• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation of Strong Shock Wave Impacting on Water-elastic Solid Interface by Essentially Modified Ghost Fluid Method

    2015-12-12 08:52:42SHIRuchaoWANGGuangyongHUANGRuiyuanWANGYoukaiLIYongchi
    船舶力學(xué) 2015年9期

    SHI Ru-chao,WANG Guang-yong,HUANG Rui-yuan,WANG You-kai,LI Yong-chi

    (1.School of Civil Engineering,Henan Polytechnic University,Jiaozuo 454000,China;2.Department of Modern Mechanics,University of Science and Technology of China,Hefei 230027,China)

    0 Introduction

    Strong shock wave impacting on water-elastic solid interface is still a hot area of research in computational physics and engineering problems.For computational physics,solid is assumed or treated as elastic to develop novel computational method for fluid-structure interaction[6,9,16]or to simplify complicated problems to obtain high quality graphics[2].On the other side of application,in engineering problem such as underwater explosion and impact dynamics,solid is also constantly assumed to be elastic to provide comparisons with experimental results[7,10].

    The original Ghost Fluid Method(OGFM)developed by Fedkiw and Aslam et al[5]and some improved methods have been widely applied for simulating multi-medium flow.The OGFM is able to work efficiently for gas-gas flow and gas-water flow with low ratio of pressure on material interface.Improved GFMs include new version GFM(NGFM)[6],modified GFM(MGFM)[13]and real GFM(RGFM)[21].Among these three methods,NGFM is designed for fluid-structure interaction and also can be applied for gas-water flow,and MGFM which is the most popular method has been found to be not only quite competent to simulate fluid-fluid interface with high ratio of interface but also capable to simulate propagation of shock wave in solid(essentially MGFM)[16-17]by combining with Naviers equation[4],and RGFM can be used to treat extreme and special situation.

    In this work,we employ the idea of essentially MGFM to simulate strong shock wave impacting on water-solid interface while fundamental elastodynmaics equations and the constitutive relationship of linear elastic are used to solve solid.The following text is arranged as follows.In Chapter 1,we present governing equations and EOS.Then,the approximate Riemann problem relationship for water-elastic solid are presented in Chapter 2.Next,we present numerical results with the employment of essentially MGFM in Chapter 3.And some summarizations and conclusions are given briefly in last Chapter.

    1 Governing equations

    1.1 Euler equations

    The flow field of water is solved by Euler equations:

    where ρ is density,u and v are velocities at x and y directions,respectively.is total energy.Here,e is internal energy per unit mass.Euler equations are solved with fifthorder WENO spatial discretization[17]and second-order Runge-Kutta(R-K)time discretization.The stability condition is CFL≤1.

    1.2 Fundamental elastodynamics equations

    The constitutive relationship of elastic solid is Hooke’s law which can be expressed as

    where ε represents the strain,E is Young’s Modulus and σ is stress.In general,the tensile stress of solid is defined as positive.We use fundamental elastodynamics equations[12]to solve elastic solid.For 1D problem,continuity equation is

    and the momentum equation is

    For multi-dimensional problems,the governing equations are given as

    where

    where ρ is the constant solid density,c1and c2are velocities of longitudinal wave and shear wave,respectively.Generally,α=1-2(c2/ c1)2for isotropic materials,and c1,c2can be expressed as:

    where K=E/[3(1-2μ)]is bulk modulus and μ is Poisson’s ratio.In the test of Chapter 3,fundamental elatodynamics equations are discretized by bicharacteristic schemes[11].The stability condition is max(Δx/Δt,Δy/Δt)≤1/c1.In calculations,Δt should satisfy both solid stability condition and fluid stability condition(CFL≤1).

    1.3 Equations of state

    For gas,the EOS is γ-law,

    For water,Tait equation[20]and isentropic one-fluid model[14]are employed here and can be given as

    where psatis the saturated pressure of water,N=7.15,γ=1.33,ρ0=1.0×103kg/m3,B=3.31×108Pa and A=1.0×105Pa,pcav=psat,the initial value of k is set to be k=0.001 and k should be updated by knew=0.9k if the result of p is beyond psat.For steel,the density is constant and set to be 7.8×103kg/m3,Young’s modulus E=2.06×1011Pa,Poisson’s ratio μ=0.25.

    1.4 Level set method

    For Eulerain grids of fluid,we use Level set equation[18]to keep track of material interface,

    where φ is signed distance function.For Lagrangian grids of solid,we transform Level set equation from the local coordinates into the arbitrary coordinates(ξ,η),

    Eqs.(13)and(14)are solved with fifth-order HJ-WENO spatial discretization[8]and secondorder R-K time discretization.For Eq.(14),ξx,ξy,ηx,ηyare solved via grid derivatives xξ,xη,yξ,yηand the relationship of coordinate transformation.The grid derivatives are discretized by second-order central difference in entire domain and second-order upwind difference at boundary.

