• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Discussion on the Physical Significance of the Acoustic Target Strength of an Underwater Object in Shallow Water and Modal-Filtering Measurement

    2015-05-01 22:23:08ZHANGBoZHANGXuegangMAZhongcheng
    船舶力學(xué) 2015年3期
    關(guān)鍵詞:簡(jiǎn)正波淺海測(cè)量法

    ZHANG Bo,ZHANG Xue-gang,MA Zhong-cheng

    (1.Science and Technology on Underwater Test and Control Laboratory,Dalian 116013,China;2.University of Chinese Academy of Science,Beijing 100190,China;3.State Key Laboratory of Acoustics;Institute of Acoustics;Chinese Academy of Sciences,Beijing 100190,China)

    Discussion on the Physical Significance of the Acoustic Target Strength of an Underwater Object in Shallow Water and Modal-Filtering Measurement

    ZHANG Bo1,2,3,ZHANG Xue-gang1,MA Zhong-cheng1

    (1.Science and Technology on Underwater Test and Control Laboratory,Dalian 116013,China;2.University of Chinese Academy of Science,Beijing 100190,China;3.State Key Laboratory of Acoustics;Institute of Acoustics;Chinese Academy of Sciences,Beijing 100190,China)

    The acoustic target strength(TS)of an underwater platform is usually tested in shallow water.Utilizing normal mode theory,the analytical formula of the TS of an underwater object in shallow water is derived,based on the average-measurement method,and its physical significance is analyzed deeply.Analysis shows that,as for as a certain azimuth,TS is dependent on the target scattering function values at a few vertical incident angles,θm,and scattering angles,θn.θmand θnare discrete,their values depending on normal-mode order,m,n.Furthermore,TS is concerned with both the marine environment and the testing range,and it is approximately equal to the free-field target strength,TSfree,when the testing range is large enough.A new TS measurement method put forward,namely Modal-Filtering Measurement(MFM),based on a vertical source array and a vertical hydrophone array.According to theoretical analysis,MFM method performs well in both interface reverberation resistance and testing efficiency,compared with the average-measurement method and the classical vertical array method,its result is closer to TSfree.

    shallow water;average-measurement method;acoustic target strength; modal-filtering;single mode

    0 Introduction

    At the present stage,the acoustic target strength(TS)of an underwater platform is usually tested in shallow water(SW).Direct method of measurement requires precise information of transmission losses,which is not practical in SW environment.Urick et al[1]put forward an indirect method of measurement-‘the transponder method’,which does not requires knowledge of transmission losses.However,transmission losses can not be‘removed’completely even if the transponder method is adopted,because of the unusually acoustic complexity of SW environment,which leads to high uncertainty of measurement.

    In order to measure the TS of an underwater platform accurately,measures must be taken to eliminate the influence of sound-field spatial fluctuations on the testing results.Based on the transponder method,testing techniques which can be utilized are as follows:

    (1)Measures repeatedly in different distances,and then take the average values.That is the Horizontal-Average Measurement(HAM).

    (2)Measures repeatedly at different depths,and then take the average values.That is the Vertical-Average Measurement(VAM).

    (3)Utilize a source/receiver array with directivity in the vertical plane to decrease interface interference and to reduce sound-field spatial fluctuations.In this paper,that is referred to as Classical Vertical Array Measurement(CVAM).

    HAM is usually used because of its lower technical difficulty.VAM,by contrast,has higher technical difficulty,but it has higher testing efficiency and effectiveness.Both of them,with similar physical significance,are referred to as‘Average Methods’in this paper.CVAM is a complementary method,which is often applied together with HAM.More detailed characteristics about Average Methods can be found in Ref.[2].

    Employing these techniques,‘the equal transmission losses condition’will be satisfied. Consequently,transmission losses will be‘removed’almost completely,and the testing accuracy is improved.However,what is the physical significance of the TS measured utilizing these techniques?And is it the same with the TS measured in free space?We have no answers to these questions yet.

    The principle of the transponder method is briefly reviewed in Sec.1,followed by a normal-mode expression of TS in SW environment,based on Ingenito’s single-scattering-objectmodel[3-4]and VAM.Section 3 presents an analysis of the physical significance of the TS of an underwater platform in SW environment,which is measured utilizing Average Methods,and the differences between TS and TSfreeare analyzed.It indicates clearly that TS is approximately equal to TSfree,when the testing range is so large that only the first normal mode plays a leading role.However,the lager the testing range,the lower the signal-to-noise ratio(SNR).On this view,in Sec 4,a new measurement method is introduced,namely Modal-Filtering Measurement(MFM),which is based on a vertical transmitting array and a vertical receiving array,according to single-mode excitation theory[5-8]and modal-filtering theory[9-10].In Sec 5,MFM and the other methods are analyzed comparatively.Finally,we provide our concluding remarks in the last section.

    1 Acoustic target strength and transponder method

    Consider a plane wave incident on the target.TS is a measure of how much of the incident sound is scattered back in the direction of the sonar.TS is given by

    According to the active sonar equation,TS can be written as

    where EL is echo level,SL is source level,TL1is transmission loss from source to target,and TL2is transmission loss from target to source.Eq.(2)is the expression of TS measured by the direct method of measurement.Direct method of measurement requires precise information of transmission losses,which is not practical in SW environment.For that reason,Urick et al[1]put forward an indirect method of measurement-‘the transponder method’,which does not require knowledge of transmission losses.Fig.1 is a sketch map of the transponder method.TS measured by the transponder method is written as

    where A=ELT-ELK.ELTis echo level of the target,ELKis pulse level of the transponder at receiver No.1,and K is the difference between pulse level of the transponder and incident sound level at receiver No.2.

