• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study of Damping Ratio Identification for a Truss Spar Based on Continuous Wavelet Transform

    2015-12-12 08:52:46ZHANGHuiYANGJianminXIAOLongfeiLUHaining
    船舶力學(xué) 2015年9期

    ZHANG Hui,YANG Jian-min,XIAO Long-fei,LU Hai-ning

    (State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    0 Introduction

    The dynamic analysis of a cylinder subjected to VIM requires the information of dynamic properties of the structures,including response frequencies and damping ratios.The investigation on the damping ratio of the Truss Spar subjected to VIM is not intensive.However,in the field of Vortex-Induced Vibration(VIV),damping is extensively studied.One of the most widely used models is the structural damping model,where the dissipation of energy in a single oscillation is independent of the frequency[1].Another widely used model is the hydrodynamic damping model which assumes the hydrodynamic damping is the function of response frequency,flow speed and vibration amplitude.In the early 1996,Venugopal[2]proposed a damping model which was extensively applied in the VIV prediction program,such as SHEAR7[3].Vikestad[4]improved the damping model based on the Venugopal’s damping model.Modal damping ratios are difficult to predict and have a strong influence on the dynamic structuralbehavior,the amplitude of vibrations at resonance being inversely proportional to these coefficients.The influence of damping ratios on VIV of a cylinder was widely studied[5-7]and it also affects the energy harvest from the flow induced vibration[8].

    The Continuous Wavelet Transform(CWT)as a typical time-frequency method,possesses the ability to construct a time-frequency representation of a signal that offers good time and frequency localization compared to Fast Fourier Transform(FFT)or other frequency domain method.Compared to traditional Fourier Transform methods,CWT method has advantages,in representing many different frequency components at the same time or many different time components in one frequency,identifying discontinuities and sharp peaks,processing non-periodic and non-stationary signals,and processing short signals[9].In the past decade,the CWT-based damping identification methods have been proved to be some of the more promising damping-identification method and were extensively applied to identify the damping ratio in engineering filed,including the damping estimation of railway and cable-stayed bridge in civil engineering[10-11],the damage identification of the material in material engineering[12],the identification of an actuator’s valve on a nuclear plant[13],application in train whistle and bird chirps or ultrasonic detect system in acoustic field[14-15]and vibration isolation system in mechanical engineering[16].However,CWT method was not widely applied to flow induced vibration field in ocean engineering until now.

    A series of VIM model tests of the Truss Spar were conducted in towing tank at Zhejiang Ocean University(ZOU).Eight different free-decay tests were conducted in still water to provide sufficient and different dataset.The CWT method has been proven to be resistant to noise and can identify damping at closely spaced natural frequencies.Based on its advantage,CWT method was applied to identify the damping ratio of the Truss Spar in ocean engineering.

    1 The free vibration with viscous damping

    It is well known that the free vibration(no external force)of the Single-Degree-of-Freedom system(SDOF)with viscous damping can be illustrated as Fig.1.

    For an unforced damped SDOF system,the general equation of motion can be expressed as:

    where m,c and k are mass,spring stiffness and viscous damping of system,respectively.and x are the acceleration,velocity and displacement of the system,respectively.

    Supposing the natural frequency ωnand damping ratio ζncan be expressed as follows:

    Fig.1 The free vibration of singledegree-of-freedom system

    For under-damped system,the solution of Eq.(1)can be easily obtained as:

    where the damped vibration frequency

    The free vibration response is shown in Fig.2.The oscillation response decays exponentially.The dash line is the envelope of the free vibration response.The damping ratio ζncould be estimated by getting the attenuation parameter ζnωn.For simplification,this method for estimating the damping ratio is called as‘conventional’method compared to the wavelet method.

    Fig.2 The damping ratio estimation with exponential curve fitting method

    An exponential decay is given in Eq.(4):

    2 Damping ratio identification based on Continuous Wavelet Transform

    The CWT is the inner product or cross correlation of the signal x(t)with the scaled and time shifted wavelet.The time-history signal is supposed as x(t).The CWT of the signal is defined as[17-18]:

    where u is the translation parameters,s is the scale/dilation parameters,andis the complex conjugate of the basic wavelet function

    Eq.(6)gives the basic wavelet function.The basic wavelet functionis the translated and dilated function of the mother wavelet function ψ (t).

    The Gabor wavelet function is used as a mother function and obtained with a modified Gaussian window,as given in the following:

    The Gaussian window is written as:

    Eq.(5)can be written as Eq.(9),using Eqs.(6),(7)and(8).

    where σ is a positive bandwidth parameter and η is the wavelet center frequency.

    The signal x(t)can be written as:

    For an analytic function which is complex,this is entirely characterized by its real part.The CWT of an analytic function will be twice of the CWT of its real part[19],as given in Eq.(11):

    Assuming t1=t-u,Eq.(10)can be expressed as Eq.(12)and Eq.(13)by using Taylor power series expansion close to u.

