J].The EMBO Journal,1999,18(3):616-622.
[22] Maliartchouk S,Saragovi H U.Optimal nerve growth factor trophic signals mediated by synergy of TrkA and p75 receptor-specific ligands[J].Journal of Neuroscience the Official Journal of the Society for Neuroscience,1997,17(16):6031-6037.
[23] Wehrman T,He X,Raab B,et al.Structural and mechanistic insights into nerve growth factor interactions with the TrkA and p75 receptors[J].Neuron,2007,53(1):25-38.
[24] Roux P P,Bhakar A L,Kennedy T E,et al.The p75 neurotrophin receptor activates Akt (protein kinase B) through a phosphatidylinositol 3-kinase-dependent pathway[J].Journal of Biological Chemistry,2001,276(25):23 097-23 104.
[25] Te N A W.Sortilin:a receptor to regulate neuronal viability and function[J].Trends in Neurosciences,2012,35(4):261-270.
[26] Volosin M,Song W,Almeida R D,et al.Interaction of survival and death signaling in basal forebrain neurons:roles of neurotrophins and proneurotrophins[J].Journal of Neuroscience the Official Journal of the Society for Neuroscience,2006,26(29):7756-7766.
[27] Baglole C J,Sigalet D L,Martin G R,et al.Acute denervation alters the epithelial response to adrenoceptor activation through an increase in alpha1-adrenoceptor expression on villus enterocytes[J].Br J Pharmacol,2006,147(1):101-108.
(收稿日期:2015-09-09) (本文編輯:王利)