• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low Noise Collocation on Fluid Pipeline System

    2015-05-02 19:36:40HETaoSUNYudongWUWenweiWUYousheng
    船舶力學(xué) 2015年9期
    關(guān)鍵詞:低噪聲科學(xué)研究水力

    HE Tao,SUN Yu-dong,WU Wen-wei,WU You-sheng

    (1.National Key Laboratory on Ship Vibration&Noise,China Ship Scientific Research Center,Wuxi 214082,China; 2.Jiangsu Key Laboratory of Green Ship Technology,Wuxi 214082,China)

    Low Noise Collocation on Fluid Pipeline System

    HE Tao1,2,SUN Yu-dong1,2,WU Wen-wei1,2,WU You-sheng1,2

    (1.National Key Laboratory on Ship Vibration&Noise,China Ship Scientific Research Center,Wuxi 214082,China; 2.Jiangsu Key Laboratory of Green Ship Technology,Wuxi 214082,China)

    Fluid dynamic and vibration and noise characteristics of pipeline systems are both focused and analyzed as design targets.Cooling pipeline systems of ships are always running during the sail time,outboard noise radiation of cooling pipeline systems is distinct.Low noise collocation method should be proposed in order to control cooling pipeline noise.In this paper,fluid dynamic method of piping systems is established based on one dimensional hydraulic theory,vibration and noise radiation numerical method of piping systems is established based on finite element method under acoustic-vibration and equivalent fluid filled beam model theories.Low noise collocation strategy including principle,fluid collocation method and noise radiation evaluation method is constructed in the end.Finally,typical cooling pipeline system is analyzed and collocation method is elementarily verified experimentally.

    fluid pipeline systems;fluid dynamic;vibration;low noise collocation method

    0 Introduction

    Pipeline systems exist in broad industry fields.Vibration and noise characteristics of pipeline systems are focused and analyzed all the time[1-2].Commonly,there are two controlling methods for vibration and noise of pipeline systems.One controlling method is based on noise source design such as low noise design of equipments[3-4]and the other controlling method is based on noise and vibration isolation&absorption approaches such as vibration isolator, flexible pipes and supports,silencers[5-6],etc.The research results show that noise and vibration of systems can always be reduced by the two control methods,although the noise and vibration level is still unsatisfied.So,combining the hydraulic and noise designs together and matching resistances of pipe and system are necessary to control system noise and realize low noise design object.

    Pumps are indispensable equipments in cooling pipeline systems and the main vibration and noise sources.Pumps behave the best effective hydraulic performances under design working points,in the mean time,behave best noise and vibration performances.Guan and Wang[7-8]did sufficient work on hydrodynamic performances and design methods of hydraulic machines. Control valves vibrate and radiate noise under hydraulic inspiriting.The hydraulic and noise& vibration performances are related in nature.The noise level of pipeline system can be lowered by the way of low noise collocation method which make sure that the pumps work under design points matching the system hydraulic resistance.

    In this paper,low noise collocation principles are listed as design guidance,the collocation numerical methods are constructed as design methodology,the collocation technology is established in the end.The collocation technology is exercised upon some typical cooling pipeline system,and the collocation principles and methods are verified experimentally.

    1 Low noise collocation principles of pipeline systems

    Pumps and valves are the main vibration and noise sources in cooling pipeline systems which determine the noise levels of systems.Sufficient researches are done on hydraulic and vibration&noise performances of pumps and valves.The researches reveal that pumps behave the lowest noise levels under designed working conditions.Noise and vibration level increases while flow volume rate of pump increases or decreases.Valves behave the lowest noise levels under states with larger openings and lower flow volume rates which indicates that noise of systems increases with hydraulic powers increase.

    Hydraulic performance curves of pumps are illustrated as Fig.1.Shaft powers and hydraulic efficiencies are different under fixed rotating speed with variable flow volume rates and heads. Because of hydraulic efficiency decreasing,mechanical powers turn into vibration powers and transfer through base supports and pipeline,and cause noise radiation to outfield in the end[9].

    Fig.1 Hydraulic performance curves of pumps

    Fig.2 Working points of pumps related to system

    As is illustrated in Fig.2,vibration and noise of pumps vary with hydraulic conditions, main spectrums such as rotating,blade passing,and multiple frequencies of rotating,blade passing frequencies obey the same rules that vibration and noise levels are the lowest under designed working conditions[10].

    Synthesizing the above analysis,the low noise collocation principles of pipeline systems areconcluded as:

    (1)Reducing the flow powers as low as possible on the premises that flow volume rate needs of users are satisfied;

    (2)Making sure that the designed working conditions of pumps match the resistances of pipeline systems;

    (3)Reducing additional noise sources such as valves,transitions,elbows et all.

    The modulating and adjusting means to realize low noise collocation principles are as follows:

    (1)Reducing rotating speeds to match system resistances when fluid powers of pumps are too redundancy;

    (2)Control valves should be used to increase system resistances to match design points of pumps if system resistances is lower than head of pumps;

    (3)Low noise control valves should be used to adjust system resistance in order to control additional noise sources.

    2 Low noise collocation evaluation methods of pipeline systems

    Collocation evaluation methods include hydraulic evaluation method and vibration and noise radiation evaluation method.One dimensional hydraulic evaluation method is established to carry out low noise collocation schemes satisfying hydraulic requirements of cooling users under low noise collocation principles.Source characteristics of pumps,valves,users under specific hydraulic conditions should be tested and acquired as the input data for pipeline system vibration and noise evaluation.Based on input source data and vibration and noise evaluation method,noise level of different collocation schemes can be evaluated and the collocation schemes can be valued.