    For a Gaussian distribution,the probability 1 is computed as an integral of the probability density function over the whole region which is shown in Eq.(14).

    where the parameter μ is the mean and σ2is the variance.

    Eq.(15)can be given using Eqs.(11),(12),(13)and(14).

    If the frequency dissipation of the wavelet function is relatively small,then the error termcan be neglected.

    The relation between the instantaneous scale s and the instantaneous angular velocity ωd=φ′(u)of the Gabor wavelet function is defined as:

    Consequently,Eq.(17)is obtained:

    where A(u)is the modulated amplitude.

    Considering the CWT is a linear transform,it could be used to estimate damping ratios of multi-mode resonant,as given in the following:

    3 Wavelet ridges identification

    The time-scale representation of the energy concentration of the CWT is called the ridge.Ridge represents the frequency components of the analyzed signal with a high density of energy which can be expressed as a function of u.Cross-section method,amplitude method and phase method are the three methods to detect the wavelet ridge[20].In this study,the amplitude method is chosen to analyze the signal.

    The amplitude method is used to identify the local maxima of the CWT at its response frequency.The procedure of identifying the wavelet ridge is shown as follows:

    (1)Transform the time series signal x(t)into the frequency domain to get the ωdby using FFT;

    (2)Transform the time series signal x(t)into the time-frequency domain by using the CWT;

    (3)Search the local maxima of the CWT results in the vicinity of ωd;

    (4)Extract the wavelet ridges by maximizing the modulus of the CWT at each time instant;

    (5)Estimate the damping ratio and its corresponding natural frequency from Eq.(17).

    4 Method validation with a synthetic multimodal signal

    In order to assess the performance of the proposed wavelet-based demodulation method,a test signal is synthesized.The test signal is composed of three exponentially decaying signals with different frequencies and damping ratios.

    This signal is composed of three different frequencies(25 Hz,50 Hz and 125 Hz)and their corresponding damping ratios(0.02,0.01 and 0.003).The magnitudes of modal components are randomly selected as 6,6 and 6.The phase angles are chosen arbitrarily.Fig.3 shows the synthetic waveform.Fig.4 shows the corresponding power spectrum of the synthetic signal.

    The synthetic signal is given as:

    Fig.3 The time series of the synthetic transient signal

    Fig.4 The power spectrum of the synthetic transient signal

    Fig.5 The wavelet plot of the synthetic transient signal

    Fig.6 The envelope of the wavelet ridge at the first frequency component

    Fig.7 The envelope of the wavelet ridge at the second frequency component

    Fig.8 The envelope of the wavelet ridge at the third frequency component

    Fig.5 shows the wavelet plot of the signal.In order to identify all three wavelet ridges,a numerical algorithm was developed.The basic idea of the algorithm is to:(1)Find all response frequencies in the spectrum plot(See Fig.4);(2)Then find the corresponding locations of each frequency in the wavelet plot;(3)Near these locations,search the local maxima of the wavelet coefficient;(4)Extract the wavelet ridge from the wavelet plot by a slice parallel to time axis through the local maxima of the wavelet coefficient.

    According to Eq.(17),the envelope of the wavelet ridge can be used to estimate the corresponding damping ratio.Figs.(6-8)show the extracted wavelet envelops at three different frequency components.The solid line is the envelope of the wavelet ridge and the dash line is the linear curve to fit the envelope of the wavelet ridge.The summary of estimation results are shown in the Tab.1.The estimation results match with the original data well.

    Tab.1 Summary of the estimation results

    From Tab.1,it can be seen that the estimation error is below 1.4%,which shows that the CWT method is reliable and accurate.Based on this result,the CWT method is used to identify the response frequency and damping ratio of real VIM data.

    5 Description of the experiment

    Model tests were carried out in towing tank at Zhejiang Ocean University(ZOU),as shown in Fig.9.Principal dimensions of the towing tank are 130 m×6 m×3 m(L×B×D).The experimental setup was characterized by a scaled model.The scaled model was towed by the towing carriage,together with the instrumentation dedicated to measure the motion of the Truss Spar.

    Fig.9 Towing tank of Zhejiang Ocean University(ZOU)

    5.1 Model description

    The Truss Spar model consists of a square soft tank,a truss section and a hard tank(with or without helical strakes).The scale factor for the Spar was 1:60.Tab.2 shows the main parameters of the Truss Spar.

    Tab.2 Main parameters of the Truss Spar

    The Truss Spar was installed with a simplified mooring system which was composed of three or four mooring lines.Fig.10 shows the model of the Truss Spar with strakes.Figs.11 and 12 show the schematic diagram of the Spar model with three and four lines mooring system,respectively.The mooring line stiffness was 60.56 N/m for each mooring line.Mooring lines were equally spaced.The angles between the mooring lines were 90°and 120°in horizontal plane for four and three lines mooring system,respectively.The mooring lines on the Truss Spar model were attached at the height of the fairleads,which were 0.94 m below the waterline.The mooring points on the towing carriage were above the waterline,which leaded to an upward angle for each mooring line,as shown in Fig.13.