    The precondition of Eq.(3),namely‘the equal transmission losses condition’,is that the transmission losses from the source to each point in the volume occupied by the target are equal.In fact,however,this precondition can not be met perfectly in SW environment.So transmission losses can not be‘removed’completely even if the transponder method is adopted.

    Fig.1 Sketch map of the transponder method

    2 TS in SW environment

    2.1 Target scattering sound field

    Fig.2 Sketch map of target scattering in SW waveguide

    With the lateral wave and multiple scattering between the target and the boundaries neglected,the acoustic field scattered by the target can be expressed in terms of normal modes and plane-wave scattering functions:

    where θi(θs)is vertical incident(scattering)angle,and φi(φs)incident(scattering)azimuth angle.

    In a monostatic context,considering Eq.(5)and its derivative,Eq.(4)will be simplified to

    By Eq.(8),the scattering acoustic field of the target is expressed as the product of incident and scattering normal modes.H represents a mode-to-mode coupling matrix between the normal modes emitted by the source,Ψm(z),and the normal modes,Ψn(z),received by the receiver.

    2.2 Acoustic target strength

    According to Eq.(3),TS can be expressed as

    From Eq.(8),we can obtain

    where Θincis the incoherent component,and Θcohcoherent.

    When an average method,e.g.VAM,is applied,the coherent component,〈Θcoh〉,becomes null.Then we obtain

    Similarly,for the‘echo’of the transponder

    where Q is the amplification factor of the transponder,K=20log10Q.If the transponder is omnidirectional,Smn=1,Eq.(15)becomes

    Inserting Eq.(13)and Eq.(16)into Eq.(11),we get

    In the preceding derivation,the eigen-attenuation βmof normal modes is neglected.If it is taken into account,TS becomes

    So far,we obtain the analytical expression of the acoustic target strength of an object in SW environment with VAM applied.According to the normal mode orthonormality condition,Eq.(18)can be simplified as

    3 Physical significance of the acoustic TS in SW environment

    According to Eq.(8),TSfreein a monostatic context is

    where,the expression of TSfreeis given beforehand in order to be analyzed comparatively with TS in SW environment.

    3.1 Physical significance

    Fig.3 The geometry of incident and scattering angle

    Fig.4 Relationship between TS and incident and scattering angles

    According to Eq.(19),the value of TS in SW environment depends on the lower order modes more than on the higher order ones,because the lower order ones have smaller eigenattenuation βm.In addition,we know that θ=cos-1γm/()kand the vertical wave number γmisin direct proportion to the mode order,so it is clear that the higher the mode order,m or n, grows,the bigger the distance between Pmnand P0becomes.In consideration of the above two points,we draw a circular area on the θiθsplane in Fig.4(b),with deeper color in the center and lighter color all around.The color changing deeper means that the mode order becomes lower and the related values of G have greater influence on TS in SW environment.Furthermore,the larger the range r becomes,the lighter the color all around changes.That is to say,the larger the range becomes,the less influence the higher order modes have on TS in SW environment.

    Ex1 A point source emits harmonic acoustic waves with time dependence e-iωt.H=100 m,c1=1 500 m/s,ρ1=1 g/cm3,c2=1 600 m/s,ρ2=1.8 g/cm3,α=0.3f1.8dB/m (f in units of kHz).All of the symbols mean the same as in Sec 2.1.

    Considering the threshold value of TLβas 3 dB,the first 46,35,23 and 15 normal modes will play the dominate role on TS at a horizontal distance of 0.7,2,4 and 8 km,with a corresponding maximum grazing angle 20,15,10 and 7 degrees respectively.As for the target,the range of the corresponding vertical incident angle θi(scattering angle θs)is[70°,110°],[75°,105°],[80°,100°]and[83°,97°]respectively.For the sake of being more intuitive,we use‘degree’instead of‘radian’in units.In a word,the farther the distance,the smaller the number of the normal modes playing the dominate role.

    Fig.5 Simulated relationship between TLβand αmat 1 kHz.TLβis relative eigen-transmission-loss of normal modes,αmis grazing angle.

    If the range becomes so large that only the first normal mode plays a leading role,Eq.(18) is simplified to

    In the vertical plane,put the target and the transponder nearly at the wave loop of the first normal mode,then we have Ψ1(zt)≈Ψ1(zk).So we obtain

    As for the first normal mode,it is clear that k1≈k and θ1≈π/2.According to Eq.(6),we have

    Then Eq.(9)can be rewritten as

    Inserted into Eq.(22),it is obtained that

    Eq.(25)indicates clearly that TS in SW environment is approximately equal to TSfree(π/2,π/2),when the range becomes so large that only the first normal mode plays a leading role.

    Note that it is impractical to try to acquire a TS approaching TSfree(π/2,π/2)by means of increasing the testing distance continually,because SNR of echo decreases with the testing distance.For that reason,we will introduce a testing method only utilizing the first normal mode, namely Modal-Filtering Measurement(MFM),in Sec 4.

    3.2 Simulation analysis of TS in SW environment

    In the context of Ex1,we analyze the difference between TS in SW environment and TSfree(π/2,π/2),with frequency 100 Hz-5 kHz and distance 700 m-100 km.In order to compare the influence of different scattering functions G on TS,we consider three different targets:a 10 m-radius rigid sphere,Target No.1 and Target No.2,with scattering functions Gsphere,G1and G2respectively.The expression of Gsphereis[3]

    According to Lambert scattering model,we define G1and G2as:

    In the coordinate system of Fig.4,Gsphere,G1and G2are symmetrical about the line θi=θsand the line θi+θs=π.The associated values of TSfreeare shown in Fig.6.

