• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive modulation in MIMO optical wireless communication systems

    2015-05-08 02:32:22WuBinWuLiangZouCairong
    關(guān)鍵詞:比特率光通信信道

    Wu Bin Wu Liang Zou Cairong

    (School of Information Science and Engineering, Southeast University, Nanjing 210096, China)

    ?

    Adaptive modulation in MIMO optical wireless communication systems

    Wu Bin Wu Liang Zou Cairong

    (School of Information Science and Engineering, Southeast University, Nanjing 210096, China)

    In the intensity modulation and direct detection (IM/DD) multiple-input multiple-output (MIMO) optical wireless communication systems, a direct-current-biased adaptive modulation scheme is proposed to guarantee the nonnegative property of transmitted signals, and the MIMO channel is converted to a parallel channel by using a singular value decomposition. Besides, a QR decomposition and successive interference cancellation based adaptive modulation scheme is proposed, and the MIMO channel can be simplified to a parallel channel under the bit error ratio (BER) target constraint. The power is optimally allocated to each sub-channel to maximize the data rate. Simulation results show that the proposed adaptive modulation schemes can effectively improve the transmission rate of the systems under the BER target and constant optical power constraints. The proposed adaptive modulation schemes make use of the multiplexing gain of the MIMO techniques, and can further improve the spectrum efficiency of optical wireless systems.

    optical wireless communication; multiple input and multiple output (MIMO); adaptive modulation

    In the multiple-input and multiple-output (MIMO) radio frequency wireless communication system[1-2], precoding and successive interference cancellation are two of the most commonly used techniques to curb the inter-symbol interference. When applying precoding techniques[3], the transmitter needs to know the channel status information through the feedback of the receiver. In a practical system, the channel status information must be quantified by a limited number of bits in order to be sent back to the transmitter[4]. A practical method based on the QR decomposition and successive interference cancellation can be easily realized and applied in many areas[5].

    The system spectrum efficiency can be enhanced by adaptive modulation and power allocation schemes[6]. The adaptive technique also requires the feedback information. In an adaptive modulation system based on precoding, channel state information which includes the precoding matrix must be sent back to the transmitter. In a practical system, the perfect channel state information cannot be acquired, an adaptive algorithm based on the error channel state information[7]is analyzed. Zhou et al.[8]studied the adaptive technique based on the mean value feedback. In Ref.[9], a method using the outdated channel state information was proposed. Park et al.[10]proposed an enhanced precoding scheme with limited-rate imperfect feedback.

    By utilizing MIMO techniques, the anti-fading characteristics and spectrum efficiency of a system can be enhanced, and adaptive modulation can further improve the spectrum efficiency while still ensuring system performance. However, adaptive techniques in radio frequency wireless communications cannot be directly applied to optical wireless communication systems because of the intensity modulation and direct detection (IM/DD), which means that the transmitted signal must be nonnegative. Besides, few studies have been conducted on the adaptive modulation techniques in MIMO optical wireless communication systems. In this paper, we focus on the adaptive modulation techniques applicable to the IM/DD MIMO optical wireless communication system. Two adaptive modulation schemes are proposed for the IM/DD optical wireless communication system in flat fading channels. DC bias and singular value decomposition (SVD) are applied in the first proposed scheme, and the second scheme is based on successive interference cancellation. Simulation results show that the proposed schemes work well under the bit error ratio (BER) target and constant transmit power constraints.

    1 System Model of MIMO Optical Wireless Communications

    A point to point un-imaged MIMO optical wireless communication system is considered in this paper[11]. It is assumed that a transmitter consists ofntlight-emitting diodes (LEDs) and a receiver consists ofnrphotodiodes (PDs). The block diagram of the MIMO optical wireless system is shown in Fig.1. The channel of MIMO optical wireless communication can be expressed by anr×ntmatrixH, where the (i,j)-th component ofHishi,j, which is the channel coefficient from thej-th LED to thei-th PD. In line of sight (LOS) links,hi,jcan be expressed as[12]

    (1)

    wheremis the order of Lambertian emission,m=-ln2/ln(cosΦ1/2);Φ1/2is the semiangle at half-power of the transmitting LED;Aris the receiving area of PD;Di,jandφi,jare the distance and angle of incidence from thej-th LED to thei-th PD, respectively;Ψc,iis the field of view (FOV) of thei-th PD.

    Fig.1 Block diagram of a MIMO optical wireless communication system

    The received signal takes the form as

    y=Hx+n

    (2)

    2 Adaptive Modulation Scheme based on DC-Bias and SVD

    In radio frequency (RF) MIMO communication systems, the optimal precoding matrix is

    UP=UH

    (3)

    t=UPs

    (4)

    Pr(v+2σν>0)≈97.8%

    (5)

    which is very close to 1.