    The platform north is defined as the opposite direction of the current direction.Surge is defined as the direction of the Truss Spar towards the current.Sway is defined perpendicular to the direction of the current,as shown in Fig.11 and Fig.12.

    Fig.10 Truss Spar model with strakes

    Fig.11 The top view of the Spar model with three lines mooring system

    Fig.12 The top view of the Spar model with four lines mooring system

    Fig.13 The side view of the Spar model with the simplified mooring system

    5.2 Experiment programs

    The experiment of the Truss Spar has been conducted to investigate the VIM of the Truss Spar at different current headings and different flow speeds.Specific measurements were used for the purpose of the present study.Still water free-decay tests were emphasized in this paper.The aforementioned method was applied to estimate the natural frequency and the damping ratio of the Truss Spar with the simplified mooring system.

    For still water free-decay tests,eight test conditions,namely Truss Spar model with/without strakes and with three/four lines in sway or surge direction,were conducted.The free-decay test of the Truss Spar without strakes and with three lines mooring system in sway direction was selected to demonstrate the estimation of damping ratio based on the CWT method.

    The six-degrees-of-freedom motions of the Truss Spar were measured using an infrared optical tracking device.Fig.14 shows a time history of response in sway direction.Solid line is the raw data and dash line is the data filtered by band-pass filter.The upper and lower cutoff frequencies are the 1.5x and 0.5x response frequency.Fig.15 shows the corresponding spectrum in frequency domain and the dash lines are the upper and lower cutoff frequencies.Fig.15 indicates that the response frequency is about 0.036 6 Hz and its corresponding period is 27.3 seconds.

    Fig.14 The time series of still water free-decay test of the Spar model without strakes under three lines mooring system in sway direction

    Fig.15 The spectrum of still water free-decay test of the Spar model without strakes under three lines mooring system in sway direction

    Fig.16 The wavelet plot of still water free-decay test of the Spar model without strakes under three lines mooring system in sway direction

    Fig.17 The envelope of the wavelet ridgeat the response frequency for estimating the damping ratio

    Fig.18 The conventional exponential decay method for estimating the damping ratio

    Fig.16 shows the wavelet plot of the measured signal.From the wavelet plot,a wavelet ridge is detected at the frequency 0.036 3 Hz with the developed algorithm.The envelope of the wavelet ridge is displayed as solid line in Fig.17.The dash line is the linear fitting curve for estimating the damping ratio.The estimated damping ratio with the CWT method is 0.022.Fig.18 shows the estimated damping ratio 0.022 with the convention exponential decay method.The solid line is the time series of filtered data and the dash line is the exponential fitting curve for estimating the damping ratio.From the comparison of these two results,it is found that the CWT method is a good tool for estimating the damping ratio.

    Tab.3 summarizes the estimated frequencies and damping ratios of all eight test conditions.The estimated frequency should consider the added mass effect of the Truss Spar in the still water.Generally,the model with strakes has larger added mass than the model without strakes.The existence of the strakes will cause the lower frequency according to a simple formulawhere m includes both structural mass and added mass.As shown in Tab.3,the results indicate that the frequencies of the Truss Spar with strakes are lower than those of the Truss Spar without strakes,except one test condition.It may be explained by the nonlinearity of the stiffness or other reasons.Due to each mooring line has the same stiffness,the stiffness of four lines mooring system will be larger than the three lines mooring system,which also explains the frequency for four lines mooring system is larger than that for three lines mooring system.It also shows that the damping ratio of the Truss Spar model with strakes is generally greater than that of the model without strakes.It is interpreted as the model with strakes tends to dissipate more energy than the model without strakes in one cycle.However,the effect of mooring system on the damping ratio in still water is not obvious.In this paper,the identification of the damping ratio with the CWT method is based on the assumption of viscous damping model.The reason is that for many weakly damped systems,the viscous damping model is a rather good approximation and most widely used.

    Tab.3 The estimated damping ratio in still water

    Continue Tab.3

    6 Conclusions

    This paper applied a CWT method to identify the damping ratio of VIM in ocean engineering.Applications to both analytical and experimental data of free-decay have been made.The results have been compared to the exact values in the case of analytical data and to those estimated by the exponential method,also called‘conventional’method in the case of experimental data.In the case of analytical data,the estimation error is below 1.4%,which shows that the CWT method has sufficient and accurate estimation for both natural frequencies and damping ratio.It also shows that the CWT method is able to process the multi-mode vibration data.In the case of experimental data,eight different free-decay tests were conducted in still water to provide sufficient datasets,including Truss Spar model with/without strakes and with three/four lines in sway or surge direction.The estimated results with CWT method match with the‘conventional’method well.