    Fig.6 The values of TSfreeof the rigid sphere,Target No.1 and Target No.2

    δTS is the difference of TS and TSfree,defined asThe relationship between δTS and horizontal distance,r,is illustrated in Fig.7,at 1 kHz.It is clear that δTS approaches 0 dB with r growing,that is,TS approaches TSfree(π/2,π/2).That agrees with the analysis in Sec 3.1.

    Fig.7 Relationship between δTS and r,f=1 kHz

    Fig.8 Relationship between δTS and f,r=700 m

    Fig.9 Relationship between δTS and f, when only the first normal mode is considered,r=700 m

    When only the first normal mode is considered, the relationship between δTS and f is shown in Fig.9. Compared with Fig.8,it is clear that the results in Fig.9 are much better.

    4 Modal-Filtering Measurement(MFM)

    4.1 Single mode excitation[5-8]

    The environmental conditions are the same in Fig.2.For a harmonic point source at the origin at depth z0,the pressure field in the far field at the point r,z can be expressed as

    with the lateral waves neglected,where

    The normal-mode eigenfunctions Ψm(z)form a complete orthonormal set satisfying the orthonormality relation

    where the set of coefficients wlare the weighting coefficients for each of the L sources in the source array.Let the weighting coefficients be defined by the eigenfunction of the first mode sampled at the source depths,that is

    In that context,the pressure field at the point(r,z)due to the weighted source array is given by

    For L sufficiently large,by the mode orthonormality condition of Eq.(32),it would be expected that

    for our constant density assumption.As a result

    Eq.(37)indicates that only the first normal mode exists in the sound field emitted by an L-element source array weighted by the eigenfunction of the first mode.In that case,the pressure field varies slowly with r and z,considering Eq.(31)and(37).

    4.2 Modal filtering[9-10]

    according to the acoustic reciprocity theorem.

    4.3 TS Measured by MFM

    By the analysis in Secs 4.1 and 4.2,we know that only the factors of the first normal mode remain in the expression,Eq.(18),of TS in SW environment,when both the vertical source array and the vertical receiver array are weighted by the eigenfunction of the first mode.Furthermore,considering the analysis in Sec 3,we obtain

    where TSMFis the target strength measured by MFM,which is the same as TS expressed by Eq.(25)for r sufficiently large.Both of them are approximately equal to TSfree(π/2,π/2).

    Although both MFM and Average Methods,such as HAM and VAM,are based on the transponder method,they are quite different.HAM or VAM requires averaging the results measured repeatedly in different distances or at different depths,in order to satisfy‘the equal transmission losses condition’.However,applying MFM,only the factor,S1,associated with the first normal mode remains in the sound field emitted by the weighted vertical source array and in the output of the weighted vertical receiver array,while S1varies slowly with r and z. Consequently,‘the equal transmission losses condition’is satisfied naturally,and then repeated measurements are not required.

    4.4 MFM’s resistance to interface reverberation

    Interface reverberation is one of the main interferences in SW TS measurement.And a higher signal-to-reverberation ratio(SRR)helps to improve the testing accuracy.

    Firstly,we consider the bottom reverberation.By the ray-normal-mode incoherent reverberation theory in shallow water[12-13],the reverberation of a receiver at(0,zr)can be written as

    with the point source at(0,zs),where N is the number of bottom scatters per unit area,E0is the energy emitted by the source,and Iiis the scattering intensity of a single scatter.The operator,〈〈〉〉,means statistical average,and

    where

    where σ( αm,αn)is the scattering function,αmis the grazing angle of the mth mode at bottom, and Bmis the amplitude of the downward quasi-plane wave associated with the the mth mode at the bottom.

    For a monostatic context,applying MFM,〈〈Ii〉〉is simplified to

    because only the factor associated with the first normal mode remains in the sound field emitted by the weighted vertical source array and in the output of the weighted vertical receiver array.

    Usually,σ( αm,αn)is a decreasing function for αmand αn,e.g.,the Lambert scattering model

    So we obtain

    The above analysis is also suitable for surface reverberation.In a word,MFM has great resistance to interface reverberation.

    4.5 Element spacing of the vertical array

    The precondition of applying MFM effectively is that Eq.(36)is satisfied,so that the vertical space-sampling frequency,1/d,must be equal or greater than the Nyquist frequency,

    where d is the element spacing of the vertical array,and λzM=2π/γM,γMis the vertical wavenumber of the highest order normal mode.Because γMis always smaller than k,we have

    Inserting Eq.(47)into Eq.(46),we have

    As for the vertical receiver array,ambient noise should be taken into account.Considering isotropic noise,the element spacing,d,should satisfy

    According to Eq.(48)and Eq.(49),a reasonable value of the element spacing is

    5 MFM compared with other methods

    5.1 Compared with CVAM

    When the Classical Vertical Array Measurement(CVAM)is applied,the sound field emitted by a vertical source array is written as

    For comparison with Eq.(37),we define

    By the acoustic reciprocity theorem,the output of a vertical receiver array can be written as

    Fig.10 The first 5 eigenfunctions

    when CVAM is applied.

    To sum up,we can draw a conclusion from Eqs.(36),(37),(53)and(54)that MFM results in smaller and slower sound-field spatial fluctuations compared with CVAM,for both soundemitting and sound-receiving process.In addition,CVAM is a complementary method,which is often utilized together with HAM,while MFM can be used separately.

    5.2 Compared with average methods

    MFM,Average Methods,such as HAM and VAM,and CVAM are all based on the transponder method.That is the common points of them.