    The extension velocity method[1]is employed to improve the accuracy of Level set method while tracking material interface.For Eulerian grids,extension velocity is expressed as

    where the vector vextis the extension of velocities at the grid nodes bordering material interface.For Lagrangian grids,▽φ and▽vextin Eq.(15)should be written as

    and

    In calculations,▽φ is discretized by fifth-order HJ-WENO scheme and▽vextis discretized by first-order MinMod upwind scheme.

    1.5 Constant extrapolation

    For Eulerian grids,we use the constant extrapolation method in Refs.[3,5],which can be given as

    where I is the function that need to be extrapolated,nxand nyare components of interfacial unit normal vector n that can be expressed as

    For Eq.(18),the sign‘ ±’is taken as‘+’if the initial values of I is defined in Ω-and need to be extrapolated into Ω+.Otherwise,the sign ± is taken as‘-’.For Lagrangian grids,we need to transform the constant extrapolation equation from the local coordinates into the arbitrary coordinates(ξ,η).Hence Eq.(18)should be rewritten as

    In Eqs.(18)-(20),nxand nyare determined by▽φ which is given as Eq.(16).

    2 Essentially MGFM for fluid-elastic solid interface

    2.1 Approximate Riemann problems solver

    Defining the tensile stress of solid as negative to maintain the same sign as the pressure of fluid,we can rewrite Eqs.(3)and(4)as:

    and

    We might suppose that fluid is on the left side of fluid-solid interface while solid is on the right side of fluid-solid interface.On the side of fluid,the characteristic equation along the right characteristic line is

    where p1and uIare the pressure and velocity at interface,ρILand cILare the left density and sound velocity in the immediate vicinity of interface.On the right side of interface,the characteristic equation alongside left characteristic line can be given as

    where σIand uIare the stress and velocity at interface,ρRand ERare the density and Young’s modulus of the medium on the right side of interface.For Eq.(23),we can use WILto approximate ρc,which is given as[13]

    ILIL

    Then,Eqs.(23)with(24)reveal the following equations:

    Noting that the intial stress of solid is equal to gauge pressure,σIshould be defined as

    where penvdenotes the environment pressure.

    2.2 Numerical implementation

    In calculations,the region of fluid is discretized by Eulerian grids while the region of solid is discretized by Lagrangian grids.For the grid nodes of fluid,we define the grid nodes as real if there is medium of fluid at those grid nodes,otherwise,we define those grid nodes as ghost.We treat the grids nodes of solid in the similar way.At every computational time step,the locations of solid medium are recorded by the coordinates of Lagrangian grid nodes to track solid boundary and fluid-solid interface.The schematics of the MGFM algorithm is shown as Fig.1 and computational procedures are summarized as follows:

    Fig.1 Schematics of MGFM for treating fluid-elastic solid coupling

    (1)Respectively divide the nodal points in Eulerian grids of fluid and in Lagrangian grids of solid into real nodal points and ghost nodal points according to the location of fluid-solid interface.

    (2)Identify the interfacial cells for both the Eulerian grids and Lagrangian grids and seek out a real nodal point x in Lagrangian grid of solid to define one-dimensional Riemann problems for every real nodal points xmEulerian grid of fluid using the employment of minimum angle algorithm which can be expressed as

    (3)Solve the interfacial status via Eqs.(25)-(28)for every one-dimensional Riemann problem in step(2).

    (4)Extrapolate the interfacial status(ρIL,pIand uI)and left tangential velocity(uT)from real region of fluid into ghost region of fluid.

    (5)Solve all nodal points of Eulerian grids of fluid.

    (6)Seek out a real nodal point x in Eulerian grid of fluid to define one-dimensional Riemann problems for every real nodal points xmin Lagrangian grid of solid.

    (7)Solve the interfacial status via Eqs.(25)-(28)for every one-dimensional Riemann problem in step(6).

    (8)Extrapolate the interfacial status(σIand uI)and right tangential velocity(uT)from real region of solid into ghost region of solid in Lagrangian solid.

    (9)Solve all nodal points in Lagrangian grids of solid.

    (10)Keep track of fluid-solid interface by Level set method in Lagrangian grid of solid while the boundary of solid is always set to be fluid-solid interface at every computational time step,which can be expressed as φ(solid boundary)=0.

    (11)Update the φ values at Eulerian grid nodes of fluid and update the status at real nodal points of both Eulerian and Lagrangian grids by the location of fluid-solid interface.