    2.1 Hydraulic evaluation method of pipeline systems

    Pressure drops of hydraulic systems root in turbulent dissipation and inverse pressure gradient.In common industry applications,two mechanisms often appear at the same time. Because of the slightness character of pipeline,invariable pressures and velocities on cross sections can be assumed and hydraulic evaluation method of pipeline systems can be established based on one dimensional theory.The hydraulic evaluation method includes one dimensional fluid control equation,pipeline elements modeling,elements relationship and matrix solving, etc[11-12].

    Fluid resistance equation,continuity equation and pressure loss equation are as follows:

    where p1and p2are inlet and outlet pressures of component,ξ is fluid resistance coefficient ofcomponent,ρ is density of fluid,u is flow velocity,subscript 1,2 are upwind and downwind positions,u1and u2are flow velocities of two connection points,A1and A2are areas of two connection points,p1and p2are static pressures,are dynamic pressures,z1and z2are head positions.

    Cooling pipeline systems commonly contain pumps,valves,heat exchangers,filters, branches,pipes,elbows,etc.

    Vane pumps such as centrifugal and axial pumps are often used in cooling systems.Hydraulic performance curves should be provided as input data for system hydraulic solving. Relationship of flow volume rate and head under constant rotating speed can be transferred to Suter dimensionless curves.

    Hydraulic performances of discrete losses such as valves,heat exchangers and filters can be expressed as loss coefficients considering effect of low Re on itself.

    where ξvis loss coefficients of discrete losses,cReis low Re modified coefficient.

    Pressure loss of pipes and elbows increases with distance:

    where f is friction coefficient,L is length of pipe or elbow,D is hydraulic diameter.

    Pipeline systems are considered as networks based on one dimension theory.Connections of components of pipeline systems are equivalent as serial,parallel and embranchment relationships.Based on serial,parallel and embranchment relationships,hydraulic networks of cooling systems can be constructed as system matrixes.The matrix coefficients are determined by components.In order to solve system matrix equations,flow volume rates are initialized along all network,and fist matrix solution is done to get pressures of nodes of network;based on the pressures solved,the flow volume rates and the matrix coefficients can be updated;in this way,solutions can be iterated;when the residuals of flow volume rate and pressure results are within limited values,the iterative solutions end,and the final system solution is achieved.

    2.2 Vibration and noise radiation evaluation method of pipeline systems

    Based on equivalent fluid filled beam and acoustic-elasticity theory,finite element models of pipeline system and ship structures are constructed including equipments,pipeline,base and hull,etc.Vibration and noise radiation of ship outboard can be evaluated.The hydraulic collocation schemes can be valued based on the calculation results.

    Variation integral equations are obtained based on acoustic-elasticity theory.The spatial domain discrete forms of variation integral equations can be obtained based on FE method. The full coupling structure and fluid dynamic equation is as follows[13-14]:

    where Ms,Csand Ksare structural mass,damp and stiffness matrixes;Mf,Cfand Kfare fluid mass,damp and stiffness matrixes;Sfsis fluid and structure coupling matrix;u and p are vectors of displacements and sound pressures of nodes;Psis structural load vector;pfis fluid load vector.

    Outboard water field of ships is much more extensive than ships itself,therefore outboard water fields can be assumed as infiniteness.In this paper,sound infinite element technology is used to model far field nonreflecting boundary condition.The far field sound pressure p∞of far field distance r can be extrapolated based on information of sound infinite elements.The noise source level at distance 1 m can be extrapolated based on IFEM results.

    Pipelines are chainlike networks,beam elements can be used to model the pipeline for low frequency vibration response evaluation.One benefit of using structural beam element is much less time-consuming than three-dimensional elements.Considering that the compressibility of fluid can be neglected,the fluid filled pipes can be modeled as equivalent fluid beams with fluid inertia influence on beam vibration taken into account[14].

    Practical pipeline systems contain pumps,valves,users,flanges,pipes,elbows,vibration isolators,flexible pipes,flexible supports,etc.The inertias and stiffness of discrete elements should be set carefully because that the veracity of discrete elements characteristics determines the precision of system vibration and noise evaluation results[15].

    Discrete elements such as vibration isolators,flexible pipes,flexible supports et al could be modeled as spring and dashpot elements.The complex elasticity coefficients along x,y,z directions are Cxx,Cyyand Czz;the real elasticity coefficients along x,y,z directions are kx,ky, kz;the imagine elasticity coefficients along x,y,z directions are ηx,ηy,ηz:

    Discrete elements such as pumps,valves,flanges,etc could be modeled as inertial elements.The mass is m and inertial moments along main axes x,y,z are Ix,Iy,Iz.In local reference frames,the mass matrix of element is diagonal:

    3 Low noise collocation on typical fluid pipeline system

    Low noise collocation analysis is taken on some typical shaft seawater cooling system. Two types of pumps with different hydraulic performances are tested under five designed hydraulic conditions each.In the mean time,hydraulic and vibration and noise performances of the shaft cooling system are evaluation and the numerical results are compared to experimental results for verification.The purposes of following analysis lay in two objects:firstly,testing on shaft cooling system experimental model provides input and verification data for evaluation methods;secondly,based on evaluation results on outfield noise radiation under different collocation schemes,low noise collocation principles can be validated.

