• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Applicability of Markov chain-based stochastic modelfor bubbling fluidized beds

    2015-05-08 02:32:30ZhuangYamingChenXiaopingLiuDaoyin
    關(guān)鍵詞:馬爾科夫流化床靜態(tài)

    Zhuang Yaming Chen Xiaoping Liu Daoyin

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China)

    ?

    Applicability of Markov chain-based stochastic modelfor bubbling fluidized beds

    Zhuang Yaming Chen Xiaoping Liu Daoyin

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China)

    A Markov chain-based stochastic model (MCM) is developed to simulate the movement of particles in a 2D bubbling fluidized bed (BFB). The state spaces are determined by the discretized physical cells of the bed, and the transition probability matrix is directly calculated by the results of a discrete element method (DEM) simulation. The Markov property of the BFB is discussed by the comparison results calculated from both static and dynamic transition probability matrices. The static matrix is calculated based on the Markov chain while the dynamic matrix is calculated based on the memory property of the particle movement. Results show that the difference in the trends of particle movement between the static and dynamic matrix calculation is very small. Besides, the particle mixing curves of the MCM and DEM have the same trend and similar numerical values, and the details show the time averaged characteristic of the MCM and also expose its shortcoming in describing the instantaneous particle dynamics in the BFB.

    stochastic model; Markov chain; discrete element method (DEM); bubbling fluidized bed (BFB)

    Numerical simulation has been a very popular and effective method to simulate the mixing and flow of particles in granule systems, which can provide detailed information to understand the particle dynamics, such as the discrete element methods (DEM)-CFD model[1-2]and the Eulerian-Granular model[3]. But most of these methods are based on the basic rule and fundamental equations, which requires many computational resources and a long computing time. By comparison, the semi-empirical model has high efficiency and needs low computational loads, such as the plug flow model[4]and the bubbling two-phase model[5]. However, the movement and mixing of particles are impossible to obtain in such kinds of models.

    For a compromise, the Markov chain-based stochastic model (MCM) can both quickly compute and have the ability to track the particles in granule systems, particularly in the powder technologies[6-8]. Doucet et al.[9]successfully used the first-order MCM to simulate the mixing of monodisperse particles in a rotating drum. Also, the transition probability of particles moving from one cell to another is directly calculated from a DEM result. The work shows that the MCM has the ability to give a good estimate of the particle dynamics. Ponomarev et al.[10-11]applied the MCM to the static mixer, and they calculated the probability distribution of particles flowing across the mixer according to shape parameters. The model gives very satisfying results, and it is convenient for accounting for the oscillating character of mixing kinetics due to particle segregation.

    However, the interaction between the solid phase and gas phase in the fluidized bed is much stronger than that in both the rotating drum mixer and the static mixer. Also, as the existing of bubbles, the flow in the fluidized bed is very complicated. Gottschalk et al.[6]introduced a multiphase MCM for the particle transport in a bubbling fluidized bed (BFB), and made it possible to take into account the finite velocity of fluidization bubbles. The model parameters are determined by mass balance or long-time behavior, e.g., the knowledge of the invariant distribution. As the fluidized bed is discretized into several horizontal cells along with the height of bed, it is impossible to simulate the radial mixing or movement of particles. The results from the MCM are compared with the experimental results, showing that the model accounts for the effects seen. The possibility that the MCM is not necessarily stationary (time-homogeneous) is given. Harris et al.[12]simulated the motion of one single particle moving up and down the riser using the Markov chain. Two models are presented. One is a core-annulus solids interchange model, and the other is a four-zone model that follows from the fast fluidized bed hydrodynamic profile. Models are linked to actual experimental conditions using local particle transfer rates between each model section, and the simulation output agrees well with the experimental data. The macroscopic characteristics of the riser, such as residence time distribution (RTD) and the simulated trajectory of one single particle, can be obtained. Yet, the detailed mixing and particle movement still cannot be calculated.

    In this paper, a MCM is introduced to simulate the particle movement in a 2D BFB. The probabilities of particles flowing between two cells are calculated directly from the DEM results. Also, the probability distributions of particle position are calculated from both the static and dynamic transition probability matrices, which are used to discuss the Markov property of the BFB. In order to validate the accuracy of the MCM, the particle mixing of the MCM and DEM simulation are compared, and the suggestion for the further improvement of the MCM is given.

    1 Model Description

    1.1 Markov chain

    A Markov chain is a random process that undergoes transitions from one state to another in a state space, and it can be used to model a random system that changes states according to a transition rule only depending on the current state. The memoryless property of the Markov chain is called the Markov property. The details of the MCM can be found in Ref.[13].

    The 2D BFB is discretized tomequal divisions in width, andnequal divisions in height. Thenmseparate cells formnmstates of a Markov chain as shown in Fig.1.