    3 Numerical results

    Fig.2 Schematics of the initial computational region

    The numerical example is a case of column charge underwater explosion near a planar elastic solid(steel).The reason why we use this case is that underwater explosion can generate strong shock wave impacting on fluid-solid interface and then results a strong reflection wave from fluid-solid interface.The radius and density of column charge is 1.0m and 1 270.0 kg/m3,respectively.The problem can be cast into 2D system and the result has already been presented in Ref.[15]by compressible solid assumption which means that the solid is assumed to be compressible when the shock wave generated by underwater explosion impacting on fluid-solid interface.The feasibility of this assumption was also verified in Ref.[22]using large amounts of tests.In this test,the assumption of elastic solid is employed and the feasibility has been verified in Ref.[16]and[17].Following the idea in Ref.[15],we employ instantaneous detonation model to treat detonation product as high energy gas,since it is not necessary to use other more complicated model to treat detonation product when we only need to test the performance of Riemann relationship developed as applied to fluid-solid interface.Consequently the detonation product becomes a high pressure bubble at the initial computational time.The numerical simulation is accomplished by the presented model of fluid-solid interaction and the MGFM model of gas-water interaction in Ref.[13].The related detonation parameters and the corresponding initial computational flow states are taken directly from Ref.[15].The initial pressure of high pressure bubble is pg=8 290.0 bar which is equal to the multiplication of equivalent coefficient α and detonation pressure pCJ.The initial density is ρg=1 270.0 kg/m3which is equal to the charge density.The explosive gas satisfies EOS of γ-law where γg=2.0 which were obtained in experiments.The initial status of water is pw=1.0 bar,ρw=1 000.0 kg/m3,the density of solid is ρs=7 800.0 kg/m3and penvin Eq.(28)is set to be 1.0 bar.As shown in Fig.2,the high pressure bubble under water is initially located in the origin(0,0)of Cartesian coordinates and the radius is 1.0 m,and the eleastic solid is located at the straight line y=3 m.As shown in Fig.3,The computational region of fluid is[-6 m,6 m]×[-6 m,4 m]with 121×101 uniform grid nodes distributed and the initial computational region of solid is[-6 m,6 m]×[2 m,6 m]and discretized by 121×41 uniform grid nodes.In calculations,an arbitrary coordinate system is constructed for Lagrangian grids of solid.

    Fig.3 The computational region of fluid and solid.(a)Fluid,(b)Solid

    Fig.4 Pressure contours at t=1.47 ms

    Fig.5 Pressure contours at t=3.99 ms

    Fig.6 Comparisons among the results on elastic solid,compressible solid and rigid wall

    Once the explosion starts,a strong shock wave is generated and propagates outwards to fluid-solid interface.Series of pressure contours at t=1.47 ms are depicted in Fig.4 where the pressure of solid is hydrostatic pressure,which can be expressed as ps=(σx+σy)/3.The transmitted shock propagating in elastic solid is captured and shown in Fig.5.There are some differences between the numerical results presented here and in Ref.[15].The reason is that the solid is compressible in Ref.[15]but incompressible in this case.Since the constitutive relation is linear elastic,the fluid-solid interface compressed by incident shock gradually return to original shape as the pressure at the wall center decreases and to tend to near zero.To better verify the numerical results and display the differences between the assumption of elastic solid,compressible solid and rigid wall,the pressure loads at the center of wall are recorded and depicted in Fig.6.The numerical results on assuming that solid is rigid wall and compressible solid are taken directly form Ref.[15].In Fig.6,the peak pressure presented is similar to the result by compressible solid assumption.Both the peak pressures by these two different assumptions are below the result by rigid wall.Fig.6 also demonstrates that the times of different assumption,when the cavitation occurs,are very close to each other.

    4 Conclusions

    In this work,we present a Riemann relationship for fluid-elastic solid interface and employ the idea of essentially MGFM to treat fluid-elastic solid interaction.The Level set equations in Lagragian grids are also presented by employing the transformation between Cartesian coordinates and arbitrary coordinates.We compare the results on strong shock wave impacting on rigid wall,compressible solid and elastic solid.Numerical results demonstrate that the presented method is robust and efficient as applied for computing shock loading on fluid-elastic solid interface and works successfully on capturing reflection wave from material interface and the stress wave in solid.

    [1]Adalsteinsson D,Sethian J.The fast construction of extension velocities in level set methods[J].J Comput.Phys.,1999,148:2-22.

    [2]Aivazis M,Goddard W,Meiron D,et al.A virtual test facility for simulating the dynamic response of materials[J].Comput in Sci.and Eng.,2000,2:42-53.

    [3]Aslam T.A partial differential equation approach to multidimensional extrapolation[J].J Comput.Phys.,2004,193:349-355.

    [4]Chung T J.Applied continuum mechanics[M].Cambridge University Press,New York,1996.

    [5]Fedkiw R,Aslam T,Merriman B,et al.A non-oscillatory Eulerian approach to interfaces in multimaterial flows(the ghost fluid method)[J].J Comput.Phys.,1999,152:457-492.

