• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A note on ribbon elements of Hopf group-coalgebras

    2015-05-08 03:34:34ZhaoXiaofanWangShuanhong
    關(guān)鍵詞:群像數(shù)學(xué)系東南大學(xué)

    Zhao Xiaofan Wang Shuanhong

    (Department of Mathematics, Southeast University, Nanjing 211189, China)

    ?

    A note on ribbon elements of Hopf group-coalgebras

    Zhao Xiaofan Wang Shuanhong

    (Department of Mathematics, Southeast University, Nanjing 211189, China)

    LetGbe a discrete group with a neutral element andHbe a quasitriangular HopfG-coalgebra over a fieldk. Then the relationship betweenG-grouplike elements and ribbon elements ofHis considered. First, a list of useful properties of a quasitriangular HopfG-coalgebra and its Drinfeld elements are proved. Secondly, motivated by the relationship between the grouplike and ribbon elements of a quasitriangular Hopf algebra, a special kind ofG-grouplike elements ofHis defined. Finally, using the Drinfeld elements, a one-to-one correspondence between the specialG-grouplike elements defined above and ribbon elements is obtained.

    quasitriangular HopfG-coalgebra;G-grouplike element; ribbon element; Drinfeld element

    In the theory of the classical Hopf algebras[1-2], one of the celebrated results is the theory of ribbon Hopf algebras, which plays an important role in constructing invariants of framed links embedded in 3-dimensional space[3]. One important aspect of ribbon Hopf algebras is the relationship between grouplike elements and ribbon elements[4].

    As a generalization of ordinary Hopf algebras, Hopf group-coalgebras related to homotopy quantum field theories were introduced by Turaev in Ref.[5]. A purely algebraic study of Hopf group-coalgebras, such as the main properties of quasitriangular and ribbon Hopf group-coalgebras, can be found in Refs.[6-9].

    In this paper, we consider the following question: for a groupG, how to use a special kind ofG-grouplike elements to describe the ribbon elements of a HopfG-coalgebra.

    Throughout this paper, we letGbe a discrete group with a neutral element 1 andkbe a field. Assume thatHis a HopfG-coalgebra overk. Denote the set of allG-grouplike elements ofHbyG(H).

    1 Preliminaries

    Definition 1AHopfG-coalgebraH=({Hα},Δ,ε,S) is said to be crossed provided it is endowed with a familyφ={φβ:Hα→Hβαβ-1}α,β∈Gofk-linear maps (the crossing) such that for allα,β,γ∈G, 1)φβis an algebra isomorphism; 2) (φβ?φβ)Δα,γ=Δβαβ-1,βγβ-1φβ; 3)εφβ=ε; 4)φαβ=φαφβ.

    Definition 2 A quasitriangular HopfG-coalgebra is a crossed HopfG-coalgebraH=({Hα},Δ,ε,S,φ) endowed with a familyR={Rα,β∈Hα?Hβ}α,β∈Gof invertible elements (theR-matrix) such that for allα,β,γ∈G, andx∈Hαβ,

    Rα,βΔα,β(x)=σβ,α(φα-1?idHα)Δαβα-1,α(x)Rα,β
    (idHα?Δβ,γ)(Rα,βγ)=(Rα,γ)1β3(Rα,β)12γ(Δα,β?idHγ)(Rαβ,γ)=[(idHα?φβ-1)(Rα,βγβ-1)]1β3(Rβ,γ)α23
    (φβ?φβ)(Rα,γ)=Rβαβ-1,βγβ-1

    Remark 1 LetH=({Hα,mα,1α},Δ,ε,S,φ,R) be a quasitriangular HopfG-coalgebra. The generalized Drinfeld elements ofHare defined byμα=mα(Sα-1φα?idHα)σα,α-1(Rα,α-1)∈Hα, for anyα∈G.

    2 A New Description of Ribbon Hopf G-Coalgebras

    (2)

    Proof We first check the identity (1). For anyα,β∈G

    Next we show the proof of the identity (2). For anyα,β∈G, we have the following computations:

    Lemma 3 LetH=({Hα},Δ,ε,S,φ,R) be a quasitriangular HopfG-coalgebra. Then for anyα,β∈G,

    Proof Using Lemma 1 and Lemma 2, for anyα,β∈G, we compute

    This completes the proof of the lemma.

    Theorem 1 Suppose thatH=({Hα},Δ,ε,S,φ,R) is a quasitriangular HopfG-coalgebra. Then there is a one-to-one correspondence betweenEandFdefined as above.