    Fig.1 Discretized fluidized bed with nm cells

    The details of the bed are shown in Tab.1.

    Tab.1 Details of the BFB

    So the transition probability matrix has the size ofnm×nm, which is calculated from the statistical data of a DEM simulation.

    In this research, the actual time of DEM simulation is from 0 to 20 s, and the simulation time of MCM is from 15 to 20 s. The transition probability matrix of MCM is calculated using the results of DEM from 10 to 15 s, as shown in Fig.2. That is, the MCM learns the statistical rules of particle motion from the DEM results, and follows the rules to impel particle system running. What needs to be emphasized is that the DEM simulation of the actual 5 s (15 to 20 s) costs about 20 h, while the MCM only costs about 15 min. So the MCM is very efficient.

    Fig.2 The simulation time of two models

    In this paper, time step Δtis set to be 0.025 s. The calculation details of the transition probability matrix based on the Markov chain are presented as follows. Assuming that from the momenttptotp+1, there areNijparticles moving fromSitoSj, and there areNparticles in the stateSiat the momenttp. The transition probabilityPijfrom the momenttptotp+1can be calculated through the following relationship:

    (1)

    The transition probabilities between any other two states at this time step can be calculated by the same method, and they form the matrix of transition probabilities at each time step. The average value of different matrices at different time steps is the final transition probability matrix for the MCM. As the probability that particles move between any certain two states is fixed, this 2D matrix is called the static transition probability matrix. What needs special note is that the period of DEM simulation results for the calculation is a stable condition and is fully developed.

    Once the transition probability matrix is obtained, the probability distribution of particle position can be easily calculated at any time. A Monte-Carlo method is employed to move a certain particle from one state space to another based on the transition probability and a random number generated by computers.

    1.2 Model applicability

    (2)

    The new transition probability between every two states is not fixed, so this 3D matrix is called the dynamic transition probability matrix. The calculation of transition probabilities is still based on the results of DEM simulation. In addition, the dynamic matrix significantly needs much more computer memory and a longer computing time.

    2 Results and Discussion

    2.1 Discussion of Markov property of the BFB

    The transition probability matrix is one of most important parts of the stochastic model. Once the matrix is obtained, it is convenient to calculate the probability distribution of particle positions, which is helpful to understand the macroscopic properties of the particle movement.

    Fig.3 is the probability distribution of the position of a batch of particles at 0.05, 0.30, 0.55, 0.80, 1.05 and 1.30 s after being put into the bottom of the bed, which is calculated by the static transition probability matrix based on the Markov chain. The particles first flow up and tend to come close to the middle of the bed. Then, they spread and flow down at the top of the dense phase region as the bubbles break. Finally, the particles gradually spread over the whole dense phase region. The probability distribution of particle position shows the overall particle movement and demonstrates the back mixing characteristics of the particles in the BFB.

    In order to discuss the Markov property of the BFB, Fig.4 shows the probability distribution of the particle position calculated using the dynamic probability transition matrix. While the computation loads and time costs of dynamic matrix calculation are almost one thousand times that of the static matrix, the probability distribution of particle position does not change much both in the overall trend and details. Although it cannot be definitely proved that the particle movement in the BFB has the Markov property to meet the need of Markov chain, using the MCM to simulate the particle movement in the BFB still has some basis through this comparison.

    (a)

    (b)

    (c)

    (d)

    (e)

    (f)

    Fig.3 Probability distribution of particle position based on the static transition probability matrix. (a) 0.05 s; (b) 0.30 s; (c) 0.55 s; (d) 0.80 s; (e) 1.05 s; (f) 1.30 s

    (a)

    (b)

    (c)

    (d)

    (e)

    (f)

    Fig.4 Probability distribution of particle position based on the dynamic transition probability matrix. (a) 0.05 s; (b) 0.30 s; (c) 0.55 s; (d) 0.80 s; (e) 1.05 s; (f) 1.30 s

    2.2 Comparison of the particle mixing of two models

    In order to validate the accuracy of MCM, the particle mixing of MCM is compared with that of the DEM simulation. To better understand the radial particle mixing in the BFB, the bed is divided into two parts, the left half and the right half. At the moment of the 15th second, which is the time that MCM starts calculating, particles are marked as left half if they are in the left half bed, and are marked as right half if they are in the right half bed. In the same way to study the axial particle mixing, particles over the height of 0.25 m of the bed are marked as up half, and below the height of 0.25 m of the bed are marked as below half. Figs.5(a) and (b) show the radial and axial particle mixing of both DEM and MCM in the BFB, where the number fraction means the percentage of marked particles that still remain in the original part of the bed in the process of simulation.