    3.1 Experimental and numerical models of shaft cooling system

    Design and experiment models of shaft cooling system are illustrated in Fig.3.Cooling users include drive equipment,shaft sealing and controller,etc.Cooling pumps are used to provide cooling water for users.Branch flow volume rates are adjusted and balanced by control valves.Sea water flows in larboard and flows out through starboard and shaft sealing.

    Fig.3 Design and experiment models of shaft cooling pipeline system

    In experiment,control valves are used as a substitute for cooling users.The fluid resistances of control valves with some specific openings equal that of cooling users.The hull is neglected and outboard water field is modeled as water tank.The inlet and outlet positions are arranged identical to design.The experiment contents hydraulic and vibration tests of system.

    Cooling flow volume rates of users,corresponding pressure drop and diameter of pipes are illustrated in Tab.1.Rated and tested hydraulic working conditions of two types of pumps are illustrated in Tab.2.The hydraulic and vibration&noise performances are collected under the corresponding hydraulic states.Pumps provide equal or more cooling water volume rates than cooling needs of users.The particular meanings of testing states are:(P1-1)means full rotating speed,valve full opening,system flow volume rate is much redundancy;(P1-2)means full rotating speed,valve specific opening,system flow volume rate is a little more than cooling water needed;(P1-3)means full rotating speed,valve specific opening,system flow volume rate is near to cooling water needed;(P1-4)means decreased rotating speed,valve full opening,system flow volume rate is a little more redundancy;(P1-5)means decreased rotating speed, valve full opening,system flow volume rate is near to cooling water needed.The meanings of hydraulic testing states of P2 are similar to those of P1.

    Tab.1 Characteristic parameters of cooling users

    Tab.2 Hydraulic testing conditions of pumps

    Hydraulic evaluation model of shaft cooling pipeline system is established based on experiment model.The hydraulic network is illustrated in Fig.4.Total pipeline and hull coupling acoustic-elasticity model is established based on design model.The finite element model is illustrated in Figs.5 and 6.

    Fig.4 Hydraulic evaluation model of shaft cooling pipeline system

    Fig.5 Acoustic-vibration finite element model

    Fig.6 Pipeline system in hull

    3.2 Experimental and numerical results

    3.2.1 Numerical method verification

    The hydraulic states of pumps and systems can be evaluated based on tested hydraulic performances of pump1 and pump2.The hydraulic numerical and experimental results of pump1 are listed in Tab.3.Departures between evaluation and experiment results are within 10%, which means the hydraulic evaluation method is verified by experiment and can be used for engineering applications.

    Tab.3 Comparisons of pump1 numerical and experimental hydraulic results

    In order to verify vibration evaluation method,only pipeline system is modeled by finite element model based on equivalent fluid beam theory.The pipeline supports is modeled as springs with modular 1e6.Taking P1-1 hydraulic state as example,comparisons of tested and calculated vibration levels at first pump inlet and outlet supports are illustrated in Fig.7.

    Fig.7 Comparisons of tested and calculated vibration levels at first pump inlet and outlet supports

    The results in Fig.9 indicate that evaluation results undervalued the vibration acceleration levels.This may be caused by neglecting vibration source of valves.The characteristic frequencies of evaluation results are less than those of experiment results,which may be caused by not taking account of frequency dependence characteristics on springs.In despite of some departure,the vibration evaluation method is still verified by experiment and can be used for engineering applications.

    3.2.2 Analysis on vibration transfer and low noise collocation schemes

    Based on source excitations of pumps under hydraulic states listed in Tab.2,corresponding source SPLs are evaluated and illustrated in Fig.8.The flow volume rates of pump1 are 8. 9t/h,6.6t/h,5.3t/h under hydraulic states P1-1,P1-2,P1-3,pump1 moves to design point(Q: 8.9t/h,H:27 m)ordinals P1-1,P1-2,P1-3,and source noise level decreases 1 dB and 2 dB.The flow volume rates of pump2 are 9.5t/h,6.3t/h,5.6t/h under hydraulic states P2-1,P2-2, P2-3,pump2 moves away from design point(Q:12t/h,H:17 m)ordinals P2-1,P2-2,P2-3, and source noise level increases 8dB and 7dB.The results indicate that noise of system is the lowest while pump works under design points.The flow volume rates of pump1 are 8.9t/h,6. 1t/h,5.2t/h under hydraulic states P1-1,P1-4,P1-5,the rotating speed of pump1 decreases and source noise level decreases 6dB and 1dB.The flow volume rates of pump2 are 9.5t/h,7. 5t/h,5.1t/h under hydraulic states P2-1,P2-4,P2-5,the rotating speed of pump2 decreases and source noise level decreases 2 dB and 4 dB.The results indicate that noise of system decreases with lowing rotating speed and cutting off hydraulic power redundancies of system. Therefore,low noise collocation principles are validated.The system source noise of this shaft cooling system can be lowered about 10 dB under optimized collocation scheme P2-5 based on low noise collocation principles.

    Fig.8 Source SPLs of pipeline systems under working conditions of two type pumps

    4 Conclusions

    In this paper,low noise collocation principles are concluded,evaluation methods on hydraulic and vibration and noise radiation of pipeline systems are established,the evaluation methods can be used as design tools.Low noise collocation schemes of some typical shaft cooling pipeline system are presented,low noise collocation principles and evaluation methods are validated and verified.These instructive conclusions are achieved:

    (1)Based on low noise collocation principles and hydraulic evaluation methods of pipeline network,types and hydraulic performances of pumps can be selected to match system resistances,diameters of pipes and openings of valves can be confirmed to balance cooling water volume rates of users;thus,low noise collocation schemes should be established.The hydraulic evaluation method is verified elementary.