    Define a vectorκand itsk-th component isκk=2σt,k. By adding a DC bias, the transmitted signal can be expressed as

    x=UPs+κ

    (6)

    (7)

    After subtracting the DC bias component, the signal becomes

    (8)

    In the practical communication system, each component of information vectorsemploys a traditional pulse amplitude modulation (PAM) scheme, and the modulation order is chosen adaptively. It is assumed that the maximum value of thek-th spatial subchannel isZk. Therefore, thek-th component of the DC bias vectorκis

    (9)

    When the average transmit optical power ispa, the corresponding constraint is

    (10)

    (11)

    (12)

    whereQ-1( ·) is the inverse function of theQ-function, and it has

    Thk,1≤Thk,2≤…≤Thk,6

    (13)

    The modulation order can be decided according to the following criteria:

    (14)

    The transmission rate of thek-th data stream is

    (15)

    whereU( ·)is the step function. Under the constant power and BER target constraints, the adaptive modulation scheme can be expressed as the following optimization problem:

    (16)

    s.t.

    (17)

    To optimize the power allocation, The maximum valueZkof thek-th data stream should satisfy

    Zk∈{ThPk,i=Thk,iσn,i=1,2,…,6}

    (18)

    Define the incremental power as

    (19)

    (20)

    s.t.

    (21)

    Theproblemcanbesolvedbythefollowingtwosteps[15]:

    If the optimal modulation scheme of thek-th spatial sub-stream is 2mk,opt-PAM, the power allocation is

    (22)

    3 Adaptive Modulation Scheme based on QR Decomposition and Successive Interference Cancellation

    3.1 The principle of QR decomposition and successive interference cancellation

    It is assumed that the QR decomposition of channel matrixHis

    H=UQG

    (23)

    whereUQis an unitary matrix andGis an upper triangle matrix. At the receiver, the received signal is multiplied by the conjugate and transpose of matrixUQ, such that the signal can be expressed as

    (24)

    The proof is as follows: The BER target in the uncoded adaptive modulation system is usually less than 10-3. In the optical domain, SNR is defined as

    (25)

    wherepais the optical power.

    Therefore, the average SNR of thek-th spatial sub-channel is

    (26)

    where ?k,iis the SNR of thek-th spatial sub-stream when suffering the interference fromidata streams, and it is assumed that ?k,iare in the same order with the samei. Besides, in the practical environment, it hasnt<10 andnr<10. Therefore,

    (27)

    The QR decomposition and successive interference cancellation based adaptively modulated optical wireless communication system can be viewed as adaptive modulation in parallel channels.

    3.2 QR decomposition and successive interference cancellation based adaptive modulation scheme

    In the MIMO optical wireless system, the DC-bias PAM scheme is employed for each sub-channel. The BER performance of the DC bias PAM scheme takes the form as[14]

    (28)

    where SNR is in the optical domain as Eq.(25). The SNR threshold is defined as

    (29)

    where ThO1≤ThO2≤…≤ThO6.

    When the transmit power is a constant and the BER target is set, the power is optimally allocated such that the achieved data rate is maximized. The optimization problem can be expressed as

    (30)

    s.t.

    (31)

    According to the SNR threshold, the power allocated to thek-th spatial sub-stream needs to satisfy

    (32)

    which can achieve the maximum spectrum.

    The incremental optical power is defined as

    (33)

    (34)

    s.t.

    (35)

    The problem can be solved by the following two steps[15]:

    If the optimal modulation scheme of thek-th spatial sub-stream is 2mk,opt-PAM, the power allocation is

    (36)

    (37)

    The achieved data rate of the proposed adaptive modulation is

    (38)

    Ifqbits are used to quantize the proportion of the power allocated for each spatial sub-stream to the total transmitted power, the total number of feedback bits are (q+3)r, where 3rbits are used to send the modulation order.

    4 Simulation Results

    Figs.2 and 3 depict the performance of the DC bias and SVD-based adaptive modulation scheme. Fig.2 shows the achieved data rate with different LED and PD configurations. It can be seen from Fig.2 that the achieved data rate is linearly proportional tontwhennt=nr. Fig.3 shows the simulated BER performance. It can be seen that the BER target is satisfied in all the conditions. The trend of the BER performance changes when SNR becomes great, that is because the remaining power, which can further improve the BER performance, changes with a different SNR. For example, whennt=nr=8, the BER at SNR=8 dB is worse than that at SNR=6 dB. The achieved data rate at SNR=8 dB is higher than that at SNR=6 dB, which means that the modulation order at SNR=8 dB is higher than that at SNR=6 dB. Besides, according to Eq.(37), the remaining power at SNR=8 dB may be less than that at SNR=6 dB. Therefore, BER at SNR=8 dB is worse than that at SNR=6 dB, even if the transmit power at SNR=8 dB is higher than that at SNR=6 dB. But the BER is below the BER target in all SNR regions.