    (a)

    (b)

    Fig.5 shows that there are about 54% particles in the left half bed, and about 44% particles in the right half bed at the moment of the 15th second. Then after 5 s of DEM simulation, about 50% original left half particles move to the right half bed, and also about 50% right half particles move to the left half bed. The radial mixing of MCM has the same trend, but the mixing speed is slow. Another clear difference is that the mixing curves of MCM are much smoother than those of DEM. From the comparison of axial particle mixing of two models shown in Fig.5(b), there are much more particles in the low half of the bed (about 65%) than in the up half of the bed (about 35%) at the beginning. As the asymmetry of low and up half bed, about two-thirds of the original low half particles move to the up half bed, and about one-third of the original up half particles move to the low half bed in the rest time of DEM simulation. While the particle mixing is a little slower in the low half bed and a little faster in the up half bed of MCM compared to that of DEM. Besides, the mixing curves of MCM are still very smooth compared to that of DEM.

    On the one hand, the bubbles have strong effect on the particle mixing in the BFB, and the effect becomes stronger and stronger as the bubbles increase, combine or break along with the height of the bed. MCM only pays attention to the particle phase and uses the averaged static transition probability matrix. The effect of bubbles on the particle mixing is much weakened in the MCM. This may be the reason why the mixing curves are so smooth in MCM, and there are differences in the mixing speed between the two models. However, the comparison of particle mixing of the two models demonstrate the ability of MCM in describing the time averaged mixing trend of particles in the BFB, although its instantaneous particle mixing characteristics is not so good as the DEM.

    3 Conclusion

    The comparison between static and dynamic transition probability matrices shows that it is reasonable to develop the MCM of BFB, because it is highly effective and partly has the ability to describe both macroscopic and microscopic movement of particles in the bed, such as the probability distribution of particle position and particle mixing. The accuracy of MCM is validated by the particle mixing comparison with the DEM simulation. As the bubble phase cannot be negligible in BFB, the simple Markov chain that only calculates particle phase is not sufficient for the MCM to match DEM on the details of particle dynamics. The bubble phase or other factors should be considered using appropriate methods to improve the MCM of BFB.

    [1]Luo K, Fang M, Yang S, et al. LES-DEM investigation of an internally circulating fluidized bed: effects of gas and solid properties[J].ChemicalEngineeringJournal, 2013, 228: 583-595.

    [2]Zhang Y, Jin B, Zhong W, et al. DEM simulation of particle mixing in flat-bottom spout-fluid bed[J].ChemicalEngineeringResearchandDesign, 2010, 88(5): 757-771.

    [3]Ding J, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow[J].AIChEJournal, 1990, 36(4): 523-538.

    [4]Ali M, Mahmud T, Heggs P J, et al. A one-dimensional plug-flow model of a counter-current spray drying tower[J].ChemicalEngineeringResearchandDesign, 2014, 92(5): 826-841.

    [5]Gordillo E D, Belghit A. A two phase model of high temperature steam-only gasification of biomass char in bubbling fluidized bed reactors using nuclear heat[J].InternationalJournalofHydrogenEnergy, 2011, 36(1): 374-381.

    [6]Gottschalk T, Dehling H G, Hoffmann A C. Multiphase stochastic model for fluidized beds[J].PhysicalReviewE, 2008, 77(3): 031306.

    [7]Tjakra J D, Bao J, Hudon N, et al. Modeling collective dynamics of particulate systems under time-varying operating conditions based on Markov chains[J].AdvancedPowderTechnology, 2013, 24(2): 451-458.

    [8]Berthiaux H, Mizonov V, Zhukov V. Application of the theory of Markov chains to model different processes in particle technology[J].PowderTechnology, 2005, 157(1): 128-137.

    [9]Doucet J, Hudon N, Bertrand F, et al. Modeling of the mixing of monodisperse particles using a stationary DEM-based Markov process[J].Computers&ChemicalEngineering, 2008, 32(6): 1334-1341.

    [10]Ponomarev D, Mizonov V, Gatumel C, et al. Markov-chain modelling and experimental investigation of powder-mixing kinetics in static revolving mixers[J].ChemicalEngineeringandProcessing:ProcessIntensification, 2009, 48(3): 828-836.

    [11]Ponomarev D, Mizonov V, Berthiaux H, et al. A 2D Markov chain for modelling powder mixing in alternately revolving static mixers of Sysmix?type[J].ChemicalEngineeringandProcessing:ProcessIntensification, 2009, 48(11): 1495-1505.

    [12]Harris A T, Thorpe R B, Davidson J F. Stochastic modelling of the particle residence time distribution in circulating fluidized bed risers[J].ChemicalEngineeringScience, 2002, 57(22): 4779-4796.

    [13]Zhuang Y, Zhao M, Liu D, et al. Modeling of the particle residence time distribution in fluidized bed risers using a stationary DEM-based Markov process[C]//The11thInternationalConferenceonFluidizedBedTechnology. Beijing, China, 2014: 395-400.