    [6]Fedkiw R.Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method[J].J Comput.Phys.,2002,175:200-224.

    [7]Greco M,Colicchio G,Faltinsen O M.A domain-decomposition strategy for a compressible multi-phase flow interacting with a structure[J].International Journal for Numerical Methods in Engineering,2014,98:840-858.

    [8]Jiang G S,Peng D.Weighted ENO schemes for Hamilton Jacobi equations[J].SIAM J Sci.Comput.,2000,21:2126-2143.

    [9]Kaboudian A,Khoo B C.The ghost solid method for the elastic solid-solid interface[J].Journal of Computational Physics,2014,257:102-125.

    [10]Li Qinyuan,Manolidis Michail,Young Yin L.Analytical modeling of the underwater shock response of rigid and elastic plates near a solid boundary[J].Journal of Applied Mechanics-Transactions of the ASME,2013,80:2.

    [11]Lin X,Ballman J.Improved bicharacteristic schemes for two-dimensional elastody-namic equations[J].Quarterly of Applied Mathematics,1995,53:383-398.

    [12]Lin X.Numerical computation of stress waves in solid[M].Akademie,Berlin,1997.

    [13]Liu T G,Khoo B C,Yeo K S.Ghost fluid method for strong shock impacting on material interface[J].J Comput.Phys.,2003,190:651-681.

    [14]Liu T G,Khoo B C,Xie W F.Isentropic one-fluid modelling of unsteady cavitating flow[J].J Comput.Phys.,2004,201:80-108.

    [15]Liu T G,Khoo B C,Xie W F.The modified ghost fluid method as applied to extreme fluid-Structure interaction in the presence of cavitation[J].Communication in Computational Physics,2006,1:898-919.

    [16]Liu T G,Ho J Y,Khoo B C,et al.Numerical simulation of fluid-structure interaction using modified ghost fluid method and Naviers equations[J].J Sci.Comput.,2008,36:45-68.

    [17]Liu T G,Chowdhury A W,Khoo B C.The Modified Ghost Fluid Method applied to fluid-structure interaction[J].Advances in Applied Mathematics and Mechanics,2011,3:611-632.

    [18]Osher S,Sethian J A.Fronts propagating with curvature-dependent speed:Algorithms Based on Hamilton-Jacobi Formulations[J].J Comput.Phys.,1988,79:12-49.

    [19]Shu C W.Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[R].ICASE Report No.97-65,1997.

    [20]Wardlaw A.Underwater explosion test cases[R].IHTR-2069,1998.

    [21]Wang C W,Liu T G,Khoo B C.A real ghost fluid method for the simulation of multimedium compressible flow[J].SIAM J Sci.Comput.,2005,128:278-232.

    [22]Xie W F,Young Y L,Liu T G.Multiphase modeling of dynamic fluid-structure interaction during close-in explosion[J].Int.J Numer.Meth.Engng,2008,74:1019-1043.