    Let us prove the third condition. We compute

    HencePis well defined. Secondly, we show thatPhas an inverse map. Define a mapQ:F→EbyQ(θ)=μθ={μαθα∈Hα}α∈G, for anyθ∈F. Clearly,PQ=idF,QP=idE. Following Ref.[6], we know thatQis well defined. This completes the proof of the theorem.

    [1]Sweedler M.Hopfalgebras[M]. New York: Benjamin, 1969.

    [2]Montgomery S.Hopfalgebrasandtheiractionsonrings[M]. Rhode Island: American Mathematical Society, 1993.

    [3]Reshetikhin N Y, Turaev V G. Ribbon graphs and their invariants derived from quantum groups [J].CommMathPhys, 1990, 127(1): 1-26.

    [4]Kauffman L H, Radford D E. A necessary and sufficient condition for a finite-dimensional Drinfel’d double to be a ribbon Hopf algebra [J].JAlgebra, 1993, 159(1): 98-114.

    [5]Turaev V G. Homotopy field theory in dimension 3 and crossed group-categories[EB/OL]. (2000)[2013-07-01].http://arxiv.org/abs/math/0005291.

    [6]Virelizier A. Hopf group-coalgebras [J].JPureApplAlgebra, 2002, 171(1): 75-122.

    [7]Virelizier A. Graded quantum groups and quasitriangular Hopf group-coalgebras [J].CommAlgebra, 2004, 33(9): 3029-3050.

    [8]Wang S H. Group entwining structures and group coalgebras Galois extensions [J].CommAlgebra, 2004, 32(9): 3417-3436.

    [9]Wang S H. Group twisted smash products and Doi-Hopf modules for T-coalgebras [J].CommAlgebra, 2004, 32(9): 3437-3458.

    關(guān)于Hopf群余代數(shù)ribbon元的注記

    趙曉凡 王栓宏

    (東南大學(xué)數(shù)學(xué)系, 南京 211189)

    設(shè)G是一個(gè)帶有單位元的離散群,H是域k上的擬三角HopfG-余代數(shù). 考慮了H的G-群像元和ribbon元之間的關(guān)系. 首先證明了擬三角HopfG-余代數(shù)以及它的Drinfeld元的一些重要性質(zhì). 受到Hopf代數(shù)中群像元和ribbon元之間關(guān)系的啟發(fā), 定義了一類特殊的G-群像元. 最后利用Drinfeld元得到了所定義的特殊的G-群像元和ribbon元之間的一個(gè)一一對(duì)應(yīng)關(guān)系.

    擬三角HopfG-余代數(shù);G-群像元; ribbon元; Drinfeld元

    O153.3

    Foundation items:The National Natural Science Foundation of China (No.11371088), the Natural Science Foundation of Jiangsu Province (No.BK2012736), the Fundamental Research Funds for the Central Universities (No.KYZZ0060).

    :Zhao Xiaofan, Wang Shuanhong.A note on ribbon elements of Hopf group-coalgebras[J].Journal of Southeast University (English Edition),2015,31(2):294-296.

    10.3969/j.issn.1003-7985.2015.02.024

    10.3969/j.issn.1003-7985.2015.02.024

    Received 2013-10-27.

    Biographies:Zhao Xiaofan (1986—), female, graduate; Wang shuanhong (corresponding author), male, doctor, professor, shuanhwang@seu.edu.cn.

    猜你喜歡
    群像數(shù)學(xué)系東南大學(xué)
    一個(gè)人就是一個(gè)數(shù)學(xué)系
    ——丘成桐
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    “一生多旦”與清代“紅樓戲”對(duì)十二釵群像的重塑
    北京師范大學(xué)數(shù)學(xué)系教授葛建全
    群像
    東方電影(2016年4期)2016-11-21 09:10:56
    論Gross曲線的二次扭
    群像掃描
    五华县| 英德市| 永寿县| 时尚| 肇东市| 新干县| 巫溪县| 清水县| 揭东县| 安西县| 辽阳县| 平和县| 铜梁县| 千阳县| 隆德县| 大埔区| 沧州市| 怀柔区| 正定县| 营山县| 台前县| 徐闻县| 中方县| 诏安县| 伊通| 靖远县| 萨嘎县| 黑龙江省| 乌审旗| 莫力| 炉霍县| 青阳县| 彭水| 宣恩县| 德惠市| 科尔| 肇源县| 和政县| 信丰县| 本溪| 来安县|