    基于馬爾科夫鏈隨機模型的鼓泡床適用性

    莊亞明 陳曉平 劉道銀

    (東南大學(xué)能源熱轉(zhuǎn)換及其過程測控教育部重點實驗室, 南京 210096)

    為了模擬二維鼓泡流化床(BFB)中的顆粒運動,建立了基于馬爾科夫鏈的隨機模型(MCM).用離散化的床體網(wǎng)格定義狀態(tài)空間,并根據(jù)離散單元模型(DEM)的運算結(jié)果直接計算轉(zhuǎn)移概率矩陣.通過對比靜態(tài)和動態(tài)轉(zhuǎn)移概率矩陣的模擬結(jié)果來討論BFB的馬爾科夫特性.基于馬爾科夫鏈計算靜態(tài)矩陣,基于顆粒運動有后效性計算動態(tài)矩陣.結(jié)果表明:靜態(tài)和動態(tài)矩陣模擬的顆粒運動趨勢差別很小.此外,MCM和DEM模擬的顆?;旌锨€趨勢相同且數(shù)值相近,曲線細(xì)節(jié)表明了MCM的時均性特點,也暴露了其在描述 BFB顆粒運動瞬時特性方面的缺陷.

    隨機模型;馬爾科夫鏈;離散單元模型(DEM);鼓泡流化床(BFB)

    TQ16

    Foundation items:The National Science Foundation of China (No.51276036, 51306035), the Fundamental Research Funds for the Central Universities (No.KYLX_0114).

    :Zhuang Yaming, Chen Xiaoping, Liu Daoyin. Applicability of Markov chain-based stochastic model for bubbling fluidized beds[J].Journal of Southeast University (English Edition),2015,31(2):249-253.

    10.3969/j.issn.1003-7985.2015.02.016

    10.3969/j.issn.1003-7985.2015.02.016

    Received 2015-01-02.

    Biographies:Zhuang Yaming (1990—), male, graduate; Chen Xiao-ping (corresponding author), male, doctor, professor, xpchen@seu.edu.cn.