    Fig.2 Achieved data rate of the DC bias and SVD based adaptive modulation scheme with different LED and PD configurations

    Fig.3 Simulated BER performance of DC-bias and SVD based adaptive modulation scheme with different LED and PD configurations

    Fig.4 shows the achieved data rate of the QR decomposition and successive interference cancellation based adaptive modulation scheme with different quantization

    Fig.4 Achieved data rate of QR decomposition and successive interference cancellation based adaptive modulation scheme with different quantization bits and nt=nr=4

    bits, wherent=nr=4. It can be seen from Fig.4 that the effect of quantization bits is small in the low SNR region; when SNR is larger than 14 dB, the effect of quantization bits becomes large. Besides, the gap betweenq=4 andq=∞ is very small, which mean that 4 bits are enough to quantize the power allocation strategy. For comparison, the achieved data rate of the DC bias adaptive modulation scheme withnt=nr=4 is also plotted. It can be seen that the achieved data rate of the QR based scheme is improved, when the number of quantization bits is no less than 2.

    Fig.5 depicts the BER performance. It can be seen that BER performances with different quantization bits are below the BER target. When the SNR becomes high, the trend of BER performance changes as shown in Fig.3, and it is caused by the same reason.

    Fig.5 Simulated BER performance of QR decomposition and successive interference cancellation based adaptive modulation scheme with different quantization bits and nt=nr=4.

    5 Conclusion

    Spatial multiplexing gain in the MIMO technique can effectively improve the spectrum efficiency of the system, while the adaptive modulation techniques under certain specified constraints can further enhance the system performance. In this paper, adaptive modulation schemes in IM/DD MIMO optical wireless communication systems are studied. Two adaptive modulation techniques are proposed. The first scheme is based on DC-bias and SVD, and the second scheme is based on QR decomposition and successive interference cancellation. The first scheme is a straightforward scheme, and the achieved data rate of the second scheme is higher when the number of quantization bits is no less than 2. The maximum data rate and achieved BER performance under a given BER target and constant transmit power constraint are analyzed. Besides, the second proposed adaptive modulation technique can achieve the specified performance using finite rate feedback. The feasibility of the proposed adaptive modulation techniques are verified by the simulation results.

    [1]Rusek F, Persson D, Lau B, et al. Scaling up MIMO: opportunities and challenges with very large arrays [J].IEEESignalProcessingMagazine, 2013, 30(1): 40-60.

    [2]Ghaffar R, Knopp R, Pin H. Low complexity BICM MIMO OFDM demodulator [J].IEEETransactionsonWirelessCommunications, 2014, 14(1): 558-569.

    [3]Nguyen D, Hung N, Tho L. Block-diagonalization precoding in a multiuser multicell MIMO system: competition and coordination [J].IEEETransactionsonWirelessCommunications, 2014, 13(2): 968-981.

    [4]Love D, Heath R. Limited feedback unitary precoding for spatial multiplexing systems [J].IEEETransactionsonInformationTheory, 2005, 51(8): 2967-2976.

    [5]Biglieri E, Calderbank R, Constantinides A, et al.MIMOwirelesscommunications[M]. Cambridge University Press, 2007.

    [6]Zhou Z, Vucetic B, Dohler M, et al. MIMO systems with adaptive modulation [J].IEEETransactionsonVehicleTechnology, 2005, 54(5): 1828-1842.

    [7]Fernandez-Plazaola U, Martos-Naya E, Paris J, et al. Adaptive modulation for MIMO systems with channel prediction errors [J].IEEETransactionsonWirelessCommunications, 2010, 9(8): 2516-2567.

    [8]Zhou S, Giannakis G. Adaptive modulation for multi-antenna transmissions with channel mean feedback [J].IEEETransactionsonWirelessCommunications, 2004, 3(5): 1626-1636.

    [9]Zhou Z, Vucetic B. Adaptive coded MIMO systems with near full multiplexing gain using outdated CSI [J].IEEETransactionsonWirelessCommunication, 2011, 10(1): 294-302.

    [10]Park N, Kim Y. Enhanced index assignment for beamforming with limited-rate imperfect feedback [C]//ProceedingsofIEEEVehicularTechnologyConference(VTCFall). Quebec City, Canada, 2012: 13226411-1-13226411-5.

    [11]Mesleh R, Elgala H, Haas H. Optical spatial modulation [J].JournalofOpticalCommunicationandNetworking, 2011, 3(3): 234-244.

    [12]Barros D, Wilson S, Kahn J. Comparison of orthogonal frequency-division multiplexing and pulse-amplitude modulation in indoor optical wireless links [J].IEEETransactionsonCommunications, 2012, 60(1): 153-163.

    [13]Wlodzimierz B.Thenormaldistribution:characterizationswithapplications[M]. New York: Springer-Verlag, 1995.

    [14]Proakis J.Digitalcommunications[M]. New York: McGraw-Hill, 2000.

    [15]Campello J. Optimal discrete bit loading for multicarrier modulation systems [C]//ProceedingsofIEEEInternationalSymposiumonInformationTheory. Cambridge, MA, USA, 1998:193.