    Acknowledgement

    The authors gratefully acknowledge the high-tech ship research projects of the Ministry of Industry and Information Technology‘Research on the key characteristic of Spar design’and National Natural Science Foundation of China(51239007)for supporting this research.

    [2]Venugopal M.Damping and response of a flexible cylinder in a current[D].PhD Thesis M.I.T,1996.

    [3]Vandiver J K,et al.SHEAR7 V4.5 User Guide[K].Atlantia Offshore Ltd,TX,USA,2007.

    [4]Vikestad K,Larsen C M,Vandiver J K.Norwegian deepwater program:Damping of vortex-induced vibrations[C].Offshore Technology Conference,11998,2000.

    [5]Nguyen T,Koide M,Yamada S,Takahashi T,Shirakashi M.Influence of mass and damping ratios on VIVs of a cylinder with a downstream counterpart in cruciform arrangement[J].Journal of Fluids and Structures,2012,28:40-55.

    [6]Bahmani M H,Akbari M H.Effects of mass and damping ratios on VIV of a circular cylinder[J].Ocean Engineering,2010,37(5-6):511-519.

    [7]Klamo J T,Leonard A,Roshko A.The effects of damping on the amplitude and frequency response of a freely vibrating cylinder in cross-flow[J].Journal of Fluids and Structures,2006,22(6-7):845-856.

    [8]Lee J H,Bernitsas M M.High-damping,high-Reynolds VIV tests for energy harnessing using the VIVACE converter[J].Ocean Engineering,2011,38(16):1697-1712.

    [9]Bolte?ar M,SlaviJ.Enhancements to the continuous wavelet transform for damping identifications on short signals[J].Mechanical Systems and Signal Processing,2004,18(5):1065-1076.

    [10]Ulker-Kaustell M,Karoumi R.Application of the continuous wavelet transform on the free vibrations of a steel-concrete composite railway bridge[J].Engineering Structures,2011,33:911-919.

    [11]Magalh?es F,Cunha á,Caetano E,Brincker R.Damping estimation using free decays and ambient vibration tests[J].Mechanical Systems and Signal Processing,2010,24(5):1274-1290.

    [12]Haase M,Widjajakusuma J.Damage identification based on ridges and maxima lines of the wavelet transform[J].International Journal of Engineering Science,2003,41(13-14):1423-1443.

    [13]Panet M,Jezequel L.Dissipative unimodal structural damping identification[J].International Journal of Non-Linear Mechanics,2000,35(5):795-815.

    [14]Yan Z H,Miyamoto A,Jiang Z W,Liu X L.An overall theoretical description of frequency slice wavelet transform[J].Mechanical Systems and Signal Processing,2010,24(2):491-507.

    [15]Yan Z H,Miyamoto A,Jiang Z W.Frequency slice wavelet transform for transient vibration response analysis[J].Mechanical Systems and Signal Processing,2009,23(5):1474-1489.

    [16]Tan J B,Liu Y,Wang L,Yang W G.Identification of modal parameters of a system with high damping and closely spaced modes by combining continuous wavelet transform with pattern search[J].Mechanical Systems and Signal Processing,2008,22(5):1055-1060.

    [17]Mallat S.A wavelet tour of signal processing[M].2nd Edition,Academic Press,New York,1999.

    [18]Hur K,Santoso S.Estimation of system damping parameters using analytic wavelet transforms[J].IEEE Transactions on Power Delivery,2009,24(3):1302-1309.

    [19]Dien N P.Damping identification using the wavelet-based demodulation method:Application to gearbox signals[J].Technische Mechanik,2008,28(3-4):324-333.

    [21]Park S Y,Kang Y J,Kim S H.Identification of beat characteristics and damping ratios of bell type structures using wavelet transform[J].Journal of Sound and Vibration,2009,326(1-2):367-382.