    猜你喜歡
    馬爾科夫流化床靜態(tài)
    基于疊加馬爾科夫鏈的邊坡位移預(yù)測研究
    靜態(tài)隨機存儲器在軌自檢算法
    基于改進(jìn)的灰色-馬爾科夫模型在風(fēng)機沉降中的應(yīng)用
    流化床丙烷脫氫反應(yīng)段的模擬及優(yōu)化
    關(guān)于循環(huán)流化床鍋爐集控運行研究
    馬爾科夫鏈在教學(xué)評價中的應(yīng)用
    單沉浸管流化床內(nèi)離散顆粒數(shù)值模擬
    機床靜態(tài)及動態(tài)分析
    機電信息(2015年9期)2015-02-27 15:55:56
    具7μA靜態(tài)電流的2A、70V SEPIC/升壓型DC/DC轉(zhuǎn)換器
    基于馬爾科夫法的土地格局變化趨勢研究
    河南科技(2014年11期)2014-02-27 14:10:11
    亚洲成人中文字幕在线播放| 久久久久久大精品| 成人高潮视频无遮挡免费网站| 欧美中文日本在线观看视频| 综合色丁香网| 九九在线视频观看精品| 国产 一区 欧美 日韩| 99九九线精品视频在线观看视频| 精品人妻视频免费看| 欧美激情久久久久久爽电影| 久久久久精品国产欧美久久久| 美女 人体艺术 gogo| 日本一二三区视频观看| 淫秽高清视频在线观看| av天堂在线播放| 99久久九九国产精品国产免费| 在线看三级毛片| av视频在线观看入口| 久久人人爽人人爽人人片va| 日本熟妇午夜| 国产在线精品亚洲第一网站| 秋霞在线观看毛片| 成人午夜高清在线视频| 亚洲精品一区av在线观看| 精品不卡国产一区二区三区| 看片在线看免费视频| 99久国产av精品| 嫩草影院入口| 九色成人免费人妻av| 久久人人精品亚洲av| 一级黄色大片毛片| 搡老熟女国产l中国老女人| 久久精品夜色国产| 精品久久久久久久久av| 国内揄拍国产精品人妻在线| 在线天堂最新版资源| 久久久欧美国产精品| 国产久久久一区二区三区| 免费观看的影片在线观看| 亚洲熟妇熟女久久| 国产女主播在线喷水免费视频网站 | 99热只有精品国产| 人人妻人人澡人人爽人人夜夜 | 欧美区成人在线视频| 真实男女啪啪啪动态图| 国产黄色视频一区二区在线观看 | 亚洲精品国产av成人精品 | 给我免费播放毛片高清在线观看| 欧美一区二区国产精品久久精品| 久久欧美精品欧美久久欧美| av福利片在线观看| 亚洲av中文字字幕乱码综合| 成人亚洲精品av一区二区| 国产成人影院久久av| 听说在线观看完整版免费高清| 男人舔女人下体高潮全视频| 日韩精品青青久久久久久| 网址你懂的国产日韩在线| 久久久久久国产a免费观看| 女同久久另类99精品国产91| 麻豆一二三区av精品| 久久人人爽人人片av| av视频在线观看入口| 少妇的逼好多水| 国产av在哪里看| 国内精品一区二区在线观看| 久久精品国产鲁丝片午夜精品| 日本撒尿小便嘘嘘汇集6| 亚洲婷婷狠狠爱综合网| 国产一区二区激情短视频| 亚洲自拍偷在线| 国产极品精品免费视频能看的| 日韩欧美在线乱码| 国产在线精品亚洲第一网站| 国产v大片淫在线免费观看| 简卡轻食公司| 搡老妇女老女人老熟妇| 亚洲精品日韩av片在线观看| 夜夜看夜夜爽夜夜摸| 内射极品少妇av片p| 啦啦啦观看免费观看视频高清| 99久国产av精品| 久久久国产成人免费| 国产私拍福利视频在线观看| 国产 一区精品| 日韩一本色道免费dvd| 特级一级黄色大片| 国产精品电影一区二区三区| 精品99又大又爽又粗少妇毛片| 久久草成人影院| 欧美另类亚洲清纯唯美| 久久久久国内视频| 久久综合国产亚洲精品| 一边摸一边抽搐一进一小说| 亚洲五月天丁香| 在线免费十八禁| 91精品国产九色| 久久久精品大字幕| 免费看av在线观看网站| 美女cb高潮喷水在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲av成人av| 大型黄色视频在线免费观看| 午夜福利在线观看吧| 高清日韩中文字幕在线| 中文字幕av成人在线电影| 亚洲中文字幕日韩| 免费av不卡在线播放| 中文资源天堂在线| 丝袜喷水一区| 男人狂女人下面高潮的视频| 久久久国产成人免费| 高清毛片免费观看视频网站| videossex国产| 日本免费a在线| 床上黄色一级片| 少妇被粗大猛烈的视频| 国产精品综合久久久久久久免费| 看十八女毛片水多多多| 可以在线观看毛片的网站| 中文字幕免费在线视频6| 男人的好看免费观看在线视频| 99久久无色码亚洲精品果冻| 激情 狠狠 欧美| 色在线成人网| 99视频精品全部免费 在线| 国产精品人妻久久久久久| 日日摸夜夜添夜夜添小说| 免费人成在线观看视频色| 中出人妻视频一区二区| 熟女人妻精品中文字幕| 国产人妻一区二区三区在| 亚洲精品影视一区二区三区av| 岛国在线免费视频观看| 亚洲av第一区精品v没综合| 18禁在线播放成人免费| a级毛片a级免费在线| 亚洲av成人av| 少妇的逼好多水| 99在线人妻在线中文字幕| 热99在线观看视频| 一a级毛片在线观看| 日韩精品青青久久久久久| 插逼视频在线观看| av.