    多輸入多輸出無線光通信系統(tǒng)中的自適應(yīng)調(diào)制技術(shù)

    吳 斌 吳 亮 鄒采榮

    (東南大學(xué)信息科學(xué)與工程學(xué)院, 南京 210096)

    在基于強(qiáng)度調(diào)制、直接檢測(cè)的多輸入多輸出無線光通信系統(tǒng)中,為了保證發(fā)射信號(hào)非負(fù)特性,提出一種基于直流偏置的自適應(yīng)調(diào)制技術(shù),并且利用奇異值分解將多輸入多輸出信道轉(zhuǎn)換為并行信道.此外,提出一種基于QR分解、逐次干擾消除的自適應(yīng)調(diào)制技術(shù).在目標(biāo)誤比特率性能條件下,利用QR分解、逐次干擾消除的特性將多輸入多輸出信道等效為并行信道.根據(jù)最大化可達(dá)速率的優(yōu)化目標(biāo),最優(yōu)地給各個(gè)子信道分配功率.仿真結(jié)果表明所提出的2種自適應(yīng)調(diào)制方法在保證誤比特率性能和平均發(fā)射光功率恒定的前提下,有效地提高了系統(tǒng)的傳輸速率.這2種自適應(yīng)調(diào)制技術(shù)在利用多輸入多輸出技術(shù)空分復(fù)用增益的同時(shí),進(jìn)一步提高了無線光通信系統(tǒng)的頻譜利用率.

    可見光通信;多輸入多輸出;自適應(yīng)調(diào)制

    TN92

    Foundation items:The National High Technology Research and Development Program of China (863 Program) (No.2013AA013601), the National Science and Technology Major Project of China (No.2015ZX03004009).

    :Wu Bin, Wu Liang, Zou Cairong. Adaptive modulation in MIMO optical wireless communication systems[J].Journal of Southeast University (English Edition),2015,31(2):175-180.

    10.3969/j.issn.1003-7985.2015.02.003

    10.3969/j.issn.1003-7985.2015.02.003

    Received 2014-10-23.

    Biographies:Wu Bin (1974—), male, graduate; Zou Cairong (corresponding author), male, doctor, professor, zoucairong@seu.edu.cn.