    青草久久国产| 国产精品香港三级国产av潘金莲 | 欧美精品av麻豆av| 看十八女毛片水多多多| 777久久人妻少妇嫩草av网站| 久久ye,这里只有精品| 制服诱惑二区| 国产成人精品久久久久久| 成年动漫av网址| 久久久欧美国产精品| 久久人人97超碰香蕉20202| 精品一区二区三区av网在线观看 | 亚洲av综合色区一区| 亚洲 欧美一区二区三区| 两性夫妻黄色片| 国产毛片在线视频| 九九爱精品视频在线观看| 99久久99久久久精品蜜桃| 日日撸夜夜添| 午夜福利网站1000一区二区三区| 宅男免费午夜| 女人被躁到高潮嗷嗷叫费观| 午夜91福利影院| 久久久久精品国产欧美久久久 | 亚洲色图 男人天堂 中文字幕| 一区福利在线观看| 国产黄色视频一区二区在线观看| 亚洲精品国产一区二区精华液| 在线观看免费日韩欧美大片| www.av在线官网国产| 天天躁狠狠躁夜夜躁狠狠躁| 老司机在亚洲福利影院| 久久久久久久国产电影| 美国免费a级毛片| 欧美精品av麻豆av| 性少妇av在线| 亚洲激情五月婷婷啪啪| 午夜福利免费观看在线| 秋霞伦理黄片| 三上悠亚av全集在线观看| 欧美国产精品va在线观看不卡| 美女主播在线视频| 亚洲av国产av综合av卡| 九九爱精品视频在线观看| 狠狠精品人妻久久久久久综合| 日韩成人av中文字幕在线观看| 亚洲国产av新网站| 丝袜美腿诱惑在线| 蜜桃在线观看..| 亚洲成人免费av在线播放| 久久人人爽人人片av| 欧美日韩国产mv在线观看视频| 中国国产av一级| 久久久国产精品麻豆| 日韩欧美一区视频在线观看| 久久人人97超碰香蕉20202| 9热在线视频观看99| 国产成人a∨麻豆精品| 欧美日韩亚洲国产一区二区在线观看 | 日本猛色少妇xxxxx猛交久久| 大香蕉久久成人网| 亚洲成人av在线免费| 熟女av电影| 青春草视频在线免费观看| 亚洲av综合色区一区| 毛片一级片免费看久久久久| 色综合欧美亚洲国产小说| 久久精品亚洲av国产电影网| 国产男女超爽视频在线观看| 秋霞伦理黄片| 国产在线一区二区三区精| 国产精品久久久久久精品古装| 亚洲综合精品二区| 国产精品 欧美亚洲| 超色免费av| 国产在线免费精品| 精品一区二区三卡| 久久久久久免费高清国产稀缺| 99久久99久久久精品蜜桃| 久久ye,这里只有精品| 国产精品秋霞免费鲁丝片| 人成视频在线观看免费观看| 欧美人与性动交α欧美精品济南到| 女人久久www免费人成看片| 精品视频人人做人人爽| 久久久久久久国产电影| 午夜激情av网站| 99久久综合免费| 久久久久国产一级毛片高清牌| 两性夫妻黄色片| 永久免费av网站大全| 亚洲欧美精品自产自拍| 在线天堂中文资源库| 99国产精品免费福利视频| 极品少妇高潮喷水抽搐| 女的被弄到高潮叫床怎么办| xxxhd国产人妻xxx| 只有这里有精品99| 亚洲第一区二区三区不卡| 国产又色又爽无遮挡免| 涩涩av久久男人的天堂| 亚洲熟女毛片儿| 一本大道久久a久久精品| 中文字幕av电影在线播放| 欧美国产精品一级二级三级| 亚洲国产av影院在线观看| 亚洲美女黄色视频免费看| 亚洲精品久久久久久婷婷小说| 自线自在国产av| av不卡在线播放| 女人爽到高潮嗷嗷叫在线视频| 国产极品天堂在线| 老司机影院毛片| 免费在线观看完整版高清| 国产男女内射视频| av免费观看日本| 母亲3免费完整高清在线观看| 亚洲人成77777在线视频| 女性生殖器流出的白浆| 欧美日本中文国产一区发布| 赤兔流量卡办理| 欧美激情 高清一区二区三区| 亚洲男人天堂网一区| avwww免费| 亚洲成人免费av在线播放| www.自偷自拍.com| 在线免费观看不下载黄p国产| 亚洲欧美清纯卡通| 国产高清国产精品国产三级| 七月丁香在线播放| 亚洲精品日韩在线中文字幕| 国产伦人伦偷精品视频| 精品人妻熟女毛片av久久网站| 一个人免费看片子| 三上悠亚av全集在线观看| 超碰成人久久| av卡一久久| 天堂8中文在线网| 国产一区二区 视频在线| 大码成人一级视频| 视频区图区小说| 18在线观看网站| 久久人妻熟女aⅴ| 亚洲精品美女久久久久99蜜臀 | 亚洲欧美激情在线| 无限看片的www在线观看| 校园人妻丝袜中文字幕| 精品午夜福利在线看| 日韩制服骚丝袜av| 最黄视频免费看| 久久精品亚洲av国产电影网| 日韩视频在线欧美| 