• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Double-layer Depth-averaged Boussinesq Model for Water Wave

    2015-05-04 01:18:37LIUZhongboFANGKezhaoLin
    船舶力學(xué) 2015年9期
    關(guān)鍵詞:大連海事大學(xué)大連理工大學(xué)色散

    LIU Zhong-bo,FANG Ke-zhao,Lü Lin

    (1.Transportation Management College,Dalian Maritime University,Dalian,116026,China;2.Water Science and Water Disaster Prevention and Control in Hunan Province Key Laboratory,Changsha University of Technology, Changsha 410114,China;3.State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,China)

    A Double-layer Depth-averaged Boussinesq Model for Water Wave

    LIU Zhong-bo1,2,3,FANG Ke-zhao2,3,Lü Lin2

    (1.Transportation Management College,Dalian Maritime University,Dalian,116026,China;2.Water Science and Water Disaster Prevention and Control in Hunan Province Key Laboratory,Changsha University of Technology, Changsha 410114,China;3.State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,China)

    A double-layer depth-averaged Boussinesq-type model for wave propagation over an uneven bottom is derived.The governing equations are formulated in two depth-averaged velocities within each water layer and of the second-order fully nonlinearity.To improve the model properties,higher-order terms are introduced to momentum equations and theoretical analyses are made to investigate the linear dispersive and nonlinear properties.The optimized model equations show good dispersion property up to kh≈6 within 0.3%error,and the second nonlinear characteristics are optimized to kh≈6 within 10%error.Based on finite difference method and a composite fourth order Adams-Bashforth-Moulton time integration,one-dimensional equations are solved numerically on non-staggered grids.Regular wave evolution over a submerged breakwater is simulated and the computational results are compared with the experimental data,the good agreements are found.

    Double-layer Boussinesq equations;dispersive property;nonlinear property

    0 Introduction

    Boussinesq-type equations have been proven to be powerful coastal wave models because they have both dispersive and nonlinear properties,as well as acceptable computational cost due to reducing three-dimensional problem to two-dimensional ones.The research on Boussinesq theory is mainly triggered by improving the capabilities of linear and nonlinear properties in deep water,comprehensive review of the Boussinesq type models is referred to Kirby and Madsen and Fuhrman[1-2].

    Early research mainly focused on improving the linear dispersion of classical Boussinesq equations presented by Peregrine to deep water[3].With an improved dispersion to non-dimensional water depth kh≈3.14,most of these Boussinesq models only included the weakly non-linear terms(e.g.,Madsen et al(1991)[4];Nwogu(1993)[5];Beji and Nadaoka(1996)[6]).Subsequently,the nonlinear property was found to play a key role in accurate predicting water waves and great efforts have been made to develop the‘full nonlinear’Boussinesq model(Wei,et al(1995)[7];Madsen and Sch?ffer(1998)[8];Zou(1999)[9];Gobbi et al(1999)[10];Agnon et al (1999)[11]).After 2000,some novel Boussinesq models emerged with high accuracy in both linear and nonlinear properties(e.g.,Madsen et al(2002)[12];Lynett and Liu(2004)[13];Chazel et al(2009)[14]).Notably the equations derived by Madsen et al(2002)[12]showed an excellent linear property up to kh≈25-40 and nonlinear property up to kh≈25-30.This model however included more equations than conventional Boussinesq models and contained fifth-order derivatives,thus resulting in a very complex numerical discretization as well as expensive computational time.To avoid solving the fifth-order derivatives in Boussinesq models,Zhang and Li[17]and Lynett and Liu[18]presented two-layer Boussinesq models for water waves.These kinds of models included one more momentum equations compared with the conventional Boussinesq models and the highest derivative is 3.And the models proposed by Zhang and Li[17]and Lynett and Liu[18]were expressed in terms of two velocities,which defined at different water column, and the former one incorporated weakly nonlinear terms while the latter was a full nonlinear model.In this study,a new set of double-layer depth-averaged Boussinesq equations is derived starting from the Laplace equations.Theoretical analyses as well as numerical experiments were performed.

    1 Theoretical derivation of a double-layer depth-averaged Boussinesq model

    1.1 Scaling and governing equations

    A Cartesian coordinate system is adopted with the x-and y-axes located on the still water plane(SWL)and the z-axis pointing vertically upwards as shown in Fig.1, whereis the surface elevation measured fromare the upper and lower water depths,respectively;and h=h1+h2is the still water depth.Under the assumption of irrotational motion of fluid,andare utilized to represent the velocity potential in the upper and lower water layers,respectively.

    Fig.1 The sketch of wave propagation over impermeable seabed

    The variables are rescaled to the non-dimensional ones as

    where the prime denotes non-dimensional variables;and a,l0,and h0denote the characteristic wave amplitude,wave length,and water depth,respectively.

    Introducing two small parameters ε and μ as the classical measures of nonlinearity and frequency dispersion as follows,

    and the governing equations,boundary conditions,and matching conditions at the interface for the irrotational wave problem shown in Fig.1 are obtained(omitting the primes for clarity):

    1.2 The expansion of velocity potentials

    The most significant advantage of the Boussinesq model is that it can decrease a complicated three-dimensional problem into a two-dimensional one by assuming a specific vertical distribution of velocity.To achieve this,we choose the expansions forand Ψ)as:

    Substituting the expression(10)into Eqs.(3)and(7)and then applying the assumption of▽h=leads to successive expressions,and after rearrangement,can be written as:

    Similarly,after the expression(11)is substituted into Eqs.(4)and(8),we can have the expressions forwhich is written as

    Eqs.(12)and(13)are truncated at)to ensure that the highest spatial derivative in the equations is 3,which will be convenient for numerical discretization.