    猜你喜歡
    比特率光通信信道
    基于深度學(xué)習(xí)的有源智能超表面通信系統(tǒng)
    基于Optiwave仿真平臺(tái)的光通信系統(tǒng)仿真分析
    基于多個(gè)網(wǎng)絡(luò)接口的DASH系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
    西安西古光通信有限公司
    光通信:探索未來10年——2016年歐洲光通信會(huì)議述評(píng)
    相同比特率的MPEG視頻雙壓縮檢測(cè)*
    基于導(dǎo)頻的OFDM信道估計(jì)技術(shù)
    一種改進(jìn)的基于DFT-MMSE的信道估計(jì)方法
    基于MED信道選擇和虛擬嵌入塊的YASS改進(jìn)算法
    超快全光通信技術(shù)有望出現(xiàn)
    人体艺术视频欧美日本| 成人综合一区亚洲| 国产精品一区www在线观看| 亚洲精品日本国产第一区| 最近的中文字幕免费完整| 一级黄片播放器| 少妇猛男粗大的猛烈进出视频| 亚洲欧美日韩卡通动漫| 亚洲欧洲日产国产| 国产欧美另类精品又又久久亚洲欧美| 日本黄大片高清| 精品少妇黑人巨大在线播放| www.av在线官网国产| 久久毛片免费看一区二区三区| 婷婷色av中文字幕| 亚洲av免费高清在线观看| 国语对白做爰xxxⅹ性视频网站| 国产日韩一区二区三区精品不卡 | 日日摸夜夜添夜夜添av毛片| 看十八女毛片水多多多| 亚洲欧美精品自产自拍| 交换朋友夫妻互换小说| 亚洲国产精品一区二区三区在线| 日本黄色日本黄色录像| 国产亚洲av片在线观看秒播厂| 国产美女午夜福利| 精品国产国语对白av| 一本色道久久久久久精品综合| 午夜av观看不卡| 亚洲一区二区三区欧美精品| 亚洲成人av在线免费| 亚洲,欧美,日韩| 亚洲国产日韩一区二区| 人妻制服诱惑在线中文字幕| 黄色配什么色好看| 99精国产麻豆久久婷婷| 人人妻人人爽人人添夜夜欢视频 | 男女无遮挡免费网站观看| 亚洲国产欧美日韩在线播放 | 99国产精品免费福利视频| 精品人妻一区二区三区麻豆| 妹子高潮喷水视频| 美女cb高潮喷水在线观看| 美女xxoo啪啪120秒动态图| 午夜福利网站1000一区二区三区| 亚洲经典国产精华液单| 在线播放无遮挡| h视频一区二区三区| 亚洲无线观看免费| 三级经典国产精品| 亚洲精品自拍成人| 国产成人精品无人区| h日本视频在线播放| 久久久久久久久久人人人人人人| 精品国产露脸久久av麻豆| 我的老师免费观看完整版| 国产精品久久久久久久电影| 国产精品人妻久久久久久| 少妇高潮的动态图| 欧美激情极品国产一区二区三区 | 少妇猛男粗大的猛烈进出视频| 王馨瑶露胸无遮挡在线观看| 欧美 亚洲 国产 日韩一| 春色校园在线视频观看| 91精品伊人久久大香线蕉| 久久午夜福利片| 大片免费播放器 马上看| 美女内射精品一级片tv| 综合色丁香网| 免费观看无遮挡的男女| 亚洲高清免费不卡视频| 国产免费一区二区三区四区乱码| 少妇猛男粗大的猛烈进出视频| 久久韩国三级中文字幕| 一级二级三级毛片免费看| av一本久久久久| 国产亚洲欧美精品永久| xxx大片免费视频| 亚洲一级一片aⅴ在线观看| 少妇人妻久久综合中文| 国产欧美日韩综合在线一区二区 | 欧美日韩精品成人综合77777| 亚洲欧美精品专区久久| 亚洲精品,欧美精品| 亚洲精品日韩在线中文字幕| 亚洲一区二区三区欧美精品| 亚洲精品视频女| 亚洲精品久久久久久婷婷小说| 一级,二级,三级黄色视频| 中文字幕人妻熟人妻熟丝袜美| 免费在线观看成人毛片| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品久久久com| 2021少妇久久久久久久久久久| 亚洲国产最新在线播放| 亚洲国产最新在线播放| 亚洲综合精品二区| 婷婷色综合www| 免费观看的影片在线观看| 国产片特级美女逼逼视频| 国产淫片久久久久久久久| 久久久久精品性色| 欧美xxxx性猛交bbbb| 国产精品国产三级国产专区5o| 99热这里只有是精品在线观看| 嘟嘟电影网在线观看| 国产一级毛片在线| 国产精品蜜桃在线观看| 熟妇人妻不卡中文字幕| 中文在线观看免费www的网站| tube8黄色片| 精品一区二区三卡| 美女中出高潮动态图| 秋霞伦理黄片| 国产精品人妻久久久久久| 在线精品无人区一区二区三| 人妻制服诱惑在线中文字幕| 国产熟女欧美一区二区| 亚洲欧美精品自产自拍| 久久久久久久久久久久大奶| 亚洲精品亚洲一区二区| 最黄视频免费看| 色婷婷av一区二区三区视频| 人人妻人人澡人人看| 我的女老师完整版在线观看| 亚洲精品色激情综合| 一级片'在线观看视频| 