    Average Methods require repeated measurements in different distances or at different depths,and then averaging the results.By contrast,MFM does not require averaging repeated measurements,so it has a higher testing efficiency.Furthermore,the target strength,TSMF, measured by MFM is closer to TSfree(π/2,π/2)than TS measured by Average Methods.

    6 Concluding remarks

    A new measurement method is introduced,namely Modal-Filtering Measurement(MFM), which is based on a vertical source array and a vertical receiver array,according to singlemode excitation theory and modal-filtering theory.According to theoretical analysis,MFM performs well in both interface reverberation resistance and testing efficiency,compared to Average Methods and CVAM,and what is more,its result is closer to TSfree.

    However,MFM requires deploying both a vertical source array and a vertical receiver array,with the array length,L,equal to the thickness of water column,H.Moreover,environmental parameters,such as seawater sound-speed profile,and sound speed,density and attenuation coefficient of the seabed,are required.These are the shortcomings of MFM.

    [1]Urick R J.Principles of underwater sound[M].NewYork:McGraw-Hill,1975:241-243.

    [2]Zhang Bo,Ma Zhongcheng,Song Man.Theoretical analyses of measurement of the acoustic target strength of underwater platform using the transponder method in shallow water[J].Applied Acoustics,2013,32(2):109-115.(in Chinese)

    [3]Ingenito F.Scattering from an object in a stratified medium[J].J Acoust.Soc.Am.,1987,82(6):2051-2059.

    [4]Yang T C,Yates T W.Scattering from an object in a stratified medium:Freqency dispersion and active localization[J].J Acoust.Soc.Am.,1994,96(2):1003-1019.

    [5]Williams A O,Novak B M.Normal mode analysis of underwater sound propagation with directional sources and receivers [J].J Acoust.Soc.Am.,1974,55(1):80-83.

    [6]Gazanhes C,Garnier J L.Experiments on single mode excitation in shallow water propagation[J].J Acoust.Soc.Am.,1981, 69(4):963-969.

    [7]Gingras D F.Single mode excitation,attenuation,and backscatter in shallow water[J].J Acoust.Soc.Am.,1998,103(1): 195-204.

    [8]Peng Dayong,Zeng Juan,Li Haifeng,et al.An optimal algorithm for single-mode close-loop excitation in shallow water [J].Chinese Journal of Acoustics,2009,34(5):396-400.

    [9]Shang E C.Source depth estimation in waveguide[J].J Acoust.Soc.Am.,1985,77(4):1413-1418.

    [10]Shang E.C,Clay C,Wang Y.Passive harmonic source ranging in waveguides by using mode filter[J].J Acoust.Soc.Am., 1985,78(1):172-175.

    [11]He Zuoyong,Zhao Yufang.Theoretic fundamentals of acoustics[M].Beijing:National Defence Industry Press,1981:315-322.(in Chinese)

    [12]Zhang Renhe,Jin Guoliang.Normal mode theory of the average reverberation intensity in shallow water[J].Chinese Journal of Acoustics,1984,9(1):12-20.(in Chinese)

    [13]Li Fenghua,Liu Jianjun,Li Zhenglin,et al.The oscillation phenomena of low-frequency reverberation in shallow water and its physical interpretation[J].Science in China G,2005,35(2):140-148.(in Chinese)

    淺海環(huán)境中水下物體聲目標(biāo)強(qiáng)度物理意義的討論及模式濾波測(cè)量法

    張波1,2,3,張學(xué)剛1,馬忠成1
    (1水下測(cè)控技術(shù)重點(diǎn)實(shí)驗(yàn)室,大連116013;2中國(guó)科學(xué)院大學(xué),北京100190;3中國(guó)科學(xué)院聲學(xué)所聲場(chǎng)聲信息國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100190)

    水下運(yùn)動(dòng)平臺(tái)的聲目標(biāo)強(qiáng)度測(cè)量試驗(yàn)多在淺海環(huán)境中進(jìn)行。文章根據(jù)簡(jiǎn)正波理論推導(dǎo)了基于平均測(cè)量法的淺海環(huán)境中水下物體聲目標(biāo)強(qiáng)度TS的解析表達(dá)式,深入分析了TS的物理意義。分析表明,在確定的方位角上,TS與分布在一定范圍內(nèi)的垂直入射角θi和散射角θs所對(duì)應(yīng)的目標(biāo)散射函數(shù)值有關(guān),θi和θs是離散的,其取值取決于簡(jiǎn)正波階數(shù);同時(shí),TS還跟海洋環(huán)境和測(cè)試距離有關(guān),當(dāng)測(cè)試距離非常大時(shí),約等于自由場(chǎng)聲目標(biāo)強(qiáng)度TSfree。文中還提出了一種基于垂直發(fā)射陣和垂直接收陣的聲目標(biāo)強(qiáng)度測(cè)量方法,即模式濾波測(cè)量法(Modal-Filtering Measurement,MFM)。理論分析表明,MFM法具有很好的抗界面混響性能,并且跟平均測(cè)量法和垂直陣常規(guī)測(cè)量法相比,具有更高的測(cè)試效率,測(cè)試結(jié)果更接近自由場(chǎng)聲目標(biāo)強(qiáng)度。

    淺海;平均測(cè)量法;聲目標(biāo)強(qiáng)度;模式濾波;單模

    O427

    :A

    張波(1982-),男,水下測(cè)控技術(shù)重點(diǎn)實(shí)驗(yàn)室工程師;

    1007-7294(2015)03-0322-15

    O427

    :A

    10.3969/j.issn.1007-7294.2015.03.010

    張學(xué)剛(1980-),男,水下測(cè)控技術(shù)重點(diǎn)實(shí)驗(yàn)室高級(jí)工程師;

    馬忠成(1966-),男,水下測(cè)控技術(shù)重點(diǎn)實(shí)驗(yàn)室研究員。

    Received date:2014-07-09

    Foundation item:Supported by the Advance Research Project(51303030408)

    Biography:ZHANG Bo(1982-),male,engineer,E-mail:popo6189@163.com;

    ZHANG Xue-gang(1980-),male,senior engineer.