    1.3 Equations in terms of the velocities at the still water level u0and interfacial water depth u10

    Inserting the expressions(12)and(13)into Eq.(5),we can obtain

    Applying horizontal gradient operator▽to Eq.(14),we obtain

    Similarly,we can obtain the second momentum equations expressed in terms of two velocities at the still water level and interfacial water depth as:

    The continuity equation is

    where

    The combination of Eqs.(15),(16)and(18)represents a complete system of higher-order Boussinesq equations truncated atand retains all second nonlinear terms.The model has a poor dispersion property because no second-order dispersion terms are involved in the governing equation for u0(see Eq.(16)).However,this model serves as a basis for deriving the following depth-averaged model in the following sections.

    1.4 Equations formulated in terms of depth-averaged velocities

    The depth-averaged velocities along the upper and lower water columns are defined as:

    Inserting the expressions(12)and(13)in Eqs.(20)and(21)leads to

    Substituting the the expressions(22)and(23)into Eqs.(15),(16)and(18),we finally obtain a double-layer depth-averaged Boussinesq model,which is written as:

    The combination of Eqs.(24),(26),and(28)represents a set of higher-order Boussinesq equations in terms of depth-averaged velocities and surface elevation(hereafter we call it Model I).Neglecting Eq.(26)and the terms related to depth-averaged velocity along the lower water column in Eqs.(24)and(28),the model is simplified to the classical Boussinesq model with the inclusion of the second-order nonlinear terms[3].

    1.5 The enhanced Boussinesq model with better linear and nonlinear properties

    The method suggested by Madsen and Sch?ffer[8]and Liu et al[19]is modified and applied to further extend models’application range.The resulting expressions are given as:

    where β1and β2are dispersion coefficients,γ1and γ2are nonlinear coefficients.

    The related research demonstrated that the introducing additional nonlinear terms played an important role in improving the nonlinear performance[19].Inserting Eqs.(29)and(30)into the left sides of Eqs.(24)and(26),respectively,creates an enhanced double-layer Boussinesq model,hereafter we call it Model II.Model II shares some similarity with Lynett and Liu’s model[18]:The highest spatial derivative is 3 and both of the models are accurate to secondorder.And there are three apparent differences:(1)The continuity equation in Model II is accurate,while it is only accurate to μ2in Lynett and Liu’s model;(2)The velocities are two depth-averaged ones in Model II while the velocities are defined at two arbitrary water columns in Lynett and Liu’s model.

    1.6 Theoretical analysis of equations

    Stoke-type Fourier analysis is conducted to obtain the dispersion and nonlinear second harmonic embodied in the Boussinesq equations.The main procedures of the analytical analysis for Model II are outlined in this section for clarity.The solutions to the Boussinesq equations are assumed to have the following form[8]:

    where θ=ωt-kx,ω is frequency and k is wave number,and the subscripts 1 and 2 denote the amplitude of the first-and second-order solutions,respectively.

    Inserting Eqs.(31),(32)and(33)into Model II for a constant water depth case and collecting the terms,we can obtain the first-order solution that corresponding to dispersion expression,and the second-order solution for nonlinear second harmonic amplitude,see Ref.[8] for detailed process.

    1.6.1 Phase celerity

    There coefficients involved in Model II are r=h1/h2,β1and β2.For general case,we take r=0.5.For kh belongs to(0,6),the other two coefficients are determined from minimizing the following integral error:

    Thus we have β1=-0.056,β2=-0.113,and the non-dimensional phase celerity are shown in Fig.2.To well understand the importance of two coefficients,the results of Model I(β1=0,β2= 0)are plotted in this figure,and the results of Zou and Fang’s model(hereafter we call it as BouN4D4)are also given for comparisons[16].In Fig.2,we can see that the maximum error is 5%for Model I covering the water depth kh from 0 to 2.33,while the maximum error is 0.3% for Model II and 1.6%for BouN4D4 within the(0,6)range,thus the dispersion accuracy of Model II is much higher than that of Model I,this demonstrates the importance of the two coefficients.

    1.6.2 Second-order harmonic amplitude

    In present paper,γ1=4.9 and γ2=2.9 are determined to obtain a very accurate nonlinear property,and the results of second-order harmonics amplitude are shown in Fig.3.In Fig.3, the optimized nonlinear property is far better than the original model(γ1=0,γ2=0).In thisfigure,the second-order nonlinear property of BouN4D4 is also shown.Within maximum error 10%,the applicable maximum water depth is 6 for Model II,while it is 1.8 for BouN4D4.

    Fig.2 Dimensionless wave phase celerity

    Fig.3 Ratio of second harmonic a/aStokes22

    2 Numerical model and its verification

    1D numerical model is established,and this model can be solved by a similar numerical scheme to that of Kirby et al and Liu et al[20-21],which has second-order accuracy in spatial and temporal discretization with certain modifications.Only the first derivatives adopt five-point formula while the second-and third-derivatives use second-order difference accuracy.A composite fourth-order predictor-corrector Adams-Bashforth-Moulton integration scheme is adopted in the model to perform time marching.To decrease the wave reflection from the boundaries,the internal wave generation method in Gobbi et al(2000)[10]is used and two sponge boundary layers are set at left and right boundaries.