    (2)Based on vibration and noise radiation evaluation methods of pipeline and hull coupling system,source noise levels under different collocation schemes can be evaluated andvalued;the study on typical shaft cooling system provides implement approaches.The vibration evaluation method is verified elementary,and the noise radiation evaluation method should be verified in future.

    (3)Based on tested and evaluated results on hydraulic and vibration&noise characteristics under different collocation schemes of shaft cooling system,the effects of low collocation design under low collocation principles are shown remarkable.The noise level of the typical fluid pipeline can be lowered about 10 dB by putting pump working states near the design point and reducing rotating speeds of pumps to cutoff hydraulic power redundancies.

    [1]Yao Shouguang,Xiao Ming.Shipping power equipments[M].Beijing:National Defense Industry Press.2012.

    [2]Tan Renceng.Shipping assistant equipments and shafting systems[M].Harbin:University of Harbin Engineering Press, 2012.

    [3]He Tao,Yin Zhiyong,Sun Yudong.Numerical analysis for flow induced vibration of a centrifugal pump[J].Journal of Vibration and Shock,2012,31(12):96-102.

    [4]He Tao,Zhong Rong,Sun Yudong.Numerical method on hydrodynamic noise of centrifugal pump[J].Journal of Ship Mechanics,2012,16(4):449-455.

    [5]He Tao,Li Dongsheng,Sun Yudong,Yu Mengsa.Theory on plate-silencer with low frequency and broadband hydrodynamic noise attenuation characteristics[J].Journal of Ship Mechanics,2014,18(1-2):191-200.

    [6]He Tao,Sun Gang,Sun Yudong,Yu Mengsa.Parameter analysis on hydrodynamic noise plate-silencer with fluid cavity [J].Journal of Ship Mechanics,2014,18(1-2):191-200.

    [7]Guan Xingfan.Manual of modern pump design[M].Beijing:China Astronautic Press,1995.

    [8]Wang Zhengwei.Foundation of fluid machines[M].Beijing:Tsinghua University Presss,2006.

    [9]Ahmad Nourbakhsh.Turbopumps and pumping systems[M].Springer-Verlag Berlin Heidelberg,2008.

    [10]Zhu Zong,Zhang Wanliang.Low noise matching method of pumps and pipeline systems[C].The Thirteenth Conferences on Underwater Noise,2011:311-318.

    [11]Miller D S.Internal flow system[M].Second Edition.BHR Group Limited.UK,1990.

    [12]Kays W M,Crawford M E,Weigand B.Convective heat and mass transfer[M].Fourth Edition.The McGraw-Hill Companies,Inc.2005.

    [13]Miao Xuhong,Qian Dejin,Yao Xiongliang,Huang Chao.Sound radiation of underwater structure based on coupled acoustic-structural analysis with ABAQUS[J].Journal of Ship Mechanics,2009,13(2):319-324.

    [14]Abaqus theory manual[M].Dassault Systems,2011,6(13).

    [15]Sun Yudong,Wang Suoquan,Liu Zhongzu,Wu Yousheng.Unified finite element method for analyzing vibration and noise in3-D piping system with liquid-pipe coupling[J].Journal of Vibration Engineering,2005,18(2):149-154

    水管路系統(tǒng)低噪聲配置研究

    何 濤1,2,孫玉東1,2,吳文偉1,2,吳有生1,2

    (1.中國船舶科學(xué)研究中心 船舶振動噪聲重點實驗室;2.江蘇省綠色船舶技術(shù)重點實驗室,江蘇 無錫,214082)

    管路系統(tǒng)的水力功能和振動噪聲性能相互影響皆為設(shè)計目標(biāo)。艦船領(lǐng)域中冷卻水管路系統(tǒng)長期開啟,管路系統(tǒng)振動及船外輻射噪聲受到關(guān)注。為實現(xiàn)船外輻射噪聲的控制,有必要建立水力和聲學(xué)的協(xié)調(diào)設(shè)計技術(shù)。文章以低噪聲配置原則為管路系統(tǒng)設(shè)計指導(dǎo),基于復(fù)雜水力管網(wǎng)計算方法進(jìn)行管系合理配置,基于管系等效水梁及管系—船體聲固耦合整體建模方法進(jìn)行振動及船外輻射噪聲計算評估,形成了水力與聲學(xué)協(xié)調(diào)的管路系統(tǒng)低噪聲配置技術(shù)流程。以典型冷卻水管路系統(tǒng)為對象,初步測試驗證了配置原則和計算方法。

    水管路系統(tǒng);水力;振動;低噪聲配置

    U664.5

    :A

    何 濤(1983-),男,博士研究生,中國船舶科學(xué)研究中心工程師;

    U664.5

    A

    10.3969/j.issn.1007-7294.2015.09.011

    1007-7294(2015)09-1149-11

    孫玉東(1965-),男,中國船舶科學(xué)研究中心研究員;

    吳文偉(1969-),男,中國船舶科學(xué)研究中心研究員;

    吳有生(1942-),男,院士,中國船舶科學(xué)研究中心研究員。

    Received date:2015-06-09

    Foundation item:Supported by Natural and Science Fund of Jiangsu Province-Youthful Fund(BK2012096)

    Biography:HE Tao(1983-),male,Ph.D.student,engineer;

    SUN Yu-dong(1965-),male,researcher.