在线天堂| 不卡一级毛片| 大又大粗又爽又黄少妇毛片口| 直男gayav资源| 国产av一区在线观看免费| 色av中文字幕| 精品人妻一区二区三区麻豆 | 亚洲图色成人| 久久草成人影院| 成人亚洲精品av一区二区| 国产在视频线在精品| 非洲黑人性xxxx精品又粗又长| 午夜爱爱视频在线播放| 男插女下体视频免费在线播放| 男人的好看免费观看在线视频| 久久九九热精品免费| 99久久精品国产国产毛片| 欧美xxxx黑人xx丫x性爽| 99riav亚洲国产免费| 麻豆国产97在线/欧美| 国产一区二区在线观看日韩| 欧美又色又爽又黄视频| 国产蜜桃级精品一区二区三区| 中国国产av一级| 一级毛片我不卡| 亚洲精品456在线播放app| 国产欧美日韩精品一区二区| 在线观看免费视频日本深夜| 又粗又爽又猛毛片免费看| 久久婷婷人人爽人人干人人爱| 国产一区二区三区在线臀色熟女| 给我免费播放毛片高清在线观看| 欧美另类亚洲清纯唯美| 久久久久免费精品人妻一区二区| 亚洲电影在线观看av| 国产高清激情床上av| 久久综合国产亚洲精品| 久99久视频精品免费| 欧美国产日韩亚洲一区| 欧美绝顶高潮抽搐喷水| 欧美一区二区精品小视频在线| 黑人高潮一二区| 岛国在线免费视频观看| 老司机影院成人| 午夜精品国产一区二区电影 | 精品午夜福利视频在线观看一区| 黄色欧美视频在线观看| 精品一区二区三区视频在线观看免费| 日本与韩国留学比较| 丰满乱子伦码专区| 性色avwww在线观看| 超碰av人人做人人爽久久| 国产国拍精品亚洲av在线观看| 成人午夜高清在线视频| 国产精品一区www在线观看| 精品99又大又爽又粗少妇毛片| 欧美最黄视频在线播放免费| 亚洲精品一卡2卡三卡4卡5卡| 日本与韩国留学比较| 国产精品免费一区二区三区在线| 亚洲精品国产成人久久av| 免费大片18禁| 69av精品久久久久久| 俄罗斯特黄特色一大片| 超碰av人人做人人爽久久| 一本久久中文字幕| 久久精品夜色国产| 最近2019中文字幕mv第一页| 亚洲一区高清亚洲精品| 精品日产1卡2卡| 精品国内亚洲2022精品成人| 午夜视频国产福利| 国产伦一二天堂av在线观看| 九九在线视频观看精品| av.在线天堂| 亚洲乱码一区二区免费版| 精品国产三级普通话版| 国产精品爽爽va在线观看网站| а√天堂www在线а√下载| 女人十人毛片免费观看3o分钟| 毛片女人毛片| 国产视频内射| 国产精品久久电影中文字幕| 色av中文字幕| 国产在线精品亚洲第一网站| 亚洲精华国产精华液的使用体验 | 日韩亚洲欧美综合| 日本黄色片子视频| 亚洲国产精品久久男人天堂| 国产精品电影一区二区三区| 国产精品99久久久久久久久| 亚洲av五月六月丁香网| 1000部很黄的大片| 自拍偷自拍亚洲精品老妇| 最新中文字幕久久久久| 国产黄a三级三级三级人| 一夜夜www| 免费看美女性在线毛片视频| 俄罗斯特黄特色一大片| 女人十人毛片免费观看3o分钟| 午夜福利视频1000在线观看| 老司机午夜福利在线观看视频| 国产综合懂色| 久久久欧美国产精品| 日日摸夜夜添夜夜添小说| 国产欧美日韩精品一区二区| 国产精品不卡视频一区二区| 精品久久久久久久久久免费视频| 91狼人影院| 国产精品1区2区在线观看.| 精品熟女少妇av免费看| 国产精品无大码| 精品午夜福利在线看| 成人午夜高清在线视频| 久久午夜福利片| 国产片特级美女逼逼视频| 精品日产1卡2卡| 啦啦啦韩国在线观看视频| a级一级毛片免费在线观看| 大香蕉久久网| 国产成人精品久久久久久| 蜜臀久久99精品久久宅男| 美女黄网站色视频| av在线天堂中文字幕| 成人无遮挡网站| 国产片特级美女逼逼视频| 一卡2卡三卡四卡精品乱码亚洲| 男女那种视频在线观看| 97超碰精品成人国产| 国产精品综合久久久久久久免费| 亚洲精品成人久久久久久| 国产精品一区二区三区四区久久| 一夜夜www| 在现免费观看毛片| 国产91av在线免费观看| 国产激情偷乱视频一区二区| 色综合色国产| 日韩一本色道免费dvd| 色综合亚洲欧美另类图片| 久久久久久久久大av| 免费看美女性在线毛片视频| 亚洲四区av| 禁无遮挡网站| 