    To validate the present model,the numerical simulations are carried out upon wave evo-lution over a submerged trapezoid breakwater.We illustrate the wave process here:before the wave propagates on the flat part of the breakwater,all the fundamental wave and higher-order harmonic waves are bounded together,they travel at the same speed.When they go down the breakwater,water depth becomes deeper and nonlinear coupling of higher harmonics with the fundamental wave becomes progressively weaker at the leeside of the bar.Therefore,each Fourier component is released as a free wave and travels at its own speed,thus resulting in a fairly complicated process.Computing this wave evolution process requires high accuracy in linear and nonlinear property of a model.This process has been widely used as a benchmark test to validate Boussinesq models and other type numerical models.In present paper,we choose the Luth’s experiment to investigate our models[22],and the experiment layout is shown in Fig.4.

    Fig.4 The experimental setup of Luth et al.All dimensions are in(m)

    Fig.5 Comparisons of computed surface elevation with experimental data for case(a).Circle dot is experimental data,solid line is Model II,and dashed line is BouN4D4

    In case(a),wave period is T=2.02 s and wave height is 0.02(kh=0.67),and wave period is 1.01 s and wave height is 0.041 m(kh=1.69)in case(b).Regular wave in a 50 m-long nu-merical flume is internally generated,and the source line is set at x=10 m.The time and spatial size for the simulation are 0.01 s and 0.02 m,respectively in the numerical simulations. The computed surface elevations are shown in Figs.5 and 6.To make comparisons,the results of BouN4D4 are also plotted here[16].As shown in these two figures,the computed results using Model II or BouN4D4 are well in agreements with the experimental data,and the agreement of Model II is a little better than BouN4D4 at some transections,this might attribute to a bit higher accuracy in dispersion and nonlinear accuracy of Model II.Furthermore,Fourier analysis is applied to the experimental and numerical results to obtain the higher-order harmonics amplitude along the flume,and the results are shown in Figs.7 and 8.Overall,the computed amplitudes of higher-order harmonics by Model II agree well with the experimental data.

    Fig.6 Comparisons of computed surface elevation with experimental data for case(b).Circle dot is experimental data,solid line is Model II,and dashed line is BouN4D4

    Fig.7 Comparisons of computed harmonics amplitudes and experimental data for case(a).Circle dot is experimental data,solid line is Model II,and dashed line is BouN4D4

    Fig.8 Comparisons of computed harmonics amplitudes and experimental data for case(b).Circle dot is experimental data,solid line is Model II,and dashed line is BouN4D4

    3 Conclusions

    A set of double-layer Boussinesq model is derived in present paper.The Boussinesq model is expressed in terms of two depth-averaged velocities and it is accurate to second-order. Higher-order linear and nonlinear terms are introduced to improve the accuracy in both linear and nonlinear properties.Numerical model is established and the numerical model is applied to simulate wave evolution over a submerged trapezoid breakwater.

    Through the research,we have two main conclusions:(1)The dispersion and nonlinear accuracy of Model II are very high,it can be applicable to maximum water depth 6.0 within 0.3%and 10%errors in the viewpoint of dispersion and nonlinear properties.Theoretically speaking,Model II has an advantage over BouN4D4.(2)The numerical result shows that Model II can be as good as BouN4D4 in describing the wave evolution over a trapezoid breakwater, and even more precise in some Gauge locations.

    The one-dimensional numerical model for surf zone dynamic is ongoing and further research will concern about wave breaking in surf zone and moving shoreline in swash zone, and this will be done in near future.

    Acknowledgements

    This research was supported by the National Natural Science Foundation of China(Grant No.51379026 and 51309040);The National Basic Research Program of China(973 Program) (Grant No.2013CB036101);Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province(Grant No.2015SS01);The Fundamental Research Funds for the Central Universities(Grant No.3132015071).

    [1]Kirby J T.Boussinesq models and applications to nearshore wave propagation,surfzone processes and wave-induced currents[M].Advances in Coastal Engineering,New York:Elsevier Science,2003:1-41.

    [2]Madsen P A,Fuhrman D R.High-order Boussinesq-type modeling of nonlinear wave phenomena in deep and shallow water[M].Advances in Numerical Simulation of Nonlinear Water Waves,Singapore:World Scientific Publishing Co.Pte. Ltd.,2010:245-285.

    [3]Peregrine D H.Long waves on a beach[J].Journal of Fluid Mechanics,1967,27(4):815-827.

    [4]Madsen P A,Murray R,S?rensen O R.A new form of the Boussinesq equations with improved linear dispersion characteristics,Part 1[J].Coastal Engineering,1991,15(4):371-388.

    [5]Nwogu O.Alternative from of Boussinesq equations for nearshore wave propagation[J].Journal of Waterway,Port,Coastal, and Ocean Engineering,1993,119(6):618-638.

    [6]Beji S,Nadaoka K.A formal derivation and numerical model of the improved boussinesq equations for varying depth[J]. Ocean Engineering,1996,23(8):691-704.

    [7]Wei G,Kirby J T,Grilli S T,et al.A fully nonlinear Boussinesq model for surface waves.Part 1.Highly nonlinear unsteady waves[J].Journal of Fluid Mechanics,1995,294(13):71-92.

    [8]Madsen P A,Schaffer H A.Higher-order Boussinesq-type equations for surface gravity waves:Derivation and analysis[J]. Philosophical Transactions of the Royal Society of London.Series A,1998,356(1749):3123-3184.