    猜你喜歡
    低噪聲科學(xué)研究水力
    水力全開
    歡迎訂閱《林業(yè)科學(xué)研究》
    一種含有源巴倫CMOS雙頻低噪聲放大器的設(shè)計
    歡迎訂閱《紡織科學(xué)研究》
    紡織科學(xué)研究
    紡織科學(xué)研究
    球墨鑄鐵管的水力計算
    低噪聲鍵控寬頻信號源設(shè)計與實現(xiàn)
    電測與儀表(2016年8期)2016-04-15 00:30:16
    一種基于ADS低噪聲放大器的應(yīng)用仿真
    水力噴射壓裂中環(huán)空水力封隔全尺寸實驗
    国产精品1区2区在线观看.| 国产精品嫩草影院av在线观看| 日日撸夜夜添| 国产一区二区在线观看日韩| 成人av一区二区三区在线看| 亚洲精品国产av成人精品 | 国内精品美女久久久久久| 久久久a久久爽久久v久久| 韩国av在线不卡| 欧美色视频一区免费| 国产精品爽爽va在线观看网站| 在线天堂最新版资源| 国产毛片a区久久久久| 小蜜桃在线观看免费完整版高清| 国产伦精品一区二区三区四那| 国产黄色视频一区二区在线观看 | 亚洲自拍偷在线| 亚洲熟妇熟女久久| 俺也久久电影网| 亚洲精品乱码久久久v下载方式| 欧美人与善性xxx| 此物有八面人人有两片| 一进一出好大好爽视频| 国产成人影院久久av| 蜜桃久久精品国产亚洲av| 精品少妇黑人巨大在线播放 | 中文亚洲av片在线观看爽| 久久久久国产精品人妻aⅴ院| 亚洲第一电影网av| 最后的刺客免费高清国语| 一区二区三区四区激情视频 | 亚洲综合色惰| www.色视频.com| av免费在线看不卡| 丰满的人妻完整版| 九色成人免费人妻av| 免费看美女性在线毛片视频| 美女内射精品一级片tv| 久99久视频精品免费| 99久国产av精品| 真实男女啪啪啪动态图| 亚洲精华国产精华液的使用体验 | 精品一区二区三区人妻视频| 国产av在哪里看| 香蕉av资源在线| 久久久精品94久久精品| 在线看三级毛片| 国产 一区 欧美 日韩| 亚洲中文日韩欧美视频| 赤兔流量卡办理| 国产单亲对白刺激| 干丝袜人妻中文字幕| 国产69精品久久久久777片| 欧美成人精品欧美一级黄| 久久久国产成人免费| 一本一本综合久久| 国产精品美女特级片免费视频播放器| 亚洲精品久久国产高清桃花| 欧美激情在线99| 97热精品久久久久久| 亚洲最大成人手机在线| 日韩 亚洲 欧美在线| 国产精品伦人一区二区| 女人被狂操c到高潮| 亚洲精品乱码久久久v下载方式| 久久精品国产99精品国产亚洲性色| 成年免费大片在线观看| 99久国产av精品| 久久精品国产鲁丝片午夜精品| 久久久国产成人精品二区| 国产成人aa在线观看| 亚洲aⅴ乱码一区二区在线播放| 午夜亚洲福利在线播放| 国产高清视频在线观看网站| 国产精品一区二区三区四区久久| 亚洲美女视频黄频| 免费av毛片视频| 久久这里只有精品中国| 久久这里只有精品中国| 国产精品,欧美在线| 天堂√8在线中文| 少妇裸体淫交视频免费看高清| 春色校园在线视频观看| 国产精品久久视频播放| 一区二区三区免费毛片| 天天躁日日操中文字幕| 午夜老司机福利剧场| 久久久久九九精品影院| 最近在线观看免费完整版| 好男人在线观看高清免费视频| 国产亚洲av嫩草精品影院| 99热这里只有是精品在线观看| 欧美另类亚洲清纯唯美| 亚洲中文字幕一区二区三区有码在线看| 久久久成人免费电影| 99九九线精品视频在线观看视频| 日韩欧美免费精品| 99国产精品一区二区蜜桃av| 精品欧美国产一区二区三| 99久国产av精品| 啦啦啦观看免费观看视频高清| 午夜日韩欧美国产| 国产熟女欧美一区二区| 中文亚洲av片在线观看爽| 97人妻精品一区二区三区麻豆| 精品乱码久久久久久99久播| 亚洲av第一区精品v没综合| 精品欧美国产一区二区三| 亚洲av不卡在线观看| 小蜜桃在线观看免费完整版高清| 欧美日韩综合久久久久久| 2021天堂中文幕一二区在线观| 日日撸夜夜添| 日本免费a在线| 在现免费观看毛片| 亚洲精品456在线播放app| 联通29元200g的流量卡| 白带黄色成豆腐渣| 99久久九九国产精品国产免费| 中文亚洲av片在线观看爽| 精品熟女少妇av免费看| 两个人的视频大全免费| 精品一区二区三区人妻视频| 三级男女做爰猛烈吃奶摸视频| h日本视频在线播放| 又粗又爽又猛毛片免费看| 狂野欧美激情性xxxx在线观看| 啦啦啦啦在线视频资源| 国内精品一区二区在线观看| 黑人高潮一二区| 国产麻豆成人av免费视频| 国产亚洲精品av在线| 日韩中字成人| 欧美色视频一区免费| 在线播放无遮挡| 搡老岳熟女国产| 