狂野欧美激情性xxxx在线观看| 国产日韩一区二区三区精品不卡 | 日本色播在线视频| 久久久久久伊人网av| 多毛熟女@视频| 日韩成人av中文字幕在线观看| 啦啦啦视频在线资源免费观看| 99久久综合免费| 插阴视频在线观看视频| 国产淫片久久久久久久久| 日韩一区二区三区影片| 久久精品久久久久久久性| 在线观看www视频免费| 日本黄色片子视频| 高清在线视频一区二区三区| 国产日韩欧美亚洲二区| 欧美97在线视频| 另类亚洲欧美激情| 亚洲精品国产色婷婷电影| 亚洲精品乱久久久久久| 色哟哟·www| 国产精品久久久久久av不卡| 精品久久久精品久久久| 在线 av 中文字幕| 免费看日本二区| 丝瓜视频免费看黄片| 中文字幕久久专区| 午夜免费男女啪啪视频观看| 不卡视频在线观看欧美| 亚洲av二区三区四区| 国产精品久久久久久久电影| 人妻夜夜爽99麻豆av| 亚洲av国产av综合av卡| 在线观看免费日韩欧美大片 | 美女大奶头黄色视频| 亚洲精品,欧美精品| 日韩不卡一区二区三区视频在线| 在线观看三级黄色| 我要看日韩黄色一级片| 好男人视频免费观看在线| 女性被躁到高潮视频| 99热这里只有是精品在线观看| 99久久人妻综合| 久久狼人影院| 看免费成人av毛片| 一级毛片黄色毛片免费观看视频| 日韩av不卡免费在线播放| 日本av免费视频播放| 国产一区亚洲一区在线观看| a级毛片免费高清观看在线播放| 校园人妻丝袜中文字幕| 日韩欧美精品免费久久| 老司机影院成人| 麻豆精品久久久久久蜜桃| 亚洲国产成人一精品久久久| 日本91视频免费播放| 成年女人在线观看亚洲视频| 伦精品一区二区三区| 黄色日韩在线| 成人毛片a级毛片在线播放| 国产一区二区在线观看日韩| xxx大片免费视频| 天堂8中文在线网| 亚洲va在线va天堂va国产| 水蜜桃什么品种好| 青春草国产在线视频| 精品亚洲乱码少妇综合久久| 久久久久久久亚洲中文字幕| 国产精品人妻久久久久久| 性高湖久久久久久久久免费观看| 亚洲国产精品一区二区三区在线| 成人黄色视频免费在线看| 精品午夜福利在线看| 青青草视频在线视频观看| 成人无遮挡网站| 黄色视频在线播放观看不卡| 国产精品久久久久久久久免| 久久国产精品男人的天堂亚洲 | 久久综合国产亚洲精品| 午夜老司机福利剧场| 麻豆乱淫一区二区| 久久久久久人妻| 狠狠精品人妻久久久久久综合| 91成人精品电影| kizo精华| 免费av不卡在线播放| 在线观看av片永久免费下载| 亚洲精品日韩av片在线观看| 七月丁香在线播放| av一本久久久久| 美女福利国产在线| 熟女人妻精品中文字幕| 九九爱精品视频在线观看| 国产色婷婷99| 国产av一区二区精品久久| 久久久久国产网址| 国产免费福利视频在线观看| 免费高清在线观看视频在线观看| 视频区图区小说| 人人妻人人澡人人看| 午夜激情久久久久久久| 又粗又硬又长又爽又黄的视频| 毛片一级片免费看久久久久| 国产精品蜜桃在线观看| a级片在线免费高清观看视频| av网站免费在线观看视频| 草草在线视频免费看| 最近中文字幕高清免费大全6| 中文字幕制服av| 一级毛片aaaaaa免费看小| 九九在线视频观看精品| av福利片在线| 综合色丁香网| 在线 av 中文字幕| 久久精品国产a三级三级三级| 一个人看视频在线观看www免费| 久久99一区二区三区| 国产精品秋霞免费鲁丝片| 精品久久国产蜜桃| 最近手机中文字幕大全| 婷婷色av中文字幕| 美女中出高潮动态图| 性高湖久久久久久久久免费观看| 国产精品成人在线| 免费不卡的大黄色大毛片视频在线观看| 我要看日韩黄色一级片| 久久 成人 亚洲| 成人亚洲精品一区在线观看| 精品熟女少妇av免费看| 国产一区二区三区av在线| 国产精品人妻久久久影院| 国产成人免费无遮挡视频| 少妇 在线观看| 夜夜爽夜夜爽视频| 熟女电影av网| 免费人妻精品一区二区三区视频| 国国产精品蜜臀av免费| 最近手机中文字幕大全| 99久久人妻综合| 成年人免费黄色播放视频 | 国产精品秋霞免费鲁丝片| 国产高清国产精品国产三级| 欧美 亚洲 国产 日韩一| 精品亚洲乱码少妇综合久久| 国产成人一区二区在线| 肉色欧美久久久久久久蜜桃| 国产亚洲5aaaaa淫片| 久久人人爽人人爽人人片va| 午夜福利影视在线免费观看| 国产视频内射| 成人综合一区亚洲| 成人午夜精彩视频在线观看| 国产成人精品福利久久| 五月伊人婷婷丁香| 大片电影免费在线观看免费| 精品少妇内射三级| 热re99久久精品国产66热6| 久久毛片免费看一区二区三区| av网站免费在线观看视频| 一级a做视频免费观看| 亚洲欧美日韩另类电影网站| 精品久久久噜噜| 国产成人精品久久久久久| 26uuu在线亚洲综合色| 在线观看国产h片| 