    [9]Zou Z L.Higher order Boussinesq equations[J].Ocean Engineering,1999,26(5):767-792.

    [10]Gobbi M F,Kirby J T.Wave evolution over submerged sills:Tests of a high-order Boussinesq model[J].Coastal Engineering,1999,37:57-96.

    [11]Agnon Y,Madsen P A,Schaffer H A.A new approach to higher order Boussinesq model[J].Journal of Fluid Mechanics, 1999,399(1):319-333.

    [12]Madsen P A,Bingham H B,Schaffer H A.Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves:Derivation and analysis[J].Philosophical Transactions of the Royal Society of London.Series A,2003,459 (2033):1075-1104.

    [13]Lynett P,Liu P L-F.Linear analysis of the multi-layer model[J].Coastal Engineering,2004,51(6):439-454.

    [14]Chazel F,Benoit M,Em A,Piperno S.A double-layer Boussinesq-type model for highly nonlinear and dispersive waves [J].Proceedings of the Royal Society of London,2009,465:2319-2346.

    [15]Fuhrman D R,Madsen P A,Bingham H B.A numerical study of crescent waves[J].Journal of Fluid Mechanics,2004, 513:309-341.

    [16]Zou Z L,Fang K Z.Alternative forms of higher order Boussinesq equations:Derivations and validations[J].Coastal Engineering,2008,55(6):506-521.

    [17]Zhang Y G,Li Y C.Alternative form of the Boussinesq equations with improved linear dispersion characteristics[J].Acta Mechanica Sinica,1997,29(2):142-150.

    [18]Lynett P,Liu liu P L-F.A two-layer approach to wave modeling[J].Philosophical Transactions of the Royal Society of London.Series A,2004,460(2049):2637-2669.

    [19]Liu Z B,Fang K Z,Zou Z L.Boussinesq wave equations with full nonlinear characteristics at order O μ2()[J].Journal of Harbin Engineering University,2012,33(5):556-561.

    [20]Kirby J T Kirby,Wei G,Chen Q,et al.FUNWAVE 1.0 Fully nonlinear Boussinesq wave model documentation and user’s manual[R].CACR-98-06,University of Delaware,Newark,US,1998.

    [21]Liu Z B,Sun Z C,Fang K Z.Mathematical model for wave propagation over a permeable seabed and its numerical validation[J].Journal of Dalian University of Technology,2013,53(3):417-422.(in Chinese)

    [22]Luth H R,Klopman G,Kitou N.Kinematics of waves breaking partially on an offshore bar,LDV measurements of waves with and without a net onshore current[R].Report H-1573,Delft Hydraulics,1994:40.

    雙層Boussinesq水波方程

    劉忠波1,2,3,房克照2,3,呂 林

    (1.大連海事大學(xué) 交通運輸管理學(xué)院,遼寧 大連 116026;2.長沙理工大學(xué) 水沙科學(xué)與水災(zāi)害防治湖南省重點實驗室,長沙 410076;3.大連理工大學(xué) 海岸和近海工程國家重點實驗室,遼寧 大連116023)

    從Laplace方程出發(fā),推導(dǎo)了一組適應(yīng)于波浪在非平整地形上傳播的雙層Boussinesq水波方程,方程以雙層水深積分平均速度表達且具有二階全非線性特征。通過在動量方程中引入高階色散項和非線性項進一步提高了方程的色散性和非線性性能。常水深情況下,分析了方程的色散關(guān)系和二階波幅傳遞函數(shù),并與Stokes解析解進行了比較。結(jié)果表明,在0.3%誤差下方程可適用水深達kh≈6,在此水深范圍內(nèi)二階波幅傳遞函數(shù)誤差在10%以內(nèi)。在非交錯網(wǎng)格下,建立了基于有限差分方法和混合4階Adams-Bashforth-Moulton時間積分格式的一維數(shù)值模型,模擬了波浪在潛堤上的傳播變形,并與實驗結(jié)果進行了對比,吻合程度較好。

    雙層Boussinesq方程;色散性;非線性

    O353.2

    :A

    劉忠波(1976-),男,大連海事大學(xué)交通運輸管理學(xué)院副教授;

    O353.2

    :A

    10.3969/j.issn.1007-7294.2015.09.005

    1007-7294(2015)09-1072-13

    房克照(1980-),男,大連理工大學(xué)海岸和近海工程國家重點實驗室講師;

    呂 林(1976-),男,大連理工大學(xué)海岸和近海工程國家重點實驗室副教授。

    Received date:2015-03-18

    Foundation item:Supported by the National Natural Science Foundation of China(Grant No.51379026 and 51309040); The National Basic Research Program of China(973 Program)(Grant No.2013CB036101);Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province(Grant No.2015SS01); The Fundamental Research Funds for the Central Universities(Grant No.3132015071)

    Biography:LIU Zhong-bo(1976-),male,lecturer,E-mail:zhongbo_liu1976@163.com; FANG Ke-zhao(1980-),male,lecturer.