    国产 精品1| 欧美 亚洲 国产 日韩一| av免费观看日本| 伦精品一区二区三区| 久久亚洲国产成人精品v| kizo精华| 日韩欧美 国产精品| 五月伊人婷婷丁香| 少妇人妻久久综合中文| 成人特级av手机在线观看| 久久青草综合色| 国产亚洲精品久久久com| 热re99久久精品国产66热6| 中文字幕久久专区| 久久久久久久久久人人人人人人| 亚洲一区二区三区欧美精品| 黑人高潮一二区| 人人澡人人妻人| 亚洲欧美清纯卡通| 乱码一卡2卡4卡精品| 亚洲性久久影院| 永久免费av网站大全| 精品国产一区二区久久| 午夜福利视频精品| 嘟嘟电影网在线观看| 国产伦精品一区二区三区四那| 欧美区成人在线视频| 91aial.com中文字幕在线观看| 啦啦啦在线观看免费高清www| av卡一久久| 国产69精品久久久久777片| 99久久精品一区二区三区| 国产av精品麻豆| 精华霜和精华液先用哪个| 男女国产视频网站| 人妻少妇偷人精品九色| 久久国产精品男人的天堂亚洲 | 午夜激情福利司机影院| 欧美变态另类bdsm刘玥| 久久热精品热| 成人特级av手机在线观看| 在现免费观看毛片| 大又大粗又爽又黄少妇毛片口| 人妻制服诱惑在线中文字幕| 国产真实伦视频高清在线观看| 男女边吃奶边做爰视频| 亚洲人与动物交配视频| 午夜免费男女啪啪视频观看| 久久久亚洲精品成人影院| 亚洲一级一片aⅴ在线观看| 在线观看免费高清a一片| 国产69精品久久久久777片| 久久久久久久久久久免费av| 人人妻人人澡人人看| 综合色丁香网| 国产精品蜜桃在线观看| 国产精品一区二区三区四区免费观看| 精品久久久久久久久亚洲| 噜噜噜噜噜久久久久久91| 中文乱码字字幕精品一区二区三区| 国产乱人偷精品视频| 免费大片黄手机在线观看| 国产亚洲5aaaaa淫片| 国产精品免费大片| 最近的中文字幕免费完整| 国产亚洲av片在线观看秒播厂| 性高湖久久久久久久久免费观看| 亚洲av成人精品一二三区| 校园人妻丝袜中文字幕| 中文字幕制服av| 人妻一区二区av| 亚洲精品乱码久久久久久按摩| 国产亚洲欧美精品永久| 国产精品99久久99久久久不卡 | 精品国产一区二区三区久久久樱花| av福利片在线| 毛片一级片免费看久久久久| 99久久人妻综合| 欧美激情极品国产一区二区三区 | 一级毛片我不卡| 国产欧美日韩综合在线一区二区 | 亚洲第一区二区三区不卡| 国产精品.久久久| 熟女av电影| 中文资源天堂在线| 亚洲无线观看免费| 国产精品人妻久久久久久| 80岁老熟妇乱子伦牲交| 国产欧美日韩精品一区二区| 成人综合一区亚洲| 老女人水多毛片| 女性生殖器流出的白浆| 日日撸夜夜添| 中文乱码字字幕精品一区二区三区| 一级爰片在线观看| av网站免费在线观看视频| 少妇的逼好多水| 国产片特级美女逼逼视频| 日本欧美视频一区| 男女边摸边吃奶| 一级毛片电影观看| 丰满饥渴人妻一区二区三| 日韩在线高清观看一区二区三区| 91aial.com中文字幕在线观看| 9色porny在线观看| 精品99又大又爽又粗少妇毛片| 亚洲在久久综合| 国产真实伦视频高清在线观看| 观看美女的网站| 国产精品久久久久久精品古装| 亚洲性久久影院| 最近最新中文字幕免费大全7| 亚洲综合精品二区| 精品久久久噜噜| 亚洲国产精品一区二区三区在线| 欧美国产精品一级二级三级 | 日本色播在线视频| 嫩草影院入口| 精品一区二区三卡| av播播在线观看一区| 校园人妻丝袜中文字幕| 中文在线观看免费www的网站| 熟女电影av网| 欧美另类一区| 特大巨黑吊av在线直播| 精品熟女少妇av免费看| 有码 亚洲区| 国产 精品1| kizo精华| 精品久久久久久电影网| 国产老妇伦熟女老妇高清| 青春草视频在线免费观看| 男的添女的下面高潮视频| 久久久精品94久久精品| 晚上一个人看的免费电影| 成人免费观看视频高清| 免费不卡的大黄色大毛片视频在线观看| 婷婷色综合www| 亚洲三级黄色毛片| 国产真实伦视频高清在线观看| 日日摸夜夜添夜夜爱| 99久久人妻综合| 永久网站在线| 成人漫画全彩无遮挡| 女的被弄到高潮叫床怎么办| 日本免费在线观看一区| av天堂久久9| 美女视频免费永久观看网站| 在线天堂最新版资源| 欧美精品国产亚洲| 国产一级毛片在线| 永久网站在线| 天美传媒精品一区二区| 国产一区有黄有色的免费视频| 