99久国产av精品国产电影| 乱人伦中国视频| 欧美激情国产日韩精品一区| freevideosex欧美| av一本久久久久| 熟女人妻精品中文字幕| 夜夜爽夜夜爽视频| 久久女婷五月综合色啪小说| 欧美日韩在线观看h| 国产高清国产精品国产三级| 一本一本综合久久| 国产高清三级在线| 色网站视频免费| 国产欧美日韩综合在线一区二区 | a级毛色黄片| 国产精品人妻久久久久久| 久久99一区二区三区| 搡女人真爽免费视频火全软件| 亚洲精品国产成人久久av| 国产老妇伦熟女老妇高清| 在线观看一区二区三区激情| 国产女主播在线喷水免费视频网站| 久久久久精品久久久久真实原创| 综合色丁香网| 亚洲人成网站在线播| kizo精华| 久久久午夜欧美精品| 有码 亚洲区| 丝袜脚勾引网站| 国产在线一区二区三区精| 黄色一级大片看看| 亚洲精品,欧美精品| 午夜激情久久久久久久| a 毛片基地| 一级毛片aaaaaa免费看小| 一级,二级,三级黄色视频| 久久人人爽人人爽人人片va| 国产精品久久久久成人av| 久久久久久久久久久丰满| 国产成人精品福利久久| 黄片无遮挡物在线观看| 亚洲伊人久久精品综合| av在线播放精品| 中文字幕免费在线视频6| 赤兔流量卡办理| 黄片无遮挡物在线观看| 少妇裸体淫交视频免费看高清| 热99国产精品久久久久久7| 亚洲美女搞黄在线观看| 人人妻人人爽人人添夜夜欢视频 | www.色视频.com| 精品国产国语对白av| 新久久久久国产一级毛片| av有码第一页| 亚洲av成人精品一二三区| 大片免费播放器 马上看| 久久精品夜色国产| 国产精品99久久久久久久久| 成人黄色视频免费在线看| av国产久精品久网站免费入址| 高清毛片免费看| 夫妻性生交免费视频一级片| 婷婷色综合大香蕉| 男男h啪啪无遮挡| 久久精品国产亚洲av天美| 伦理电影大哥的女人| 亚洲欧美成人综合另类久久久| 91精品国产国语对白视频| 精品亚洲成a人片在线观看| 欧美最新免费一区二区三区| 精品国产一区二区久久| 国产av国产精品国产| 亚洲精品456在线播放app| 亚洲精品一二三| 蜜臀久久99精品久久宅男| 男女国产视频网站| 99热6这里只有精品| 国产在线视频一区二区| 亚洲欧美成人综合另类久久久| 久久 成人 亚洲| tube8黄色片| 久久久亚洲精品成人影院| 亚洲av成人精品一二三区| 人人妻人人添人人爽欧美一区卜| 免费看日本二区| 精品国产国语对白av| 嘟嘟电影网在线观看| 色94色欧美一区二区| 九九久久精品国产亚洲av麻豆| 国产高清有码在线观看视频| 国产亚洲一区二区精品| 亚洲无线观看免费| 天天躁夜夜躁狠狠久久av| 国产国拍精品亚洲av在线观看| 国内精品宾馆在线| 一个人免费看片子| 日本-黄色视频高清免费观看| 少妇人妻久久综合中文| av不卡在线播放| 丁香六月天网| 国产免费一级a男人的天堂| av一本久久久久| 国产一级毛片在线| 黄色日韩在线| 亚洲精品乱久久久久久| 亚洲精品日本国产第一区| 免费看不卡的av| 亚洲精品,欧美精品| 91久久精品国产一区二区成人| 亚洲精品乱码久久久v下载方式| 日本-黄色视频高清免费观看| 成人特级av手机在线观看| 国产精品久久久久久精品古装| 五月开心婷婷网| 久久久久久久久大av| 国产淫片久久久久久久久| 日本欧美视频一区| 亚洲一区二区三区欧美精品| 啦啦啦中文免费视频观看日本| www.自偷自拍.com| 一级,二级,三级黄色视频| 高潮久久久久久久久久久不卡| 国产视频一区二区在线看| 亚洲精品美女久久av网站| 狂野欧美激情性xxxx| 亚洲精品成人av观看孕妇| 国产一区二区三区综合在线观看| 精品一区二区三区四区五区乱码| 99国产精品一区二区三区| 国产免费av片在线观看野外av| 亚洲天堂av无毛| 美女国产高潮福利片在线看| 大香蕉久久网| 少妇的丰满在线观看| 秋霞在线观看毛片| 国产一区二区三区综合在线观看| 在线av久久热| 热re99久久精品国产66热6| 黄频高清免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 王馨瑶露胸无遮挡在线观看| 深夜精品福利| 久久性视频一级片| av国产精品久久久久影院| 精品国产一区二区三区四区第35| 久久精品成人免费网站| 久久 成人 亚洲| 久久亚洲精品不卡| 成人黄色视频免费在线看| 男人爽女人下面视频在线观看| 亚洲精品国产精品久久久不卡| 777米奇影视久久| 丝袜在线中文字幕| 国产伦人伦偷精品视频| 久久国产精品人妻蜜桃| 久久久国产欧美日韩av| 国产精品 国内视频| 国产免费视频播放在线视频| 少妇猛男粗大的猛烈进出视频| 亚洲国产精品一区二区三区在线| 精品第一国产精品| 一区二区日韩欧美中文字幕| 