    猜你喜歡
    大連海事大學(xué)大連理工大學(xué)色散
    “光的折射”“光的色散”知識鞏固
    “光的折射”“光的色散”知識鞏固
    “光的折射”“光的色散”知識鞏固
    『光的折射』『光的色散』隨堂練
    Research on the Globalization of English in the Internet era
    大東方(2019年1期)2019-09-10 20:30:40
    偽隨機碼掩蔽的擴頻信息隱藏
    “2015中國海事仲裁大連論壇”在大連海事大學(xué)開幕
    世界海運(2015年8期)2015-03-11 16:39:08
    中泰化學(xué)與大連理工大學(xué)簽署戰(zhàn)略合作框架協(xié)議
    中國氯堿(2014年11期)2014-02-28 01:05:06
    大連海事大學(xué)建立學(xué)生就業(yè)工作“四級聯(lián)動”機制
    大連理工大學(xué)出版社 日語版權(quán)圖書
    黄色视频在线播放观看不卡| 99久久人妻综合| 婷婷色综合www| 久久精品人人爽人人爽视色| 亚洲在久久综合| 亚洲av中文av极速乱| 亚洲av日韩在线播放| 有码 亚洲区| 国产69精品久久久久777片| 91久久精品国产一区二区三区| 日韩人妻高清精品专区| 在线免费观看不下载黄p国产| 色婷婷av一区二区三区视频| 免费黄频网站在线观看国产| 人人妻人人澡人人看| 亚洲美女搞黄在线观看| 国产视频首页在线观看| 女性生殖器流出的白浆| 天堂中文最新版在线下载| 亚洲av中文av极速乱| 熟女电影av网| 欧美日韩国产mv在线观看视频| 只有这里有精品99| 精品国产乱码久久久久久小说| 91国产中文字幕| 免费少妇av软件| 亚洲欧美清纯卡通| 精品一区在线观看国产| 制服诱惑二区| 国产av码专区亚洲av| 欧美变态另类bdsm刘玥| 亚洲精品乱码久久久v下载方式| 精品午夜福利在线看| 亚洲欧美一区二区三区黑人 | 91久久精品国产一区二区成人| 国产亚洲精品第一综合不卡 | 国产伦精品一区二区三区视频9| 老熟女久久久| 九九在线视频观看精品| 欧美3d第一页| 国产精品熟女久久久久浪| 亚洲综合色惰| 亚洲精品aⅴ在线观看| 十八禁网站网址无遮挡| 91精品三级在线观看| 夜夜爽夜夜爽视频| 夜夜骑夜夜射夜夜干| 18禁在线播放成人免费| 精品久久久久久久久av| 久久久久视频综合| 九色成人免费人妻av| 国产国拍精品亚洲av在线观看| 精品久久久久久久久亚洲| 亚洲一区二区三区欧美精品| 国产精品一区二区在线观看99| 精品人妻熟女毛片av久久网站| 国产成人一区二区在线| 午夜免费男女啪啪视频观看| 亚洲国产精品国产精品| 久久精品久久久久久久性| 少妇熟女欧美另类| 久久人人爽人人片av| 国产日韩欧美视频二区| 91精品国产九色| 三级国产精品片| 美女国产高潮福利片在线看| 大香蕉97超碰在线| 精品卡一卡二卡四卡免费| 午夜福利影视在线免费观看| 欧美日韩av久久| av国产久精品久网站免费入址| 黑人欧美特级aaaaaa片| 一级毛片电影观看| 国产亚洲最大av| 欧美国产精品一级二级三级| 成人国产av品久久久| 男女国产视频网站| 草草在线视频免费看| 国产熟女午夜一区二区三区 | 一区二区三区乱码不卡18| 黄色怎么调成土黄色| 搡老乐熟女国产| √禁漫天堂资源中文www| 精品久久蜜臀av无| 大香蕉久久网| 久久久久久人妻| 狂野欧美激情性bbbbbb| 亚洲av免费高清在线观看| 免费观看性生交大片5| 久久久久人妻精品一区果冻| 高清av免费在线| 交换朋友夫妻互换小说| 中国美白少妇内射xxxbb| 亚洲精品久久久久久婷婷小说| 在线免费观看不下载黄p国产| 亚洲精品久久午夜乱码| 亚洲国产精品专区欧美| 亚洲av国产av综合av卡| 色94色欧美一区二区| 欧美最新免费一区二区三区| 性色avwww在线观看| 夫妻午夜视频| 亚洲国产成人一精品久久久| 亚洲国产最新在线播放| 日韩中文字幕视频在线看片| 69精品国产乱码久久久| 大香蕉久久网| 考比视频在线观看| 一个人免费看片子| 久久精品久久精品一区二区三区| av免费观看日本| 99国产精品免费福利视频| 国产深夜福利视频在线观看| 亚洲内射少妇av| 桃花免费在线播放| 91国产中文字幕| 国产有黄有色有爽视频| 久久久久久久久久久免费av| 80岁老熟妇乱子伦牲交| 丰满迷人的少妇在线观看| 日韩人妻高清精品专区| 少妇被粗大猛烈的视频| 最近中文字幕高清免费大全6| 各种免费的搞黄视频| av在线观看视频网站免费| 岛国毛片在线播放| 