    猜你喜歡
    簡(jiǎn)正波淺海測(cè)量法
    傾斜彈性海底條件下淺海聲場(chǎng)的簡(jiǎn)正波相干耦合特性分析*
    為什么淺海海鮮比深海多呢?
    Automatic extraction and structuration of soil–environment relationship information from soil survey reports
    一種高效的寬帶簡(jiǎn)正波本征值計(jì)算方法
    一種快速求解寬頻簡(jiǎn)正波的方法
    基于比較測(cè)量法的冷卻循環(huán)水系統(tǒng)電導(dǎo)率檢測(cè)儀研究
    warping變換提取單模態(tài)反演海底衰減系數(shù)?
    垂直面內(nèi)建立基線的特殊點(diǎn)位高程測(cè)量法
    航空攝影測(cè)量法在農(nóng)村土地確權(quán)登記發(fā)證工作中的應(yīng)用分析
    濱州淺海海域浮游植物豐度及其多樣性
    最近中文字幕2019免费版| 一个人免费在线观看的高清视频 | 免费人妻精品一区二区三区视频| 免费av中文字幕在线| 亚洲av成人一区二区三| 婷婷成人精品国产| 热99久久久久精品小说推荐| 少妇裸体淫交视频免费看高清 | 亚洲精品一卡2卡三卡4卡5卡 | 亚洲欧美成人综合另类久久久| 免费av中文字幕在线| 欧美人与性动交α欧美软件| 欧美av亚洲av综合av国产av| 成年人免费黄色播放视频| 国产黄色免费在线视频| 国产精品一区二区在线不卡| 97人妻天天添夜夜摸| 国产无遮挡羞羞视频在线观看| 久久久精品免费免费高清| 久久精品人人爽人人爽视色| 欧美日韩一级在线毛片| av国产精品久久久久影院| 久久久久网色| 国产主播在线观看一区二区| 中国美女看黄片| 十分钟在线观看高清视频www| 亚洲成人手机| 国产亚洲精品第一综合不卡| 欧美激情高清一区二区三区| 少妇人妻久久综合中文| 在线观看舔阴道视频| 久久久久久久大尺度免费视频| 宅男免费午夜| 大香蕉久久成人网| av国产精品久久久久影院| 蜜桃国产av成人99| 五月开心婷婷网| 香蕉国产在线看| 丰满迷人的少妇在线观看| 亚洲欧美日韩另类电影网站| 一本一本久久a久久精品综合妖精| 丝袜人妻中文字幕| 亚洲av电影在线观看一区二区三区| 精品福利观看| 久久av网站| a在线观看视频网站| 男女国产视频网站| 不卡一级毛片| 亚洲久久久国产精品| 91国产中文字幕| 黄片播放在线免费| 999久久久国产精品视频| 在线天堂中文资源库| 成人黄色视频免费在线看| 青青草视频在线视频观看| 日韩 亚洲 欧美在线| 精品人妻一区二区三区麻豆| 丝袜喷水一区| 国产欧美日韩一区二区精品| 最黄视频免费看| 老司机午夜福利在线观看视频 | 久久香蕉激情| 精品一区在线观看国产| 欧美性长视频在线观看| 悠悠久久av| 国产伦理片在线播放av一区| 在线精品无人区一区二区三| 母亲3免费完整高清在线观看| 欧美日韩视频精品一区| 国产精品 欧美亚洲| 一级毛片精品| 久久久久网色| 午夜福利,免费看| 一级,二级,三级黄色视频| 欧美国产精品一级二级三级| 狂野欧美激情性bbbbbb| 在线天堂中文资源库| 黄色片一级片一级黄色片| 国产成人a∨麻豆精品| 成人国产一区最新在线观看| 在线看a的网站| 国产激情久久老熟女| 欧美精品亚洲一区二区| 亚洲精品美女久久久久99蜜臀| 香蕉国产在线看| 啦啦啦在线免费观看视频4| 在线 av 中文字幕| 亚洲视频免费观看视频| 国产欧美日韩综合在线一区二区| 亚洲专区字幕在线| 他把我摸到了高潮在线观看 | 国产人伦9x9x在线观看| 国产高清视频在线播放一区 | 亚洲一区中文字幕在线| 欧美黑人欧美精品刺激| 国产成人免费观看mmmm| 日韩 亚洲 欧美在线| 亚洲,欧美精品.| 欧美成狂野欧美在线观看| 黄色怎么调成土黄色| 久久久久久人人人人人| 少妇裸体淫交视频免费看高清 | 精品亚洲成a人片在线观看| 最近中文字幕2019免费版| 中文字幕色久视频| 热re99久久精品国产66热6| 日本黄色日本黄色录像| 欧美亚洲 丝袜 人妻 在线| 精品国产乱子伦一区二区三区 | 成人国产av品久久久| 日本黄色日本黄色录像| 在线看a的网站| 亚洲成人国产一区在线观看| 精品免费久久久久久久清纯 | 亚洲一码二码三码区别大吗| 日韩大片免费观看网站| 狂野欧美激情性bbbbbb| 在线观看一区二区三区激情| 一级片免费观看大全| 女人精品久久久久毛片| 亚洲欧美精品综合一区二区三区| 国产主播在线观看一区二区| 成年人黄色毛片网站| 国产成人啪精品午夜网站| 秋霞在线观看毛片| 