我的老师免费观看完整版| 久久久精品94久久精品| 亚洲国产成人一精品久久久| 全区人妻精品视频| 成人18禁高潮啪啪吃奶动态图 | 老女人水多毛片| 伊人亚洲综合成人网| 青春草亚洲视频在线观看| 极品教师在线视频| 国产成人精品无人区| 久久ye,这里只有精品| 国产亚洲一区二区精品| 日本免费在线观看一区| 少妇裸体淫交视频免费看高清| 九九爱精品视频在线观看| 欧美三级亚洲精品| 人人妻人人添人人爽欧美一区卜| 丝袜喷水一区| 亚洲精品,欧美精品| 一二三四中文在线观看免费高清| 久久狼人影院| 少妇被粗大猛烈的视频| 欧美日韩av久久| 麻豆成人av视频| 国产极品粉嫩免费观看在线 | 少妇人妻精品综合一区二区| 亚洲经典国产精华液单| 久久久国产一区二区| 人妻系列 视频| 精品酒店卫生间| 国产欧美另类精品又又久久亚洲欧美| 久热久热在线精品观看| 国产女主播在线喷水免费视频网站| 国产精品欧美亚洲77777| 国产精品久久久久久精品古装| 久久久久久久久久人人人人人人| 国产日韩一区二区三区精品不卡 | 久久久久久久亚洲中文字幕| 欧美精品一区二区免费开放| 国产精品久久久久成人av| 少妇的逼水好多| 美女主播在线视频| 精品人妻熟女av久视频| 亚洲成色77777| 一本—道久久a久久精品蜜桃钙片| 在现免费观看毛片| 内射极品少妇av片p| 亚洲av男天堂| 99热全是精品| 亚洲欧美精品自产自拍| 久久97久久精品| 99热这里只有是精品50| 日本午夜av视频| 最近手机中文字幕大全| 欧美日本中文国产一区发布| 国产精品三级大全| 亚洲不卡免费看| 人妻夜夜爽99麻豆av| 青青草视频在线视频观看| 中文字幕制服av| 五月开心婷婷网| av网站免费在线观看视频| 国产 一区精品| 男女边吃奶边做爰视频| 亚洲婷婷狠狠爱综合网| 亚洲精品成人av观看孕妇| 日韩精品免费视频一区二区三区 | 人人澡人人妻人| 国产精品一二三区在线看| 日韩在线高清观看一区二区三区| 日韩av不卡免费在线播放| 国产亚洲欧美精品永久| 国产淫片久久久久久久久| 99热这里只有是精品50| 制服丝袜香蕉在线| 中国三级夫妇交换| 黄色毛片三级朝国网站 | 免费av中文字幕在线| 午夜精品国产一区二区电影| 久久久午夜欧美精品| 精品少妇内射三级| 亚洲,欧美,日韩| 亚州av有码| 国产一级毛片在线| 亚洲av国产av综合av卡| 成人无遮挡网站| 欧美高清成人免费视频www| 少妇人妻久久综合中文| 欧美成人精品欧美一级黄| 成人毛片60女人毛片免费| 免费观看性生交大片5| 国产精品国产三级国产av玫瑰| 建设人人有责人人尽责人人享有的| 最近中文字幕2019免费版| 9色porny在线观看| 黄色欧美视频在线观看| 日本vs欧美在线观看视频 | 26uuu在线亚洲综合色| 亚洲国产色片| 免费观看av网站的网址| 91精品伊人久久大香线蕉| 99久久精品一区二区三区| 日韩不卡一区二区三区视频在线| 亚洲精品中文字幕在线视频 | 大片免费播放器 马上看| 久久毛片免费看一区二区三区| 亚洲av男天堂| 熟妇人妻不卡中文字幕| 亚洲欧美精品专区久久| 少妇 在线观看| 欧美区成人在线视频| 午夜免费鲁丝| 午夜视频国产福利| 国产欧美另类精品又又久久亚洲欧美| 狠狠精品人妻久久久久久综合| 日韩av不卡免费在线播放| 国语对白做爰xxxⅹ性视频网站| 久久av网站| 爱豆传媒免费全集在线观看| 亚洲美女搞黄在线观看| 一区在线观看完整版| 人妻少妇偷人精品九色| 日本黄大片高清| 国产高清有码在线观看视频| 伦精品一区二区三区| 久久久国产一区二区| av线在线观看网站| 精品国产乱码久久久久久小说| 日韩 亚洲 欧美在线| 精品国产一区二区三区久久久樱花| 少妇裸体淫交视频免费看高清| h视频一区二区三区| www.