成人国产av品久久久| 搡老乐熟女国产| 一个人免费看片子| 十分钟在线观看高清视频www| 亚洲 国产 在线| 国产熟女午夜一区二区三区| 成年人午夜在线观看视频| 久久精品人人爽人人爽视色| 久久99热这里只频精品6学生| 午夜福利,免费看| av一本久久久久| 成年动漫av网址| 亚洲第一欧美日韩一区二区三区 | 窝窝影院91人妻| 欧美精品高潮呻吟av久久| 国产av又大| 国产老妇伦熟女老妇高清| 免费在线观看完整版高清| 日韩大片免费观看网站| 国产精品久久久久久精品古装| 男女之事视频高清在线观看| 亚洲av电影在线观看一区二区三区| 极品少妇高潮喷水抽搐| 久久精品亚洲av国产电影网| xxxhd国产人妻xxx| 亚洲精品一二三| 欧美国产精品一级二级三级| 少妇粗大呻吟视频| 亚洲激情五月婷婷啪啪| 少妇人妻久久综合中文| 视频在线观看一区二区三区| 一区二区三区四区激情视频| 日韩欧美一区二区三区在线观看 | 在线观看免费日韩欧美大片| 久久久久网色| 国产精品九九99| 久9热在线精品视频| 国产精品1区2区在线观看. | 日韩大片免费观看网站| 国产亚洲av片在线观看秒播厂| 精品一区二区三区四区五区乱码| 精品亚洲乱码少妇综合久久| 18禁裸乳无遮挡动漫免费视频| 亚洲少妇的诱惑av| e午夜精品久久久久久久| 无遮挡黄片免费观看| 免费不卡黄色视频| 国产在线一区二区三区精| 性少妇av在线| tube8黄色片| 成人三级做爰电影| 99久久人妻综合| 成人国语在线视频| 国产在线观看jvid| 成年女人毛片免费观看观看9 | 男人操女人黄网站| 中文字幕制服av| 国产熟女午夜一区二区三区| 伊人久久大香线蕉亚洲五| 日本vs欧美在线观看视频| 日本五十路高清| 18禁裸乳无遮挡动漫免费视频| 丁香六月天网| 精品国产乱码久久久久久小说| 久久午夜综合久久蜜桃| 亚洲av美国av| 中文字幕av电影在线播放| 国产亚洲欧美在线一区二区| 王馨瑶露胸无遮挡在线观看| 精品久久久久久久毛片微露脸 | a级毛片黄视频| 啪啪无遮挡十八禁网站| 777久久人妻少妇嫩草av网站| 亚洲av国产av综合av卡| 一边摸一边做爽爽视频免费| 1024视频免费在线观看| 日韩 亚洲 欧美在线| 亚洲av国产av综合av卡| 天堂俺去俺来也www色官网| 国产精品偷伦视频观看了| 另类精品久久| 久9热在线精品视频| 纯流量卡能插随身wifi吗| 制服诱惑二区| 蜜桃国产av成人99| 欧美人与性动交α欧美精品济南到| 日韩中文字幕欧美一区二区| 亚洲精品久久久久久婷婷小说| 天堂俺去俺来也www色官网| 国产色视频综合| 每晚都被弄得嗷嗷叫到高潮| 女警被强在线播放| 国产精品影院久久| 菩萨蛮人人尽说江南好唐韦庄| 新久久久久国产一级毛片| 国产精品亚洲av一区麻豆| 亚洲欧美色中文字幕在线| av又黄又爽大尺度在线免费看| 亚洲国产毛片av蜜桃av| 自拍欧美九色日韩亚洲蝌蚪91| 丁香六月天网| 18禁裸乳无遮挡动漫免费视频| 国产在线观看jvid| 熟女少妇亚洲综合色aaa.| 少妇被粗大的猛进出69影院| 国产精品 欧美亚洲| 两个人免费观看高清视频| 欧美精品av麻豆av| 亚洲国产精品999| 高潮久久久久久久久久久不卡| 91麻豆精品激情在线观看国产 | 老司机午夜福利在线观看视频 | 亚洲av电影在线观看一区二区三区| 亚洲视频免费观看视频| 黑人猛操日本美女一级片| 精品一区二区三卡| 色综合欧美亚洲国产小说| 亚洲国产看品久久| 大码成人一级视频| 久久国产精品男人的天堂亚洲| 狂野欧美激情性xxxx| 狠狠精品人妻久久久久久综合| 在线观看免费午夜福利视频| 啦啦啦啦在线视频资源| 丝袜美腿诱惑在线| 美女福利国产在线| 亚洲av日韩精品久久久久久密| xxxhd国产人妻xxx| 亚洲精品美女久久av网站| 看免费av毛片| 99国产精品免费福利视频| 两个人看的免费小视频| 久久天堂一区二区三区四区| 夫妻午夜视频| 日韩欧美一区视频在线观看| 国产成人啪精品午夜网站| 在线观看免费视频网站a站| 亚洲国产中文字幕在线视频| 国产日韩欧美在线精品| 国产精品亚洲av一区麻豆| 亚洲第一av免费看| 777米奇影视久久| 国产精品香港三级国产av潘金莲| 国产男人的电影天堂91| 欧美黑人精品巨大| 午夜成年电影在线免费观看| 国产又色又爽无遮挡免| 9色porny在线观看| 亚洲精品美女久久av网站| 亚洲中文日韩欧美视频| 黄色视频,在线免费观看| 99九九在线精品视频| 国产精品自产拍在线观看55亚洲 | 国产主播在线观看一区二区| 丰满人妻熟妇乱又伦精品不卡| 久久天堂一区二区三区四区| 亚洲av电影在线观看一区二区三区| 亚洲国产精品999| 亚洲欧美日韩高清在线视频 | 亚洲av美国av| 亚洲色图综合在线观看|