国产不卡av网站在线观看| 久久九九热精品免费| 两性夫妻黄色片| 亚洲精品久久午夜乱码| 99热全是精品| 久久女婷五月综合色啪小说| 狂野欧美激情性xxxx| 咕卡用的链子| 在线观看免费视频网站a站| 91av网站免费观看| 黄色a级毛片大全视频| 色老头精品视频在线观看| 日韩欧美一区二区三区在线观看 | 法律面前人人平等表现在哪些方面 | 午夜免费鲁丝| 亚洲成人免费av在线播放| videosex国产| 国产男女内射视频| 丝袜脚勾引网站| 欧美激情 高清一区二区三区| 欧美精品人与动牲交sv欧美| 一区二区三区四区激情视频| 国产成人欧美| 亚洲七黄色美女视频| 精品一区二区三区四区五区乱码| 丝袜脚勾引网站| 男女午夜视频在线观看| 国产黄色免费在线视频| 午夜成年电影在线免费观看| 国产一区二区 视频在线| 搡老乐熟女国产| 又紧又爽又黄一区二区| 精品视频人人做人人爽| 亚洲精品中文字幕一二三四区 | 中文字幕人妻丝袜制服| 国产成人一区二区三区免费视频网站| 欧美性长视频在线观看| 国产在线视频一区二区| 免费看十八禁软件| 精品高清国产在线一区| 亚洲 国产 在线| 国产成人精品久久二区二区91| 精品一区二区三区四区五区乱码| 建设人人有责人人尽责人人享有的| 久久国产精品男人的天堂亚洲| 最新的欧美精品一区二区| 亚洲avbb在线观看| 亚洲国产精品成人久久小说| 80岁老熟妇乱子伦牲交| 国产极品粉嫩免费观看在线| 日韩免费高清中文字幕av| 日韩欧美一区二区三区在线观看 | 可以免费在线观看a视频的电影网站| 啦啦啦在线免费观看视频4| 性色av一级| 欧美黑人精品巨大| 免费人妻精品一区二区三区视频| 国精品久久久久久国模美| 免费在线观看影片大全网站| 电影成人av| 久久久久久久精品精品| 亚洲欧美日韩另类电影网站| 视频区欧美日本亚洲| 久久久国产成人免费| 天天躁日日躁夜夜躁夜夜| av线在线观看网站| 国产亚洲欧美在线一区二区| 伦理电影免费视频| 建设人人有责人人尽责人人享有的| 久久女婷五月综合色啪小说| 成人国语在线视频| 亚洲欧美精品综合一区二区三区| 成人免费观看视频高清| 人妻久久中文字幕网| 亚洲精品在线美女| 精品乱码久久久久久99久播| 麻豆国产av国片精品| 看免费av毛片| 国产xxxxx性猛交| 国产精品av久久久久免费| 国产极品粉嫩免费观看在线| 老司机在亚洲福利影院| 欧美午夜高清在线| 女警被强在线播放| 在线 av 中文字幕| 亚洲精品粉嫩美女一区| 久久香蕉激情| 免费在线观看日本一区| 久久精品aⅴ一区二区三区四区| 欧美在线一区亚洲| 精品国内亚洲2022精品成人 | 99久久国产精品久久久| 秋霞在线观看毛片| 69av精品久久久久久 | 欧美日韩亚洲高清精品| 国产亚洲欧美在线一区二区| 人人澡人人妻人| 国产日韩欧美亚洲二区| 超色免费av| 91九色精品人成在线观看| 久久精品aⅴ一区二区三区四区| 亚洲av国产av综合av卡| 国产老妇伦熟女老妇高清| 国产欧美亚洲国产| 女人精品久久久久毛片| 亚洲全国av大片| 美女大奶头黄色视频| 国产精品 欧美亚洲| 久久国产精品影院| 老司机影院毛片| 人人妻人人澡人人看| a 毛片基地| 另类亚洲欧美激情| 首页视频小说图片口味搜索| 老熟妇乱子伦视频在线观看 | 日韩大码丰满熟妇| 亚洲欧美日韩高清在线视频 | 日韩视频在线欧美| 亚洲精华国产精华精| 国产成人精品久久二区二区免费| 欧美黑人精品巨大| 国产区一区二久久| 黄色视频在线播放观看不卡| 久久亚洲精品不卡| 热99re8久久精品国产| 久久精品国产综合久久久| 欧美黑人欧美精品刺激| 色婷婷av一区二区三区视频| 国产高清视频在线播放一区 | 亚洲人成77777在线视频| 久久久久精品国产欧美久久久 | 一个人免费看片子| 在线av久久热| 成人三级做爰电影| 9色porny在线观看| 黑人巨大精品欧美一区二区mp4| 亚洲国产成人一精品久久久| 免费黄频网站在线观看国产| 国产精品二区激情视频| 成人手机av| 国产成人免费观看mmmm| 淫妇啪啪啪对白视频 | 欧美日韩福利视频一区二区| 免费在线观看黄色视频的| 久久影院123| 女人爽到高潮嗷嗷叫在线视频| 丝袜美足系列| 亚洲精品国产av成人精品| 亚洲欧美精品综合一区二区三区| 十八禁高潮呻吟视频| 在线天堂中文资源库| 性少妇av在线| 水蜜桃什么品种好| 久久人妻熟女aⅴ| 成人影院久久| 男人添女人高潮全过程视频| 日韩人妻精品一区2区三区| 又黄又粗又硬又大视频| 在线观看人妻少妇| 黑丝袜美女国产一区| 淫妇啪啪啪对白视频 | 妹子高潮喷水视频| 久久av网站| 亚洲熟女精品中文字幕| 亚洲欧美日韩高清在线视频 | 