色视频.com| 另类精品久久| 免费人妻精品一区二区三区视频| 熟女人妻精品中文字幕| 寂寞人妻少妇视频99o| 久久99热这里只频精品6学生| 80岁老熟妇乱子伦牲交| 国产精品免费大片| 中文字幕久久专区| 在线观看三级黄色| 国产深夜福利视频在线观看| 日韩精品有码人妻一区| 特大巨黑吊av在线直播| 亚洲熟女精品中文字幕| 国产精品国产三级国产专区5o| 亚洲第一区二区三区不卡| 美女福利国产在线| 久久久久国产网址| 观看美女的网站| 国产在线男女| 九色成人免费人妻av| 涩涩av久久男人的天堂| 精品久久久久久电影网| 亚洲图色成人| 日本wwww免费看| 国产一级毛片在线| 深夜a级毛片| 狂野欧美激情性bbbbbb| 成人毛片a级毛片在线播放| 国产在视频线精品| 国产av精品麻豆| 高清不卡的av网站| 成年人免费黄色播放视频 | 夜夜爽夜夜爽视频| 国产欧美另类精品又又久久亚洲欧美| 乱码一卡2卡4卡精品| 免费播放大片免费观看视频在线观看| 欧美 日韩 精品 国产| 最新的欧美精品一区二区| 色婷婷久久久亚洲欧美| 久久人妻熟女aⅴ| 99久久综合免费| 欧美高清成人免费视频www| 九色成人免费人妻av| 欧美精品高潮呻吟av久久| 日韩不卡一区二区三区视频在线| 成年av动漫网址| 哪个播放器可以免费观看大片| 久久精品夜色国产| 日韩av不卡免费在线播放| 五月天丁香电影| av.在线天堂| 成人无遮挡网站| 久久久久久久久久久免费av| 久久韩国三级中文字幕| 亚洲av二区三区四区| 久久精品久久精品一区二区三区| 亚洲国产日韩一区二区| 久久精品久久精品一区二区三区| 久久鲁丝午夜福利片| 欧美性感艳星| 欧美+日韩+精品| 国产高清国产精品国产三级| 欧美一级a爱片免费观看看| 日本午夜av视频| 啦啦啦啦在线视频资源| 久久国产乱子免费精品| 特大巨黑吊av在线直播| 久久精品久久久久久噜噜老黄| 亚洲av综合色区一区| 最新的欧美精品一区二区| 国产黄色视频一区二区在线观看| 久久久亚洲精品成人影院| 曰老女人黄片| 大话2 男鬼变身卡| 免费观看的影片在线观看| h日本视频在线播放| 久久 成人 亚洲| 免费看光身美女| 天美传媒精品一区二区| 黄色一级大片看看| 午夜福利视频精品| 色网站视频免费| 一区二区三区免费毛片| 熟女电影av网| 在现免费观看毛片| 国产永久视频网站| 免费黄色在线免费观看| 汤姆久久久久久久影院中文字幕| 韩国av在线不卡| 2022亚洲国产成人精品| 三级国产精品片| 亚洲av国产av综合av卡| 日本黄色片子视频| 亚洲熟女精品中文字幕| 中文字幕免费在线视频6| 最黄视频免费看| 香蕉精品网在线| 这个男人来自地球电影免费观看 | 国产欧美日韩精品一区二区| 精品一区在线观看国产| 尾随美女入室| 91在线精品国自产拍蜜月| 亚洲精华国产精华液的使用体验| 9色porny在线观看| 黄色配什么色好看| av卡一久久| 老司机影院毛片| av国产久精品久网站免费入址| 国产精品一区二区在线观看99| 国产免费视频播放在线视频| 国产精品一区二区在线观看99| 一区二区三区免费毛片| 99视频精品全部免费 在线| 精品久久久精品久久久| av.在线天堂| 一本一本综合久久| 天天躁夜夜躁狠狠久久av| 欧美日韩av久久| 在线看a的网站| 成年人午夜在线观看视频| 交换朋友夫妻互换小说| 亚洲精品成人av观看孕妇| 免费高清在线观看视频在线观看| 色视频www国产| 久久国产乱子免费精品| 老熟女久久久| 国产一区亚洲一区在线观看| 国产欧美日韩精品一区二区| 亚洲国产精品一区三区| 国产欧美亚洲国产| 国产免费一区二区三区四区乱码| 免费观看在线日韩| 亚洲综合精品二区| 美女大奶头黄色视频| 国产精品99久久99久久久不卡 | 欧美另类一区| 久久久久久久久久成人| 啦啦啦视频在线资源免费观看| h日本视频在线播放| 人妻人人澡人人爽人人| 中文天堂在线官网| 国产日韩欧美视频二区| av免费观看日本| 九九爱精品视频在线观看| 亚洲av.av天堂| 亚洲av成人精品一区久久| 中文精品一卡2卡3卡4更新| 日韩精品免费视频一区二区三区 | 亚洲激情五月婷婷啪啪| 亚洲精品中文字幕在线视频 | a级毛色黄片| 一区在线观看完整版| 蜜桃久久精品国产亚洲av| 久久久久久伊人网av| 又黄又爽又刺激的免费视频.| 又粗又硬又长又爽又黄的视频| h视频一区二区三区| 我要看日韩黄色一级片| 十八禁网站网址无遮挡 | 纵有疾风起免费观看全集完整版| 秋霞在线观看毛片| 国产黄色免费在线视频| 国产精品99久久99久久久不卡 | 国产精品欧美亚洲77777| 国产伦理片在线播放av一区| 男男h啪啪无遮挡| 全区人妻精品视频| 免费黄色在线免费观看| av福利片在线| 国产一区有黄有色的免费视频| 国产亚洲午夜精品一区二区久久| 人妻一区二区av| 卡戴珊不雅视频在线播放| 只有这里有精品99| 亚洲成人一二三区av| 3wmmmm亚洲av在线观看| 又黄又爽又刺激的免费视频.