在现免费观看毛片| 国产国语露脸激情在线看| 国产精品一区二区三区四区免费观看| 欧美3d第一页| 亚洲精品日本国产第一区| 成人漫画全彩无遮挡| 欧美97在线视频| 麻豆乱淫一区二区| 综合色丁香网| 亚洲国产日韩一区二区| 夜夜骑夜夜射夜夜干| 精品酒店卫生间| 最近的中文字幕免费完整| 久久99热这里只频精品6学生| 伦理电影大哥的女人| 亚洲综合精品二区| 男人操女人黄网站| 精品一品国产午夜福利视频| 亚洲国产精品国产精品| 曰老女人黄片| xxx大片免费视频| 欧美激情 高清一区二区三区| 丰满少妇做爰视频| 久久人人爽av亚洲精品天堂| 黑人高潮一二区| 国产成人免费无遮挡视频| 久久久久久久大尺度免费视频| .国产精品久久| 建设人人有责人人尽责人人享有的| 国产亚洲午夜精品一区二区久久| 黑丝袜美女国产一区| av有码第一页| 伦理电影大哥的女人| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精品av麻豆狂野| 亚洲精品乱码久久久久久按摩| 亚洲欧美日韩卡通动漫| 伦理电影免费视频| 26uuu在线亚洲综合色| 精品亚洲成国产av| 曰老女人黄片| 日本wwww免费看| 一个人免费看片子| 国产日韩一区二区三区精品不卡 | 国产精品女同一区二区软件| 看免费成人av毛片| 熟女人妻精品中文字幕| 在线观看美女被高潮喷水网站| 日韩人妻高清精品专区| 丝瓜视频免费看黄片| 99久久综合免费| 中文精品一卡2卡3卡4更新| 99热国产这里只有精品6| 亚洲精品aⅴ在线观看| 国产乱人偷精品视频| 亚洲综合精品二区| 人妻夜夜爽99麻豆av| 国产视频内射| 亚洲精品久久久久久婷婷小说| 日韩人妻高清精品专区| kizo精华| 欧美日韩国产mv在线观看视频| 人妻夜夜爽99麻豆av| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美成人综合另类久久久| 在线观看免费视频网站a站| av有码第一页| 日日爽夜夜爽网站| av.在线天堂| 一二三四中文在线观看免费高清| 男人添女人高潮全过程视频| 亚洲伊人久久精品综合| 久久99一区二区三区| 在线精品无人区一区二区三| 99热全是精品| 一区二区三区乱码不卡18| 99九九在线精品视频| 在线观看美女被高潮喷水网站| 日韩制服骚丝袜av| 国产不卡av网站在线观看| 又黄又爽又刺激的免费视频.| 王馨瑶露胸无遮挡在线观看| 国产综合精华液| 精品一区在线观看国产| 亚洲精品乱久久久久久| 人人妻人人澡人人爽人人夜夜| 午夜视频国产福利| 国产精品蜜桃在线观看| 国产日韩一区二区三区精品不卡 | 国产亚洲欧美精品永久| 大香蕉久久成人网| 国产av码专区亚洲av| 九九爱精品视频在线观看| 日本猛色少妇xxxxx猛交久久| 国产黄频视频在线观看| 亚洲欧美一区二区三区黑人 | 亚洲在久久综合| 国产 精品1| 人妻人人澡人人爽人人| 一区二区三区四区激情视频| 亚洲精品一二三| 69精品国产乱码久久久| 国产亚洲精品第一综合不卡 | 国产一级毛片在线| av不卡在线播放| 欧美亚洲 丝袜 人妻 在线| 国产欧美亚洲国产| 免费少妇av软件| 大片电影免费在线观看免费| 日本欧美国产在线视频| 日本色播在线视频| 伊人亚洲综合成人网| 久久av网站| 久久久欧美国产精品| av一本久久久久| 亚洲国产av影院在线观看| 在线天堂最新版资源| 亚洲国产毛片av蜜桃av| 国产视频首页在线观看| 精品久久久久久电影网| 女人久久www免费人成看片| 亚洲av成人精品一区久久| av在线播放精品| 久久久久精品久久久久真实原创| 国产又色又爽无遮挡免| 女的被弄到高潮叫床怎么办| 伊人亚洲综合成人网| av.在线天堂| 亚洲精品美女久久av网站| 韩国av在线不卡| 亚洲婷婷狠狠爱综合网| 91久久精品电影网| 在线观看人妻少妇| 99久国产av精品国产电影| 亚洲精品日韩在线中文字幕| 一级毛片黄色毛片免费观看视频| 国产探花极品一区二区| 最新的欧美精品一区二区| 国产一区亚洲一区在线观看| 久久久久久久亚洲中文字幕| 在线观看一区二区三区激情| 狠狠精品人妻久久久久久综合| 狂野欧美激情性bbbbbb| 秋霞在线观看毛片| 日本色播在线视频| 亚洲丝袜综合中文字幕| 国产亚洲av片在线观看秒播厂| 久热久热在线精品观看| 日韩成人av中文字幕在线观看| 日本色播在线视频| 大又大粗又爽又黄少妇毛片口| 欧美日韩精品成人综合77777| 成年美女黄网站色视频大全免费 | 3wmmmm亚洲av在线观看| 一级,二级,三级黄色视频| 日韩人妻高清精品专区| 中文欧美无线码| 黄色配什么色好看| 精品一品国产午夜福利视频| av黄色大香蕉| 