性插视频无遮挡在线免费观看| 亚洲人成网站高清观看| 国产 一区精品| 毛片一级片免费看久久久久| 99精品在免费线老司机午夜| 国产 一区精品| 久久午夜福利片| 亚洲在线自拍视频| 97人妻精品一区二区三区麻豆| 国产精品久久视频播放| 国产亚洲精品综合一区在线观看| 精品国产三级普通话版| 国产黄色视频一区二区在线观看 | 日日摸夜夜添夜夜爱| 久久99热6这里只有精品| 成人一区二区视频在线观看| 一a级毛片在线观看| 亚洲va在线va天堂va国产| 精品国内亚洲2022精品成人| 欧美日韩精品成人综合77777| 国产精品久久视频播放| 日韩成人伦理影院| 国产精品免费一区二区三区在线| 国产麻豆成人av免费视频| 少妇熟女aⅴ在线视频| 国产精品免费一区二区三区在线| 国产单亲对白刺激| 成人av一区二区三区在线看| 国产精品久久久久久av不卡| 真人做人爱边吃奶动态| 一进一出好大好爽视频| 国产黄色视频一区二区在线观看 | 亚洲成av人片在线播放无| 黄片wwwwww| 午夜免费激情av| 欧美高清成人免费视频www| 亚洲成人中文字幕在线播放| 国产精品嫩草影院av在线观看| 色5月婷婷丁香| 亚洲美女视频黄频| a级毛色黄片| 三级男女做爰猛烈吃奶摸视频| 国产黄a三级三级三级人| 啦啦啦啦在线视频资源| 日本黄色视频三级网站网址| 校园人妻丝袜中文字幕| 中文字幕久久专区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲四区av| 亚洲精华国产精华液的使用体验 | 18禁裸乳无遮挡免费网站照片| 美女被艹到高潮喷水动态| 国产午夜精品久久久久久一区二区三区 | 97热精品久久久久久| 看片在线看免费视频| 国产一区二区在线观看日韩| 能在线免费观看的黄片| 免费av不卡在线播放| 国产精品日韩av在线免费观看| 极品教师在线视频| 成人av一区二区三区在线看| 成人无遮挡网站| 老女人水多毛片| 国产黄片美女视频| 在线观看av片永久免费下载| 搡女人真爽免费视频火全软件 | 色av中文字幕| 日韩国内少妇激情av| 欧美日韩在线观看h| 国产精品精品国产色婷婷| 最近2019中文字幕mv第一页| 成人综合一区亚洲| 欧美日韩一区二区视频在线观看视频在线 | 中文字幕精品亚洲无线码一区| 中文字幕久久专区| av在线蜜桃| 国产男人的电影天堂91| 99久国产av精品国产电影| 久久久久久久久久久丰满| 国产免费男女视频| 午夜影院日韩av| or卡值多少钱| 精品无人区乱码1区二区| 少妇的逼水好多| 午夜福利高清视频| 国产国拍精品亚洲av在线观看| 老司机影院成人| 99热精品在线国产| 1000部很黄的大片| 波多野结衣高清作品| 春色校园在线视频观看| av在线老鸭窝| 亚洲一区二区三区色噜噜| 国产亚洲91精品色在线| 99精品在免费线老司机午夜| 国产高清不卡午夜福利| 久久久久久久久大av| 成人午夜高清在线视频| a级毛色黄片| 99久久成人亚洲精品观看| 伊人久久精品亚洲午夜| 国产高清视频在线播放一区| 免费av毛片视频| 亚洲成人久久爱视频| 精品福利观看| 噜噜噜噜噜久久久久久91| 欧美国产日韩亚洲一区| av天堂在线播放| 最后的刺客免费高清国语| av在线亚洲专区| 免费不卡的大黄色大毛片视频在线观看 | 国产老妇女一区| 狂野欧美激情性xxxx在线观看| 久久人妻av系列| 国产午夜精品久久久久久一区二区三区 | 成人美女网站在线观看视频| 99热网站在线观看| 亚洲美女搞黄在线观看 | 亚洲人成网站在线播| 久久欧美精品欧美久久欧美| 99在线视频只有这里精品首页| 黄色一级大片看看| av在线天堂中文字幕| 国产色爽女视频免费观看| 少妇人妻一区二区三区视频| 麻豆精品久久久久久蜜桃| 亚洲国产高清在线一区二区三| 日本免费a在线| 天堂网av新在线| 一a级毛片在线观看| 午夜精品在线福利| 亚洲美女搞黄在线观看 | 中文在线观看免费www的网站| 夜夜看夜夜爽夜夜摸| 精品国产三级普通话版| 少妇裸体淫交视频免费看高清| 中出人妻视频一区二区| 国产精品一区二区三区四区免费观看 | 中文字幕av成人在线电影| 国产一区二区亚洲精品在线观看| 欧美xxxx性猛交bbbb| 国产亚洲精品av在线| 亚洲精品日韩av片在线观看| 亚洲国产欧洲综合997久久,| 能在线免费观看的黄片| 国产白丝娇喘喷水9色精品| 精品乱码久久久久久99久播| 干丝袜人妻中文字幕| 国产极品精品免费视频能看的| 日韩欧美免费精品| 精品久久久噜噜| 男女下面进入的视频免费午夜| 久久国内精品自在自线图片| 亚洲av中文字字幕乱码综合| 日日啪夜夜撸| 美女内射精品一级片tv| 