99久久人妻综合| 亚洲性夜色夜夜综合| 国产麻豆69| 五月天丁香电影| 午夜精品国产一区二区电影| 最黄视频免费看| 热99国产精品久久久久久7| 美女高潮到喷水免费观看| 日本撒尿小便嘘嘘汇集6| 飞空精品影院首页| 天堂中文最新版在线下载| 一级片'在线观看视频| av线在线观看网站| 亚洲精品美女久久久久99蜜臀| 日韩制服骚丝袜av| 日韩 亚洲 欧美在线| 精品免费久久久久久久清纯 | 亚洲精品中文字幕一二三四区 | 高清欧美精品videossex| 99国产极品粉嫩在线观看| 两性夫妻黄色片| 日韩免费高清中文字幕av| 在线观看一区二区三区激情| 老司机午夜十八禁免费视频| 国产精品一区二区精品视频观看| 交换朋友夫妻互换小说| 啦啦啦中文免费视频观看日本| 欧美变态另类bdsm刘玥| bbb黄色大片| 热re99久久精品国产66热6| 国产精品自产拍在线观看55亚洲 | 国产男女超爽视频在线观看| 日日摸夜夜添夜夜添小说| 亚洲成人免费av在线播放| 久久这里只有精品19| 久久久久国内视频| 欧美精品亚洲一区二区| 俄罗斯特黄特色一大片| 国产亚洲精品一区二区www | 搡老乐熟女国产| 日韩 欧美 亚洲 中文字幕| 免费人妻精品一区二区三区视频| 激情视频va一区二区三区| 成人免费观看视频高清| 久久99热这里只频精品6学生| 新久久久久国产一级毛片| 女警被强在线播放| 午夜激情av网站| 中文字幕另类日韩欧美亚洲嫩草| 人人澡人人妻人| 伊人久久大香线蕉亚洲五| 亚洲熟女精品中文字幕| 免费日韩欧美在线观看| 免费观看av网站的网址| 黄色a级毛片大全视频| 免费在线观看完整版高清| 性少妇av在线| 午夜免费成人在线视频| 18在线观看网站| 欧美日韩精品网址| 国产一区二区激情短视频 | 99国产精品一区二区三区| 黄色 视频免费看| 男人操女人黄网站| 色婷婷久久久亚洲欧美| 日本a在线网址| 男女国产视频网站| 丁香六月天网| 69av精品久久久久久 | 国产成人欧美在线观看 | 一区二区三区乱码不卡18| 国产av一区二区精品久久| √禁漫天堂资源中文www| 少妇粗大呻吟视频| 欧美日韩视频精品一区| 亚洲一区中文字幕在线| 欧美老熟妇乱子伦牲交| 日韩中文字幕视频在线看片| tube8黄色片| 久久香蕉激情| 亚洲精品中文字幕在线视频| 亚洲黑人精品在线| 手机成人av网站| 免费高清在线观看日韩| 国产片内射在线| 嫩草影视91久久| 国产成人精品在线电影| 欧美日韩国产mv在线观看视频| 美女中出高潮动态图| 777米奇影视久久| 999精品在线视频| 成人黄色视频免费在线看| av一本久久久久| 国产欧美日韩一区二区三区在线| 亚洲精品日韩在线中文字幕| 一区二区三区乱码不卡18| 一本一本久久a久久精品综合妖精| 成人国语在线视频| 国产淫语在线视频| 亚洲国产av影院在线观看| 欧美+亚洲+日韩+国产| av超薄肉色丝袜交足视频| 久热爱精品视频在线9| 国产精品av久久久久免费| 又黄又粗又硬又大视频| 国产精品.久久久| 国精品久久久久久国模美| 男人添女人高潮全过程视频| 国产成人啪精品午夜网站| 精品人妻1区二区| 十分钟在线观看高清视频www| 超碰97精品在线观看| 欧美精品一区二区免费开放| 亚洲一区中文字幕在线| 亚洲国产欧美一区二区综合| av电影中文网址| 欧美激情高清一区二区三区| 精品卡一卡二卡四卡免费| 丝袜美腿诱惑在线| 国精品久久久久久国模美| 色94色欧美一区二区| 正在播放国产对白刺激| 一边摸一边抽搐一进一出视频| 视频区欧美日本亚洲| 91九色精品人成在线观看| www.999成人在线观看| 精品少妇久久久久久888优播| 亚洲第一av免费看| 国产亚洲午夜精品一区二区久久| 国产精品影院久久| 69精品国产乱码久久久| 狂野欧美激情性bbbbbb| 国产亚洲精品久久久久5区| 日韩大片免费观看网站| 夜夜骑夜夜射夜夜干| 久久久久精品人妻al黑| 少妇猛男粗大的猛烈进出视频| 精品国产一区二区三区四区第35| 熟女少妇亚洲综合色aaa.| 丝袜在线中文字幕| 欧美精品一区二区免费开放| 亚洲av成人不卡在线观看播放网 | av免费在线观看网站| 蜜桃在线观看..| 熟女少妇亚洲综合色aaa.| 男女午夜视频在线观看| 一级片'在线观看视频| 日本五十路高清| 人妻久久中文字幕网| 亚洲伊人色综图| 欧美一级毛片孕妇| 久热爱精品视频在线9| 中文欧美无线码| 丝袜脚勾引网站| 亚洲精品日韩在线中文字幕| a级毛片黄视频| 中国美女看黄片| 无限看片的www在线观看| 欧美精品人与动牲交sv欧美| 老司机影院成人| 国产成人影院久久av| 老司机亚洲免费影院| 久久免费观看电影| 色婷婷久久久亚洲欧美| 汤姆久久久久久久影院中文字幕| 亚洲人成电影观看| 91老司机精品| 黄片小视频在线播放| 免费一级毛片在线播放高清视频 | 免费av中文字幕在线| 国产亚洲av片在线观看秒播厂| 熟女少妇亚洲综合色aaa.