国产在线一区二区三区精| 成年av动漫网址| 久久久久网色| 国产精品熟女久久久久浪| av卡一久久| 国产综合精华液| 色视频在线一区二区三区| 97在线视频观看| 一本色道久久久久久精品综合| 免费观看在线日韩| 亚洲精华国产精华液的使用体验| 国产在线一区二区三区精| 特大巨黑吊av在线直播| 韩国高清视频一区二区三区| 亚洲成人一二三区av| 晚上一个人看的免费电影| 国语对白做爰xxxⅹ性视频网站| 国产精品人妻久久久影院| 桃花免费在线播放| 国产一区亚洲一区在线观看| 国产男人的电影天堂91| 日韩中文字幕视频在线看片| 色视频在线一区二区三区| 91精品伊人久久大香线蕉| 成人18禁高潮啪啪吃奶动态图 | 一边摸一边做爽爽视频免费| 91国产中文字幕| 男人添女人高潮全过程视频| 99热6这里只有精品| 另类精品久久| 久久久久国产精品人妻一区二区| 91在线精品国自产拍蜜月| 日日爽夜夜爽网站| 一级毛片我不卡| 边亲边吃奶的免费视频| 伦精品一区二区三区| 丝袜脚勾引网站| 日本爱情动作片www.在线观看| 午夜福利网站1000一区二区三区| 性高湖久久久久久久久免费观看| 精品亚洲成国产av| 国产亚洲av片在线观看秒播厂| 丁香六月天网| 高清在线视频一区二区三区| 国产精品一二三区在线看| 最近中文字幕2019免费版| 亚洲中文av在线| 蜜桃久久精品国产亚洲av| 精品亚洲成a人片在线观看| 水蜜桃什么品种好| 亚洲国产精品成人久久小说| 久久久久久久国产电影| 内地一区二区视频在线| 国产精品久久久久久精品古装| 日日摸夜夜添夜夜爱| 日日摸夜夜添夜夜爱| 一本久久精品| 黄色视频在线播放观看不卡| 麻豆精品久久久久久蜜桃| 少妇 在线观看| 中文字幕精品免费在线观看视频 | 国模一区二区三区四区视频| 久久国产亚洲av麻豆专区| 最近手机中文字幕大全| 菩萨蛮人人尽说江南好唐韦庄| 亚洲美女搞黄在线观看| 精品视频人人做人人爽| 高清不卡的av网站| 精品久久国产蜜桃| 久久影院123| 成人无遮挡网站| 国产极品粉嫩免费观看在线 | 久久久久人妻精品一区果冻| 亚洲天堂av无毛| 国产av精品麻豆| 久久国产精品大桥未久av| 亚洲国产成人一精品久久久| 蜜桃在线观看..| 成人免费观看视频高清| 你懂的网址亚洲精品在线观看| 一级毛片黄色毛片免费观看视频| 亚洲av国产av综合av卡| 久久精品久久久久久噜噜老黄| 午夜久久久在线观看| 亚洲欧美日韩卡通动漫| av女优亚洲男人天堂| 国产乱来视频区| 高清毛片免费看| 一区二区日韩欧美中文字幕 | 我要看黄色一级片免费的| 亚洲精品自拍成人| 国产免费现黄频在线看| 国产伦理片在线播放av一区| 狠狠精品人妻久久久久久综合| 国产毛片在线视频| 少妇 在线观看| 王馨瑶露胸无遮挡在线观看| 春色校园在线视频观看| 黑人猛操日本美女一级片| 亚洲欧洲国产日韩| 欧美精品人与动牲交sv欧美| 亚洲精品美女久久av网站| 日本av免费视频播放| 国产成人freesex在线| 搡女人真爽免费视频火全软件| 啦啦啦在线观看免费高清www| 日韩电影二区| av一本久久久久| 汤姆久久久久久久影院中文字幕| 欧美激情国产日韩精品一区| 成人毛片a级毛片在线播放| 两个人的视频大全免费| 夜夜看夜夜爽夜夜摸| 哪个播放器可以免费观看大片| 亚洲色图 男人天堂 中文字幕 | 女性生殖器流出的白浆| 国模一区二区三区四区视频| av电影中文网址| 久久97久久精品| 婷婷色综合www| 中文字幕精品免费在线观看视频 | 色婷婷av一区二区三区视频| 免费高清在线观看日韩| 天天躁夜夜躁狠狠久久av| 少妇人妻 视频| 超色免费av| 一个人看视频在线观看www免费| 国产精品.久久久| 国产免费一级a男人的天堂| 男的添女的下面高潮视频| 伊人亚洲综合成人网| 亚洲熟女精品中文字幕| 国产精品不卡视频一区二区| 日日摸夜夜添夜夜添av毛片| 一个人看视频在线观看www免费| av视频免费观看在线观看| 国产成人精品福利久久| 精品人妻偷拍中文字幕| 国产极品天堂在线| 欧美一级a爱片免费观看看| 欧美日韩亚洲高清精品| av黄色大香蕉| 少妇精品久久久久久久| 午夜福利视频在线观看免费| 人妻 亚洲 视频| 人妻制服诱惑在线中文字幕| 国产精品不卡视频一区二区| 看免费成人av毛片| 亚洲,欧美,日韩| 99久久精品国产国产毛片| 欧美日韩国产mv在线观看视频| 日日撸夜夜添| 免费看光身美女| 免费看光身美女| 这个男人来自地球电影免费观看 | 夜夜骑夜夜射夜夜干| 午夜免费鲁丝| av女优亚洲男人天堂| 中文乱码字字幕精品一区二区三区| 亚洲成人一二三区av| 亚洲图色成人| 在线观看人妻少妇| 久久久国产精品麻豆| 