亚洲精品456在线播放app| 成人毛片a级毛片在线播放| 在线观看美女被高潮喷水网站| 国产69精品久久久久777片| 少妇高潮的动态图| 亚洲中文字幕一区二区三区有码在线看| 免费大片18禁| 国产91av在线免费观看| 国内精品美女久久久久久| 97在线视频观看| 成人二区视频| 伦精品一区二区三区| 精品午夜福利在线看| 亚洲精品456在线播放app| 国产白丝娇喘喷水9色精品| 亚洲一级一片aⅴ在线观看| 在线看三级毛片| 色哟哟哟哟哟哟| 欧美激情在线99| 国产精品人妻久久久久久| 亚洲精品色激情综合| 欧美xxxx性猛交bbbb| 国产精品国产高清国产av| 99在线人妻在线中文字幕| 99热全是精品| 又黄又爽又免费观看的视频| 久久久久久久久大av| 亚洲四区av| 尾随美女入室| 有码 亚洲区| 亚洲国产精品国产精品| 中文字幕av成人在线电影| 夜夜爽天天搞| 日韩欧美在线乱码| 国产蜜桃级精品一区二区三区| 性欧美人与动物交配| 精品一区二区三区视频在线观看免费| 狠狠狠狠99中文字幕| 日韩一区二区视频免费看| 人妻夜夜爽99麻豆av| 久久久久久久午夜电影| 一级黄片播放器| 国产伦在线观看视频一区| 国产蜜桃级精品一区二区三区| 国产美女午夜福利| 黄色配什么色好看| 十八禁网站免费在线| 久久草成人影院| 成人毛片a级毛片在线播放| av视频在线观看入口| 亚洲在线观看片| 精品一区二区免费观看| 国产久久久一区二区三区| 精华霜和精华液先用哪个| 国产69精品久久久久777片| av中文乱码字幕在线| 秋霞在线观看毛片| 人人妻,人人澡人人爽秒播| 熟女人妻精品中文字幕| 久久欧美精品欧美久久欧美| 久久99热6这里只有精品| 午夜福利在线在线| 久久人人爽人人片av| 久久热精品热| aaaaa片日本免费| 亚洲av中文av极速乱| 国产人妻一区二区三区在| 日本黄大片高清| 久久午夜亚洲精品久久| 色哟哟哟哟哟哟| 精品欧美国产一区二区三| 国产一级毛片七仙女欲春2| 性色avwww在线观看| 变态另类成人亚洲欧美熟女| 高清毛片免费观看视频网站| 不卡一级毛片| 亚洲国产精品成人久久小说 | 99热网站在线观看| 最近最新中文字幕大全电影3| 美女黄网站色视频| 免费观看精品视频网站| 欧美性猛交黑人性爽| 亚洲中文日韩欧美视频| 黄色视频,在线免费观看| 日日摸夜夜添夜夜添av毛片| 综合色丁香网| 白带黄色成豆腐渣| 插阴视频在线观看视频| 三级国产精品欧美在线观看| 能在线免费观看的黄片| 国产av在哪里看| 色视频www国产| 午夜激情福利司机影院| av在线蜜桃| 精品欧美国产一区二区三| 12—13女人毛片做爰片一| 国产人妻一区二区三区在| 男女啪啪激烈高潮av片| 欧美丝袜亚洲另类| 日产精品乱码卡一卡2卡三| 日本撒尿小便嘘嘘汇集6| 午夜影院日韩av| 蜜桃亚洲精品一区二区三区| 一a级毛片在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av.av天堂| 亚洲国产精品久久男人天堂| 99热网站在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲av成人av| 久久久欧美国产精品| av在线天堂中文字幕| 国产免费男女视频| 毛片一级片免费看久久久久| 免费观看在线日韩| 久久久国产成人免费| 国产精品一区二区性色av| 亚洲精品久久国产高清桃花| 一进一出抽搐动态| 亚洲人成网站高清观看| 色在线成人网| 国产亚洲av嫩草精品影院| 国产午夜精品论理片| 男女做爰动态图高潮gif福利片| 国产精华一区二区三区| 久久久久久久久中文| 久久精品国产自在天天线| 午夜免费激情av| 搞女人的毛片| 欧美精品国产亚洲| 99热这里只有精品一区| 嫩草影视91久久| 亚洲欧美清纯卡通| 日韩精品中文字幕看吧| 欧美性猛交╳xxx乱大交人| 啦啦啦韩国在线观看视频| 久久婷婷人人爽人人干人人爱| 色视频www国产| 亚洲激情五月婷婷啪啪| 日本一二三区视频观看| 又黄又爽又免费观看的视频| 嫩草影院精品99| 国产精品电影一区二区三区| 在线免费观看的www视频| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美精品v在线| 51国产日韩欧美| 色哟哟哟哟哟哟| 一本久久中文字幕| 久久精品国产亚洲av涩爱 | 一区二区三区免费毛片| 12—13女人毛片做爰片一| 免费在线观看成人毛片| 午夜a级毛片| 真实男女啪啪啪动态图| 亚洲无线在线观看| 老司机福利观看| 亚洲av中文av极速乱| 日本欧美国产在线视频| 一级毛片aaaaaa免费看小| 欧美最黄视频在线播放免费| 