| 多毛熟女@视频| 伦精品一区二区三区| 亚洲成人手机| 在线看a的网站| 韩国av在线不卡| 久久精品国产自在天天线| 老女人水多毛片| 多毛熟女@视频| 一个人看视频在线观看www免费| 18禁在线无遮挡免费观看视频| 永久网站在线| 丰满饥渴人妻一区二区三| 久久久久精品久久久久真实原创| 欧美一级a爱片免费观看看| av天堂久久9| 五月开心婷婷网| 国内精品宾馆在线| 婷婷色麻豆天堂久久| 国产欧美日韩一区二区三区在线 | 国产亚洲精品久久久com| 亚洲av国产av综合av卡| 内地一区二区视频在线| 在线观看三级黄色| 亚洲,欧美,日韩| 精品国产国语对白av| 边亲边吃奶的免费视频| 久热久热在线精品观看| 久久久久视频综合| 久久av网站| 精品国产国语对白av| 美女大奶头黄色视频| 国产精品久久久久久久久免| 免费不卡的大黄色大毛片视频在线观看| 欧美变态另类bdsm刘玥| 91精品伊人久久大香线蕉| 我的老师免费观看完整版| 热re99久久精品国产66热6| 国产成人91sexporn| 99久久精品一区二区三区| 啦啦啦中文免费视频观看日本| 国产熟女欧美一区二区| 亚洲欧美日韩另类电影网站| 草草在线视频免费看| 免费人成在线观看视频色| 校园人妻丝袜中文字幕| 日本-黄色视频高清免费观看| 亚洲精品成人av观看孕妇| 国内揄拍国产精品人妻在线| 国产淫语在线视频| 免费观看性生交大片5| 亚洲第一区二区三区不卡| 丰满饥渴人妻一区二区三| 亚洲综合色惰| 亚洲人成网站在线观看播放| 大片免费播放器 马上看| 22中文网久久字幕| 精品人妻偷拍中文字幕| 午夜精品国产一区二区电影| 国产国拍精品亚洲av在线观看| 精品人妻熟女毛片av久久网站| 国产在视频线精品| 国产精品福利在线免费观看| 久久久国产欧美日韩av| 99九九线精品视频在线观看视频| 国产白丝娇喘喷水9色精品| 一本一本综合久久| 免费观看a级毛片全部| 国产高清三级在线| 人人妻人人添人人爽欧美一区卜| 永久网站在线| 久热久热在线精品观看| 一级片'在线观看视频| 欧美人与善性xxx| 亚洲精品国产av成人精品| 交换朋友夫妻互换小说| 中文字幕免费在线视频6| 九色成人免费人妻av| 岛国毛片在线播放| 水蜜桃什么品种好| 人人妻人人澡人人看| 久热这里只有精品99| 卡戴珊不雅视频在线播放| 中文天堂在线官网| 内地一区二区视频在线| 伦理电影免费视频| 黑丝袜美女国产一区| 日韩一区二区三区影片| 色吧在线观看| 麻豆成人av视频| 久久国内精品自在自线图片| 深夜a级毛片| 精品一区二区三卡| 黄色毛片三级朝国网站 | 女的被弄到高潮叫床怎么办| 国产男女内射视频| 亚洲av二区三区四区| 一级黄片播放器| 日韩制服骚丝袜av| 欧美高清成人免费视频www| 国语对白做爰xxxⅹ性视频网站| 国产黄频视频在线观看| 国产高清三级在线| av在线播放精品| 国产永久视频网站| 又爽又黄a免费视频| 成人18禁高潮啪啪吃奶动态图 | 男人舔奶头视频| 97在线人人人人妻| 一级二级三级毛片免费看| 久久人妻熟女aⅴ| 国产精品蜜桃在线观看| 夫妻午夜视频| 久久国产精品大桥未久av | 久久久久久久久大av| 亚洲精品一二三| 国产精品久久久久成人av| 五月伊人婷婷丁香| 两个人免费观看高清视频 | 久久久久久久久久久久大奶| 亚洲图色成人| 成人18禁高潮啪啪吃奶动态图 | 亚洲真实伦在线观看| 亚洲国产毛片av蜜桃av| 久久青草综合色| 久久久亚洲精品成人影院| 极品少妇高潮喷水抽搐| 午夜免费鲁丝| 国产永久视频网站| 中文在线观看免费www的网站| 人人妻人人添人人爽欧美一区卜| 日韩欧美 国产精品| 亚洲av在线观看美女高潮| 亚洲情色 制服丝袜| 在线看a的网站| 国产深夜福利视频在线观看| 99九九线精品视频在线观看视频| 三级国产精品欧美在线观看| 午夜精品国产一区二区电影| 成人影院久久| 日本-黄色视频高清免费观看| 中文字幕免费在线视频6| 搡老乐熟女国产| 天堂中文最新版在线下载| 成年av动漫网址| 国产日韩一区二区三区精品不卡 | 久久99蜜桃精品久久| 欧美97在线视频| 大片免费播放器 马上看| 国产真实伦视频高清在线观看| 日韩一区二区视频免费看| 最后的刺客免费高清国语|