亚洲av中文av极速乱| av免费观看日本| 精品久久久久久电影网| 高清不卡的av网站| 18禁观看日本| 一个人免费看片子| 97在线人人人人妻| 久久亚洲国产成人精品v| 国产在线视频一区二区| 免费观看av网站的网址| 搡女人真爽免费视频火全软件| 少妇的逼好多水| 精品久久久久久电影网| 精品少妇久久久久久888优播| 精品久久国产蜜桃| 免费观看的影片在线观看| 丝袜脚勾引网站| 欧美日韩亚洲高清精品| 日日啪夜夜爽| 亚洲第一av免费看| 国产成人freesex在线| 免费观看在线日韩| 大香蕉久久成人网| 中文天堂在线官网| xxx大片免费视频| 插阴视频在线观看视频| 青春草国产在线视频| 久久久国产精品麻豆| 免费av不卡在线播放| 少妇人妻久久综合中文| 青春草亚洲视频在线观看| 熟女人妻精品中文字幕| 丝瓜视频免费看黄片| 免费av不卡在线播放| 国产黄色免费在线视频| 男女高潮啪啪啪动态图| 欧美精品亚洲一区二区| 中国三级夫妇交换| 啦啦啦视频在线资源免费观看| 特大巨黑吊av在线直播| 日韩成人伦理影院| 精品人妻偷拍中文字幕| 91精品国产国语对白视频| 熟妇人妻不卡中文字幕| 制服丝袜香蕉在线| 爱豆传媒免费全集在线观看| 一区二区三区免费毛片| 极品少妇高潮喷水抽搐| 久久久久国产网址| 欧美精品一区二区免费开放| 青春草亚洲视频在线观看| 丝袜脚勾引网站| 亚洲av成人精品一区久久| 国产av码专区亚洲av| 大码成人一级视频| 免费观看无遮挡的男女| 亚洲五月色婷婷综合| av专区在线播放| a级毛片在线看网站| av一本久久久久| 黄色毛片三级朝国网站| 亚洲人成网站在线播| 蜜桃在线观看..| 欧美97在线视频| 亚洲第一av免费看| 两个人免费观看高清视频| 天天躁夜夜躁狠狠久久av| av免费观看日本| 九九在线视频观看精品| 亚洲人成网站在线观看播放| 中国美白少妇内射xxxbb| 国产精品人妻久久久久久| 永久免费av网站大全| 91久久精品国产一区二区三区| 少妇人妻久久综合中文| 一级毛片电影观看| 亚洲欧美中文字幕日韩二区| 高清在线视频一区二区三区| 久久久久国产网址| 欧美+日韩+精品| 日本91视频免费播放| 国产白丝娇喘喷水9色精品| 国产亚洲午夜精品一区二区久久| 美女国产视频在线观看| xxxhd国产人妻xxx| 青春草亚洲视频在线观看| 久久久久国产精品人妻一区二区| 特大巨黑吊av在线直播| 精品少妇黑人巨大在线播放| 国产午夜精品久久久久久一区二区三区| 亚洲精品国产色婷婷电影| 丝袜在线中文字幕| 美女cb高潮喷水在线观看| 国产又色又爽无遮挡免| 国产国语露脸激情在线看| 高清欧美精品videossex| 午夜精品国产一区二区电影| 男人添女人高潮全过程视频| 三级国产精品欧美在线观看| 久久久亚洲精品成人影院| 亚洲国产av影院在线观看| 国产精品99久久久久久久久| 高清在线视频一区二区三区| 国产在线一区二区三区精| 国产亚洲一区二区精品| 十八禁高潮呻吟视频| 成人毛片a级毛片在线播放| 大片电影免费在线观看免费| 久久国产亚洲av麻豆专区| 少妇熟女欧美另类| 国产又色又爽无遮挡免| 精品久久久久久久久亚洲| 亚洲内射少妇av| 国产 精品1| 97超碰精品成人国产| 99久久中文字幕三级久久日本| 国产极品天堂在线| 亚洲av男天堂| 桃花免费在线播放| 欧美日韩视频高清一区二区三区二| 国产黄片视频在线免费观看| 有码 亚洲区| 爱豆传媒免费全集在线观看| 国产精品欧美亚洲77777| 亚洲色图综合在线观看| 卡戴珊不雅视频在线播放| 久久精品国产亚洲av天美| 欧美最新免费一区二区三区| 成人影院久久| 夜夜骑夜夜射夜夜干| 美女国产高潮福利片在线看| 成年人午夜在线观看视频| 国产视频内射| 国产精品人妻久久久影院| 好男人视频免费观看在线| 五月天丁香电影| 纯流量卡能插随身wifi吗| 精品一品国产午夜福利视频| 狠狠婷婷综合久久久久久88av| 91久久精品电影网| 九色成人免费人妻av| 一级毛片黄色毛片免费观看视频| 最黄视频免费看| 久久人人爽人人片av| 伊人久久精品亚洲午夜| 22中文网久久字幕| 国产成人午夜福利电影在线观看| 岛国毛片在线播放| 你懂的网址亚洲精品在线观看| 日本wwww免费看| 各种免费的搞黄视频| 18禁在线无遮挡免费观看视频| 18禁动态无遮挡网站| 22中文网久久字幕| 亚洲少妇的诱惑av| 99精国产麻豆久久婷婷| 欧美另类一区| 免费观看无遮挡的男女| 另类精品久久| 91午夜精品亚洲一区二区三区| 国产免费一区二区三区四区乱码| 日韩制服骚丝袜av| 久久99热6这里只有精品| 亚洲精品久久成人aⅴ小说 | 最近中文字幕高清免费大全6| 欧美国产精品一级二级三级|