少妇丰满av| 一级av片app| 在线观看av片永久免费下载| 性色avwww在线观看| 小蜜桃在线观看免费完整版高清| 国产成年人精品一区二区| 久久久精品大字幕| 国产精品人妻久久久影院| 国产高清三级在线| 高清日韩中文字幕在线| 精品人妻一区二区三区麻豆 | 国产成年人精品一区二区| 晚上一个人看的免费电影| 久久人人精品亚洲av| 啦啦啦啦在线视频资源| 人人妻,人人澡人人爽秒播| 可以在线观看的亚洲视频| 你懂的网址亚洲精品在线观看 | 亚洲中文字幕日韩| 少妇猛男粗大的猛烈进出视频 | 又爽又黄a免费视频| avwww免费| 精品99又大又爽又粗少妇毛片| 一级a爱片免费观看的视频| 啦啦啦啦在线视频资源| 蜜臀久久99精品久久宅男| 非洲黑人性xxxx精品又粗又长| 国内少妇人妻偷人精品xxx网站| 老司机影院成人| 午夜福利在线观看免费完整高清在 | 日韩三级伦理在线观看| 国产aⅴ精品一区二区三区波| 日日撸夜夜添| 午夜日韩欧美国产| 亚洲婷婷狠狠爱综合网| 国产乱人视频| 精品日产1卡2卡| 免费不卡的大黄色大毛片视频在线观看 | av免费在线看不卡| 真人做人爱边吃奶动态| 卡戴珊不雅视频在线播放| 色哟哟哟哟哟哟| 成人鲁丝片一二三区免费| 香蕉av资源在线| 中文字幕av在线有码专区| 丝袜美腿在线中文| 国产高清视频在线播放一区| 晚上一个人看的免费电影| 黑人高潮一二区| 91狼人影院| 精品久久久久久久末码| 日本免费一区二区三区高清不卡| 校园春色视频在线观看| 99在线人妻在线中文字幕| 不卡视频在线观看欧美| 日本欧美国产在线视频| 精品人妻视频免费看| 十八禁国产超污无遮挡网站| 超碰av人人做人人爽久久| 成人亚洲欧美一区二区av| 午夜激情欧美在线| 久久99热这里只有精品18| 麻豆一二三区av精品| 色播亚洲综合网| 国产女主播在线喷水免费视频网站 | 国产女主播在线喷水免费视频网站 | 亚洲精品亚洲一区二区| 国产久久久一区二区三区| 亚洲国产欧美人成| 国语自产精品视频在线第100页| 午夜老司机福利剧场| 欧美三级亚洲精品| 99riav亚洲国产免费| 亚洲国产高清在线一区二区三| 99久国产av精品国产电影| 国产极品精品免费视频能看的| 高清毛片免费观看视频网站| 一本一本综合久久| 午夜福利在线观看免费完整高清在 | 日本色播在线视频| 成熟少妇高潮喷水视频| 欧美bdsm另类| 精品人妻一区二区三区麻豆 | 国产精品美女特级片免费视频播放器| 久久精品人妻少妇| 三级毛片av免费| 亚洲精品日韩在线中文字幕 | 久久精品国产亚洲av天美| 日韩精品有码人妻一区| 晚上一个人看的免费电影| 亚洲欧美成人综合另类久久久 | 少妇人妻一区二区三区视频| 蜜桃亚洲精品一区二区三区| 美女大奶头视频| 人妻久久中文字幕网| 国产成人91sexporn| 国产精品永久免费网站| 婷婷色综合大香蕉| 久久精品国产亚洲网站| 亚洲成人久久性| 麻豆国产av国片精品| 寂寞人妻少妇视频99o| 亚洲va在线va天堂va国产| 国产毛片a区久久久久| 一级毛片电影观看 | 色综合亚洲欧美另类图片| 18+在线观看网站| 最后的刺客免费高清国语| 久久人人精品亚洲av| 精品久久久噜噜| 狠狠狠狠99中文字幕| ponron亚洲| 久久久久久久久久久丰满| 99九九线精品视频在线观看视频| 永久网站在线| 国产91av在线免费观看| 狂野欧美激情性xxxx在线观看| 在线天堂最新版资源| 久久草成人影院| 国产一区二区在线av高清观看| 免费av不卡在线播放| 日本黄色片子视频| 国产高清视频在线观看网站| 色综合色国产| 久久精品夜色国产| 久久中文看片网| 特级一级黄色大片| 成人性生交大片免费视频hd| www.色视频.com| 欧美人与善性xxx| 亚洲欧美中文字幕日韩二区| 国产蜜桃级精品一区二区三区| av在线亚洲专区| 麻豆国产av国片精品| 国产精品av视频在线免费观看| 在线播放无遮挡| 男人和女人高潮做爰伦理| 无遮挡黄片免费观看| 欧美潮喷喷水| 日韩高清综合在线| 一级a爱片免费观看的视频| 免费一级毛片在线播放高清视频| 欧美成人一区二区免费高清观看| av在线观看视频网站免费| 日韩大尺度精品在线看网址| 亚洲五月天丁香| 免费看a级黄色片| 联通29元200g的流量卡| 一区二区三区免费毛片| 亚洲欧美日韩无卡精品| a级一级毛片免费在线观看| 一本久久中文字幕| 看非洲黑人一级黄片| 亚洲成av人片在线播放无| 久久久色成人| 久久婷婷人人爽人人干人人爱| 亚洲,欧美,日韩| 国产精品美女特级片免费视频播放器| 色吧在线观看| 国产精品乱码一区二三区的特点| 午夜激情福利司机影院| 国产一区亚洲一区在线观看|