精品久久久精品久久久| 国产成人啪精品午夜网站| 看免费av毛片| 日本一区二区免费在线视频| 日韩一本色道免费dvd| 国产有黄有色有爽视频| 夫妻性生交免费视频一级片| 捣出白浆h1v1| 国产探花极品一区二区| 亚洲国产毛片av蜜桃av| 久久婷婷青草| 高清视频免费观看一区二区| 亚洲国产毛片av蜜桃av| 丝袜喷水一区| 超碰97精品在线观看| 免费黄色在线免费观看| 国语对白做爰xxxⅹ性视频网站| 我要看黄色一级片免费的| 热99国产精品久久久久久7| 日日摸夜夜添夜夜爱| 一区在线观看完整版| 最新的欧美精品一区二区| 制服丝袜香蕉在线| 亚洲欧美一区二区三区黑人| 亚洲第一区二区三区不卡| 精品免费久久久久久久清纯 | 美女大奶头黄色视频| 久久国产精品大桥未久av| 人妻一区二区av| 久热这里只有精品99| 亚洲人成网站在线观看播放| 亚洲久久久国产精品| 伦理电影大哥的女人| 亚洲,欧美精品.| 亚洲,欧美,日韩| 人人妻人人爽人人添夜夜欢视频| 搡老岳熟女国产| 亚洲五月色婷婷综合| 午夜福利影视在线免费观看| 日本av手机在线免费观看| 丁香六月欧美| 大片免费播放器 马上看| 青春草亚洲视频在线观看| 亚洲国产精品一区三区| 男女高潮啪啪啪动态图| 国产男女内射视频| 黑人猛操日本美女一级片| 少妇的丰满在线观看| 亚洲成国产人片在线观看| 伦理电影免费视频| 久久精品久久精品一区二区三区| 夫妻午夜视频| av不卡在线播放| 亚洲欧美精品综合一区二区三区| 校园人妻丝袜中文字幕| av不卡在线播放| 国产日韩欧美在线精品| 亚洲第一区二区三区不卡| 美女扒开内裤让男人捅视频| 曰老女人黄片| 搡老岳熟女国产| 人成视频在线观看免费观看| 久久ye,这里只有精品| 夜夜骑夜夜射夜夜干| 国产无遮挡羞羞视频在线观看| 秋霞在线观看毛片| 天天躁日日躁夜夜躁夜夜| 一本久久精品| 热99国产精品久久久久久7| 九色亚洲精品在线播放| 精品少妇一区二区三区视频日本电影 | 少妇人妻久久综合中文| 大码成人一级视频| 国产亚洲最大av| 黑人欧美特级aaaaaa片| 亚洲精品久久午夜乱码| 国产成人a∨麻豆精品| 丰满少妇做爰视频| 如何舔出高潮| 中文字幕制服av| 欧美在线黄色| 男女无遮挡免费网站观看| 深夜精品福利| 午夜福利网站1000一区二区三区| 亚洲国产欧美一区二区综合| 国产福利在线免费观看视频| 只有这里有精品99| 一级毛片 在线播放| 男女高潮啪啪啪动态图| 91精品国产国语对白视频| 中文字幕精品免费在线观看视频| 亚洲av综合色区一区| av在线app专区| 国产一区有黄有色的免费视频| 少妇被粗大的猛进出69影院| av有码第一页| 久久久久久久久久久久大奶| 亚洲色图 男人天堂 中文字幕| 成人国语在线视频| 欧美另类一区| av卡一久久| 国产精品免费视频内射| 婷婷成人精品国产| 极品少妇高潮喷水抽搐| 男女无遮挡免费网站观看| 亚洲男人天堂网一区| 叶爱在线成人免费视频播放| 一级片免费观看大全| 成人黄色视频免费在线看| 又大又黄又爽视频免费| 亚洲精品国产一区二区精华液| 久久国产亚洲av麻豆专区| 2021少妇久久久久久久久久久| www日本在线高清视频| 天天躁夜夜躁狠狠躁躁| 无遮挡黄片免费观看| 1024香蕉在线观看| 久久亚洲国产成人精品v| 国产成人精品在线电影| 一级,二级,三级黄色视频| 国产精品免费大片| 久久久久人妻精品一区果冻| 亚洲精品av麻豆狂野| av不卡在线播放| 超碰97精品在线观看| 亚洲第一av免费看| 欧美黄色片欧美黄色片| 日本黄色日本黄色录像| 免费观看人在逋| 操出白浆在线播放| xxxhd国产人妻xxx| 天美传媒精品一区二区| 人妻人人澡人人爽人人| 青春草国产在线视频| 丝瓜视频免费看黄片| 赤兔流量卡办理| 亚洲av电影在线进入| 这个男人来自地球电影免费观看 | 老司机深夜福利视频在线观看 | 午夜福利网站1000一区二区三区| 精品国产乱码久久久久久小说| 国产男人的电影天堂91| 亚洲国产精品一区三区| 婷婷色综合www| 亚洲美女搞黄在线观看| 一本一本久久a久久精品综合妖精| 成人亚洲精品一区在线观看| 国产精品成人在线| av网站在线播放免费| 国产成人免费无遮挡视频| 美女国产高潮福利片在线看| 中文字幕亚洲精品专区| 日韩电影二区| 午夜福利免费观看在线| 日本色播在线视频| 午夜久久久在线观看| 