一级av片app| 成人欧美大片| 三级经典国产精品| 久久热精品热| 男人舔女人下体高潮全视频| 97在线视频观看| 色哟哟·www| 亚洲精品久久国产高清桃花| 男插女下体视频免费在线播放| 成人鲁丝片一二三区免费| 天堂网av新在线| 国产伦一二天堂av在线观看| 亚洲国产高清在线一区二区三| 婷婷色综合大香蕉| 97在线视频观看| 午夜福利视频1000在线观看| 国产单亲对白刺激| 最近最新中文字幕大全电影3| 国产伦一二天堂av在线观看| 成人亚洲欧美一区二区av| 久久久午夜欧美精品| 国产午夜精品久久久久久一区二区三区 | 免费不卡的大黄色大毛片视频在线观看 | 麻豆国产97在线/欧美| 成人午夜高清在线视频| 三级毛片av免费| 国产高清三级在线| 亚洲欧美日韩东京热| 国产高清视频在线播放一区| 欧美bdsm另类| 国产精品一区二区三区四区久久| 毛片一级片免费看久久久久| 免费在线观看成人毛片| 一本精品99久久精品77| 日韩精品中文字幕看吧| 两个人的视频大全免费| 99久久精品热视频| 嫩草影院新地址| 国产黄色视频一区二区在线观看 | 一区二区三区免费毛片| 国产欧美日韩一区二区精品| 欧美高清性xxxxhd video| 国产成人一区二区在线| 两个人的视频大全免费| 亚洲美女视频黄频| 天美传媒精品一区二区| 久久久国产成人免费| 中文在线观看免费www的网站| 看免费成人av毛片| 男人舔奶头视频| 国产成人福利小说| 国产精品久久久久久av不卡| 国产淫片久久久久久久久| 男女那种视频在线观看| 婷婷亚洲欧美| 日韩av不卡免费在线播放| 亚洲综合色惰| 精品免费久久久久久久清纯| 久久久国产成人免费| 久久人妻av系列| 日本成人三级电影网站| 精品久久久久久久久亚洲| 国产黄a三级三级三级人| 久久久久国内视频| 欧美极品一区二区三区四区| 欧美+日韩+精品| 自拍偷自拍亚洲精品老妇| 综合色av麻豆| 少妇裸体淫交视频免费看高清| 99在线视频只有这里精品首页| 国内精品久久久久精免费| 少妇高潮的动态图| 久久人人精品亚洲av| 亚洲av中文av极速乱| 深夜精品福利| 高清毛片免费观看视频网站| 精品久久久久久成人av| 联通29元200g的流量卡| 在线a可以看的网站| 日韩中字成人| 听说在线观看完整版免费高清| 美女cb高潮喷水在线观看| 亚洲不卡免费看| 一个人看视频在线观看www免费| 日本与韩国留学比较| av在线天堂中文字幕| 久久午夜亚洲精品久久| 国产色爽女视频免费观看| 欧美日韩综合久久久久久| 无遮挡黄片免费观看| 18禁在线播放成人免费| 久久久久性生活片| 日韩大尺度精品在线看网址| 搞女人的毛片| 国产精品亚洲一级av第二区| 久久久午夜欧美精品| 一a级毛片在线观看| а√天堂www在线а√下载| 如何舔出高潮| 成年版毛片免费区| www.色视频.com| 日韩高清综合在线| 国产欧美日韩精品一区二区| 日韩精品青青久久久久久| 亚洲av熟女| 久久久精品大字幕| 久久欧美精品欧美久久欧美| 午夜亚洲福利在线播放| 直男gayav资源| 成人高潮视频无遮挡免费网站| 国产成人91sexporn| 麻豆乱淫一区二区| 国产精品一区二区三区四区免费观看 | 日韩制服骚丝袜av| 色播亚洲综合网| 亚洲第一电影网av| 国产v大片淫在线免费观看| 天天一区二区日本电影三级| 村上凉子中文字幕在线| 日本a在线网址| 欧美另类亚洲清纯唯美| 亚洲av五月六月丁香网| 精品国产三级普通话版| 天天躁日日操中文字幕| 午夜老司机福利剧场| 老司机午夜福利在线观看视频| 亚洲av中文字字幕乱码综合| 国产高清视频在线播放一区| 国产精品三级大全| 好男人在线观看高清免费视频| 国产精品一区二区免费欧美| 免费观看在线日韩| 国产精品一及| 亚洲婷婷狠狠爱综合网| 中文在线观看免费www的网站| 成人av一区二区三区在线看| 哪里可以看免费的av片| 亚洲人与动物交配视频| 国产精品野战在线观看| 精品熟女少妇av免费看| 亚洲18禁久久av| 欧美在线一区亚洲| 内地一区二区视频在线| 欧美激情久久久久久爽电影| 日韩精品有码人妻一区| 少妇猛男粗大的猛烈进出视频 | 久久精品夜色国产| 在线国产一区二区在线| 日本黄大片高清| 亚洲熟妇熟女久久| 国产中年淑女户外野战色| 人人妻人人看人人澡| 日韩人妻高清精品专区| 床上黄色一级片| 在线免费观看不下载黄p国产| 午夜日韩欧美国产| 日产精品乱码卡一卡2卡三| 丰满乱子伦码专区| 在线看三级毛片| 不卡视频在线观看欧美| 日本 av在线| 国产精品久久视频播放| 国产精品一区二区免费欧美| 日韩欧美 国产精品| 中国国产av一级| 成人鲁丝片一二三区免费| 