| 午夜免费成人在线视频| 法律面前人人平等表现在哪些方面 | av在线老鸭窝| 少妇人妻久久综合中文| 日韩 欧美 亚洲 中文字幕| 久久久久久亚洲精品国产蜜桃av| 在线观看人妻少妇| 亚洲精品成人av观看孕妇| 男人操女人黄网站| tube8黄色片| 正在播放国产对白刺激| 欧美在线黄色| 久久热在线av| 亚洲av电影在线进入| 男人爽女人下面视频在线观看| 90打野战视频偷拍视频| 老司机影院成人| 午夜福利在线免费观看网站| 精品久久久精品久久久| 大陆偷拍与自拍| 女人爽到高潮嗷嗷叫在线视频| 成人亚洲精品一区在线观看| 女性被躁到高潮视频| 亚洲人成77777在线视频| av国产精品久久久久影院| 高清视频免费观看一区二区| 欧美精品一区二区免费开放| 亚洲国产欧美网| 中文字幕人妻丝袜一区二区| 久久综合国产亚洲精品| 亚洲精品久久成人aⅴ小说| 精品国产乱码久久久久久小说| 国产精品久久久久成人av| 亚洲国产看品久久| 久久久国产一区二区| 亚洲av美国av| 王馨瑶露胸无遮挡在线观看| 亚洲精品一二三| 久久影院123| 久久狼人影院| 两个人看的免费小视频| h视频一区二区三区| 久久热在线av| 国产日韩欧美在线精品| 中文字幕最新亚洲高清| 女性生殖器流出的白浆| 99国产精品99久久久久| 狠狠狠狠99中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 美女高潮到喷水免费观看| 淫妇啪啪啪对白视频 | 欧美日韩一级在线毛片| 欧美精品高潮呻吟av久久| 少妇人妻久久综合中文| 久久久精品免费免费高清| 国产亚洲午夜精品一区二区久久| 日韩三级视频一区二区三区| 日本av手机在线免费观看| 亚洲av成人不卡在线观看播放网 | 亚洲欧美色中文字幕在线| 最近最新免费中文字幕在线| 悠悠久久av| 香蕉国产在线看| 精品亚洲成a人片在线观看| 男女国产视频网站| 亚洲男人天堂网一区| 国产成人精品久久二区二区免费| 一个人免费在线观看的高清视频 | av在线老鸭窝| 免费观看a级毛片全部| 欧美av亚洲av综合av国产av| 夫妻午夜视频| 在线永久观看黄色视频| 啦啦啦在线免费观看视频4| 精品少妇黑人巨大在线播放| 欧美日韩国产mv在线观看视频| 最近中文字幕2019免费版| 亚洲五月色婷婷综合| 欧美在线一区亚洲| 久久人人97超碰香蕉20202| 国产男女内射视频| 1024香蕉在线观看| 国产一区二区 视频在线| 丝瓜视频免费看黄片| 精品福利永久在线观看| 久久综合国产亚洲精品| 激情视频va一区二区三区| 久久久国产精品麻豆| 丰满人妻熟妇乱又伦精品不卡| 久久精品国产综合久久久| av在线老鸭窝| 午夜激情久久久久久久| 老司机靠b影院| 亚洲熟女精品中文字幕| 美女国产高潮福利片在线看| cao死你这个sao货| 免费一级毛片在线播放高清视频 | 国产黄频视频在线观看| 中文字幕精品免费在线观看视频| 天堂中文最新版在线下载| av在线播放精品| 在线观看免费视频网站a站| 亚洲国产精品一区三区| 日本91视频免费播放| av又黄又爽大尺度在线免费看| 十八禁高潮呻吟视频| 欧美黄色淫秽网站| 岛国在线观看网站| 亚洲欧美精品综合一区二区三区| 妹子高潮喷水视频| 99国产精品一区二区蜜桃av | 精品第一国产精品| 午夜精品国产一区二区电影| 日本wwww免费看| 欧美日韩av久久| 精品少妇黑人巨大在线播放| 黄色毛片三级朝国网站| 少妇精品久久久久久久| 狠狠婷婷综合久久久久久88av| 免费日韩欧美在线观看| 午夜福利在线免费观看网站| 免费在线观看视频国产中文字幕亚洲 | 日本五十路高清| 中文字幕另类日韩欧美亚洲嫩草| xxxhd国产人妻xxx| av天堂在线播放| 久久性视频一级片| 午夜视频精品福利| 日本av免费视频播放| 男人爽女人下面视频在线观看| 国产精品九九99| 国产成人一区二区三区免费视频网站| 麻豆乱淫一区二区| 青草久久国产| 国产日韩欧美视频二区| 99精品久久久久人妻精品| netflix在线观看网站| 国产精品国产av在线观看| 久久影院123| 久久久久网色| 国产精品二区激情视频| 成年女人毛片免费观看观看9 | av天堂在线播放| a在线观看视频网站| 亚洲国产成人一精品久久久| 亚洲七黄色美女视频| 国产成人精品久久二区二区免费| 欧美黑人精品巨大| 久久久国产一区二区| 一区二区三区激情视频| 国产亚洲精品久久久久5区| 国产精品久久久久久精品电影小说| 成在线人永久免费视频|