亚洲欧美一区二区三区久久| 久久精品久久久久久久性| 免费黄频网站在线观看国产| 男女床上黄色一级片免费看| 国产成人精品久久久久久| 在线观看免费午夜福利视频| 精品一区在线观看国产| 久久av网站| 最近中文字幕2019免费版| 这个男人来自地球电影免费观看 | 亚洲精品中文字幕在线视频| tube8黄色片| 啦啦啦 在线观看视频| 母亲3免费完整高清在线观看| 少妇人妻久久综合中文| 黄色怎么调成土黄色| 久久久久精品性色| 亚洲国产精品国产精品| 高清视频免费观看一区二区| 在线看a的网站| 中国三级夫妇交换| 男男h啪啪无遮挡| 啦啦啦啦在线视频资源| 亚洲国产看品久久| 国产男女超爽视频在线观看| 青草久久国产| 免费av中文字幕在线| 高清欧美精品videossex| 狠狠精品人妻久久久久久综合| 亚洲精华国产精华液的使用体验| 狠狠婷婷综合久久久久久88av| 亚洲欧洲国产日韩| 亚洲欧洲日产国产| 在线观看免费高清a一片| 9热在线视频观看99| 久久久国产欧美日韩av| 人体艺术视频欧美日本| 各种免费的搞黄视频| 老司机深夜福利视频在线观看 | 岛国毛片在线播放| 天天躁夜夜躁狠狠久久av| 各种免费的搞黄视频| 咕卡用的链子| 亚洲av在线观看美女高潮| 欧美日本中文国产一区发布| 街头女战士在线观看网站| 国产亚洲午夜精品一区二区久久| 亚洲精品国产av成人精品| av线在线观看网站| 黄色视频不卡| 黄片无遮挡物在线观看| 2018国产大陆天天弄谢| 咕卡用的链子| 久久精品国产a三级三级三级| 欧美日本中文国产一区发布| 大香蕉久久成人网| 亚洲欧洲精品一区二区精品久久久 | 最新在线观看一区二区三区 | 精品国产露脸久久av麻豆| 国产欧美日韩综合在线一区二区| 亚洲 欧美一区二区三区| 超碰成人久久| 精品亚洲成国产av| 女性生殖器流出的白浆| 男人操女人黄网站| 天美传媒精品一区二区| 韩国高清视频一区二区三区| 免费黄频网站在线观看国产| 欧美日韩综合久久久久久| 亚洲国产av影院在线观看| 啦啦啦视频在线资源免费观看| 飞空精品影院首页| 免费在线观看完整版高清| 在线观看免费日韩欧美大片| 亚洲精品久久午夜乱码| 天天躁夜夜躁狠狠躁躁| 午夜福利网站1000一区二区三区| 国产高清国产精品国产三级| 99热全是精品| 精品亚洲成a人片在线观看| av有码第一页| 日韩不卡一区二区三区视频在线| 亚洲色图综合在线观看| 在线免费观看不下载黄p国产| 999久久久国产精品视频| 蜜桃在线观看..| 19禁男女啪啪无遮挡网站| 中文欧美无线码| 综合色丁香网| 久久精品久久久久久久性| 男女床上黄色一级片免费看| av福利片在线| 嫩草影院入口| 熟妇人妻不卡中文字幕| 国产免费现黄频在线看| 日本一区二区免费在线视频| 毛片一级片免费看久久久久| 精品亚洲乱码少妇综合久久| 女性生殖器流出的白浆| 精品久久久久久电影网| 精品久久久精品久久久| avwww免费| 中文欧美无线码| 国精品久久久久久国模美| 欧美 日韩 精品 国产| 国产欧美亚洲国产| 欧美日韩一级在线毛片| 国产免费视频播放在线视频| 亚洲精品一区蜜桃| 久久人妻熟女aⅴ| www.精华液| 一区二区三区激情视频| 欧美黑人欧美精品刺激| 国产欧美日韩综合在线一区二区| 大片免费播放器 马上看| videos熟女内射| 国产成人精品无人区| av网站在线播放免费| 亚洲欧美一区二区三区国产| 日韩精品免费视频一区二区三区| 一级片免费观看大全| 制服人妻中文乱码| 妹子高潮喷水视频| 国产在线免费精品| 亚洲欧洲国产日韩| 一本大道久久a久久精品| 午夜免费观看性视频| 汤姆久久久久久久影院中文字幕| 色视频在线一区二区三区| 视频在线观看一区二区三区| 国产欧美日韩综合在线一区二区| 日韩欧美精品免费久久| 国产精品久久久av美女十八| 中文天堂在线官网| 国产片内射在线| 性色av一级| 19禁男女啪啪无遮挡网站| 亚洲成国产人片在线观看| 下体分泌物呈黄色| 另类亚洲欧美激情| 亚洲色图 男人天堂 中文字幕| 亚洲国产欧美网| 少妇被粗大的猛进出69影院| 日韩一卡2卡3卡4卡2021年| 亚洲国产毛片av蜜桃av| 性色av一级| 人人妻人人澡人人爽人人夜夜| 少妇人妻久久综合中文| 久久久久网色| 午夜免费观看性视频| 91aial.com中文字幕在线观看| 丁香六月欧美| 国产乱人偷精品视频| 