久久久久久九九精品二区国产| 亚洲18禁久久av| 最近在线观看免费完整版| 青春草视频在线免费观看| 国产精品亚洲一级av第二区| 国产国拍精品亚洲av在线观看| 成人av在线播放网站| 国产色婷婷99| 亚洲精品在线观看二区| 超碰av人人做人人爽久久| 久久精品国产99精品国产亚洲性色| 国产精品乱码一区二三区的特点| 久久精品影院6| 午夜激情欧美在线| 91狼人影院| 久久人人爽人人爽人人片va| 久久久久九九精品影院| 久久久a久久爽久久v久久| 成人毛片a级毛片在线播放| 亚洲一级一片aⅴ在线观看| 亚洲欧美日韩高清专用| 成人精品一区二区免费| 日本色播在线视频| 国国产精品蜜臀av免费| 免费看日本二区| 变态另类成人亚洲欧美熟女| 国产亚洲91精品色在线| 久久久久性生活片| .国产精品久久| 亚洲熟妇熟女久久| 一本一本综合久久| 91狼人影院| 久久99热这里只有精品18| 久久九九热精品免费| 麻豆一二三区av精品| av国产免费在线观看| 99久久精品国产国产毛片| 国产综合懂色| 日韩一本色道免费dvd| 亚洲av第一区精品v没综合| 最近最新中文字幕大全电影3| 欧美+亚洲+日韩+国产| 亚洲aⅴ乱码一区二区在线播放| 十八禁国产超污无遮挡网站| 久久欧美精品欧美久久欧美| а√天堂www在线а√下载| 99热这里只有是精品50| 日日啪夜夜撸| 亚洲aⅴ乱码一区二区在线播放| 久久人妻av系列| 午夜福利18| 日韩 亚洲 欧美在线| 国产精品不卡视频一区二区| 亚洲美女视频黄频| 草草在线视频免费看| 中国美女看黄片| 亚洲中文字幕日韩| 日本免费a在线| 小蜜桃在线观看免费完整版高清| 亚洲国产欧美人成| 伦精品一区二区三区| 91在线精品国自产拍蜜月| 伦理电影大哥的女人| 卡戴珊不雅视频在线播放| 亚洲人成网站在线播放欧美日韩| 亚洲最大成人手机在线| av天堂在线播放| 九九爱精品视频在线观看| 国产高清视频在线观看网站| 日韩成人伦理影院| 岛国在线免费视频观看| 夜夜看夜夜爽夜夜摸| 51国产日韩欧美| 国产不卡一卡二| 亚洲av成人精品一区久久| 一级毛片电影观看 | 久久精品综合一区二区三区| 欧美+日韩+精品| 日韩高清综合在线| 神马国产精品三级电影在线观看| 麻豆av噜噜一区二区三区| 九九久久精品国产亚洲av麻豆| 亚洲av成人精品一区久久| 免费大片18禁| 国产熟女欧美一区二区| 久久人人爽人人片av| 在线观看一区二区三区| av在线老鸭窝| 久久久精品94久久精品| 精品福利观看| 亚洲成人久久爱视频| 一级a爱片免费观看的视频| 国产综合懂色| 日韩强制内射视频| 一个人看的www免费观看视频| 亚洲国产色片| 亚洲精品成人久久久久久| 国内精品久久久久精免费| 国产精品女同一区二区软件| 在线观看免费视频日本深夜| 99热全是精品| 亚洲综合色惰| 亚洲成av人片在线播放无| 亚洲五月天丁香| 男女啪啪激烈高潮av片| 亚洲不卡免费看| 搡老妇女老女人老熟妇| 黄色欧美视频在线观看| 91麻豆精品激情在线观看国产| 有码 亚洲区| 欧美极品一区二区三区四区| 最近2019中文字幕mv第一页| 嫩草影视91久久| 最近在线观看免费完整版| 亚洲中文字幕一区二区三区有码在线看| 日日干狠狠操夜夜爽| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品国产三级国产av玫瑰| 男女那种视频在线观看| 国产高清激情床上av| 亚洲av不卡在线观看| 99国产极品粉嫩在线观看| 别揉我奶头~嗯~啊~动态视频| 色哟哟哟哟哟哟| 在线免费十八禁| 国产精品综合久久久久久久免费| 乱系列少妇在线播放| 在线观看av片永久免费下载| 麻豆成人午夜福利视频| 麻豆久久精品国产亚洲av| 在线免费十八禁| 嫩草影视91久久| 亚洲成人久久爱视频| 97碰自拍视频| 国产黄色视频一区二区在线观看 | 校园人妻丝袜中文字幕| 精品久久久久久成人av| 亚洲自拍偷在线| 欧美另类亚洲清纯唯美| 久久99热这里只有精品18| 国产又黄又爽又无遮挡在线| 免费av毛片视频| 老师上课跳d突然被开到最大视频| 99久久中文字幕三级久久日本| 99久国产av精品| 人人妻,人人澡人人爽秒播| 在线免费观看不下载黄p国产| 亚洲国产精品合色在线| 搡老妇女老女人老熟妇| 精品国内亚洲2022精品成人| 亚洲美女视频黄频| 国产单亲对白刺激| 日产精品乱码卡一卡2卡三| 少妇人妻精品综合一区二区 | 欧美高清性xxxxhd video| 日韩精品有码人妻一区| 午夜精品国产一区二区电影 | 国产精品亚洲美女久久久| 综合色av麻豆| 亚洲欧美成人精品一区二区| 丰满的人妻完整版| 久99久视频精品免费|