中文天堂在线官网| 在线观看国产h片| 久久久久久久大尺度免费视频| 欧美最新免费一区二区三区| 亚洲av男天堂| 丝袜脚勾引网站| 18禁国产床啪视频网站| bbb黄色大片| 99久国产av精品国产电影| 另类亚洲欧美激情| 亚洲欧洲国产日韩| 亚洲一区中文字幕在线| a级片在线免费高清观看视频| 视频在线观看一区二区三区| 日日摸夜夜添夜夜爱| 亚洲图色成人| 欧美在线一区亚洲| 日韩成人av中文字幕在线观看| 精品人妻一区二区三区麻豆| 亚洲精品aⅴ在线观看| 青春草亚洲视频在线观看| 女人高潮潮喷娇喘18禁视频| 国产精品 国内视频| 日日爽夜夜爽网站| h视频一区二区三区| 最黄视频免费看| 国产片特级美女逼逼视频| 亚洲男人天堂网一区| 精品久久久久久电影网| 丝袜脚勾引网站| 美女高潮到喷水免费观看| 久久久久视频综合| 青春草国产在线视频| 欧美xxⅹ黑人| 精品少妇久久久久久888优播| 熟妇人妻不卡中文字幕| 电影成人av| 精品少妇内射三级| 秋霞伦理黄片| 最黄视频免费看| 超碰成人久久| www.av在线官网国产| 少妇的丰满在线观看| 久久久精品区二区三区| 免费高清在线观看日韩| 男女国产视频网站| 九九爱精品视频在线观看| 国产成人精品无人区| av国产精品久久久久影院| 亚洲第一av免费看| 波多野结衣一区麻豆| 国产精品国产三级国产专区5o| 精品免费久久久久久久清纯 | 侵犯人妻中文字幕一二三四区| 亚洲av日韩精品久久久久久密 | 免费女性裸体啪啪无遮挡网站| 久久ye,这里只有精品| 丁香六月天网| 香蕉国产在线看| 欧美国产精品va在线观看不卡| 捣出白浆h1v1| 美女扒开内裤让男人捅视频| 亚洲av成人不卡在线观看播放网 | 国产精品99久久99久久久不卡 | 国精品久久久久久国模美| 日韩欧美一区视频在线观看| 精品一区二区三区四区五区乱码 | 欧美另类一区| 少妇精品久久久久久久| 国产欧美日韩综合在线一区二区| 在线免费观看不下载黄p国产| 男女下面插进去视频免费观看| 亚洲国产欧美网| 日韩,欧美,国产一区二区三区| av网站在线播放免费| 97在线人人人人妻| 中文字幕人妻熟女乱码| 久久久久国产精品人妻一区二区| 狠狠婷婷综合久久久久久88av| 精品国产国语对白av| 国产成人一区二区在线| 在线观看三级黄色| 久久久久久免费高清国产稀缺| 19禁男女啪啪无遮挡网站| 99热网站在线观看| 伦理电影免费视频| 国产亚洲精品第一综合不卡| 亚洲欧美成人综合另类久久久| 女人爽到高潮嗷嗷叫在线视频| 黄色视频不卡| 亚洲一级一片aⅴ在线观看| 五月天丁香电影| 大陆偷拍与自拍| 国产男人的电影天堂91| 国产亚洲av高清不卡| 精品国产乱码久久久久久男人| av网站在线播放免费| 下体分泌物呈黄色| av.在线天堂| 伦理电影免费视频| 啦啦啦啦在线视频资源| 永久免费av网站大全| 免费在线观看视频国产中文字幕亚洲 | 中文字幕高清在线视频| 国产爽快片一区二区三区| 国产成人精品在线电影| 美女主播在线视频| 老司机影院成人| 国产精品国产av在线观看| 99热国产这里只有精品6| 热re99久久国产66热| 少妇精品久久久久久久| 欧美精品一区二区大全| 日本爱情动作片www.在线观看| 欧美变态另类bdsm刘玥| 国产熟女午夜一区二区三区| 人人妻人人澡人人看| 午夜福利影视在线免费观看| 日本91视频免费播放| 久久久久精品久久久久真实原创| 在现免费观看毛片| 赤兔流量卡办理| 在线观看三级黄色| 国产精品久久久久久精品古装| 亚洲成人av在线免费| 国产极品粉嫩免费观看在线| 亚洲av综合色区一区| 啦啦啦 在线观看视频| svipshipincom国产片| 嫩草影视91久久| 欧美日韩成人在线一区二区| 久久热在线av| 黄色视频在线播放观看不卡| 岛国毛片在线播放| 久久久久国产一级毛片高清牌| 老熟女久久久| 午夜av观看不卡| 欧美精品av麻豆av| 国产精品蜜桃在线观看| 母亲3免费完整高清在线观看| 男男h啪啪无遮挡| 看免费成人av毛片| √禁漫天堂资源中文www| 亚洲av在线观看美女高潮| 国产欧美日韩综合在线一区二区| 我要看黄色一级片免费的| 精品少妇黑人巨大在线播放| 久久午夜综合久久蜜桃| 新久久久久国产一级毛片| 两性夫妻黄色片| 精品少妇一区二区三区视频日本电影 | 日日爽夜夜爽网站| 国产av一区二区精品久久| www.精华液|