• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CFD Computation of Added Resistance for KVLCC2 Model in Head Short Waves

    2015-12-13 09:15:46WUChengshengYANDaijunQIUGengyaoNIYang
    船舶力學(xué) 2015年3期

    WU Cheng-sheng,YAN Dai-jun,QIU Geng-yao,NI Yang

    (National Key Laboratory of Science and Technology on Hydrodynamics,China Ship Scientific Research Center,Wuxi 214082,China)

    0 Introduction

    In the last decade,a lot of legislations about the effect of shipping trade on global environment were introduced by many international organizations,e.g.IMO,UN,etc.So many efforts have been focused on the study of the performance of ships operating in seaway.

    The prediction of added resistance of a ship in waves is essential to evaluate the ship performance in seaway.One of the first attempts to obtain the added resistance value of a ship was carried out by Havelock(1942).The next relevant significant contribution to the analytical calculation of the added resistance is developed by Maruo(1957)with a potential flow solution.From then on,a lot of research work has been done for added resistance based on potential flow theory[1].

    According to the classical sea-keeping theories,the energy dissipated of a ship in waves can be attributed to three different components.These three components are:

    (1)The first component obtained from the interference between incident waves which are diffracted when encountering ship hull,and the radiated waves produced by ship motions,es-pecially those caused by heave and pitch.This component is called drifting force.

    (2)The incident waves are also reflected on ship hull,and also interact with the ship radiated waves.This second component is called diffraction effect.

    (3)A‘viscous’effect due to the damping of the vertical motions.

    Traditional calculations and measurements indicate that the drifting force,caused by the ship motions radiated waves,would make the largest contribution to the added resistance,whereas diffraction effects would be the least significant,which is more important for short waves.

    Nowadays,some of the modern ships are very large,for example,a VLCC(Very Large Crude-oil Carrier)will exceed 320 m in length.That means when the VLCC travelling in normal sea states,most of the encountering waves can be considered as short waves.So the prediction of added resistance for ships in short waves is now a hot topic.

    For ships in short waves,diffraction effect is rather important to the added resistance,whereas considered as the least significant and cannot be well modeled(or even neglected)in traditional calculating method based on potential flow theory.On the contrary,ship motion responses in short waves are usually very small,which means the added resistance caused by the ship motions radiated waves will be insignificant.So the traditional potential flow theory based methods will not work well on the prediction of added resistance for very large ships[2].

    CFD method based on the solution of RANSE(Reynolds Averaged Navier-Stokes Equations)may overcome the limitation of the potential flow theory based method with respect to the effects of water viscosity,wave dispersion,nonlinearity and wave breaking.Consequently,the application of RANSE based CFD method in the ship industry is increasing.

    Prediction of flow field around ship hulls using RANSE based CFD method started in the 1980s,and the majority of the studies were initially devoted to ship resistance and flow field prediction in steady state.In the late 1990s,a few sea-keeping computations with CFD had been performed[3].From then on,some efforts have focused on CFD prediction of sea-keeping performance of ships,including ship motions and added resistance[4-7].

    However,there are few published papers on CFD computation of added resistance in short waves.One of the most challenges in the CFD computation is the simulation of short waves with high quality.As we know,waves with high steepness are unstable and short waves with low steepness will be subjected to more time and spatial variation than long waves.Furthermore,short waves will decay excessively in CFD computation due to numerical dissipation,and the additional damping caused by ill-suited meshes and settings will even make the condition worse.

    The research work in this paper focused on the added resistance in short waves.CFD computations of added resistance for KVLCC2 model advancing in regular head short waves were carried out by RANSE based numerical wave tank technology.The computed results were compared with experimental data and showed quite good agreement.The added resistance at different parts was also investigated,and the results indicated that the added resistance is primarily concentrated at the fore-segment,whereas the mid-and aft-segments contribute little to added resistance.

    1 Ship geometry and test cases

    The KVLCC2 model with scale of 44.444 is adopted for the CFD computations.Main particulars of the ships are given in Tab.1.Fig.1 shows the hull geometry of KVLCC2.The depth of the model hull is increased to 0.785 m to avoid water on deck.The model hull is divided into 3 segments for the investigation of added resistance at different parts.Fig.2 shows the segmented hull form.The resistance on each segment was monitored in CFD computations.

    Tab.1 Main particulars of KVLCC2

    Fig.1 Hull geometry of KVLCC2

    Fig.2 Segmented hull form

    The waves used for the computations are given in Tab.2.The CFD computations only cover the range of short waves(λ/LPP=0.20~0.60).The advancing speeds of the model are 0.772 m/s(Fr=0.092)and 1.196 m/s(Fr=0.142),the corresponding full scale ship speeds are 10.0 kns and 15.5 kns,respectively.

    Many experimental studies on added resistance in waves for KVLCC2 have been done by some groups with different scaled models.The majority of the studies covered the range of intermediate and long waves,whereas few studies focused on short waves.Thus Guo and Steen’s experimental study on added resistance of KVLCC2 in short waves[8-9]is quite valuable.In this paper,the experimental data used for the validation of computed results in short waves is referred to Guo and Steen’s study.

    Tab.2 Waves used for computations

    2 Computation method

    2.1 Mathematical model and numerical method

    The CFD computations are performed by solving RANS equations,RNG k-ε two-equation model is employed for the enclosure of the governing equations.The VOF(volume of fluid method)method is adopted for the treatment of nonlinear free surface.The detailed descriptions about the governing equations can be referred to Refs.[6-7].

    The governing equations are discretized by Finite Volume Method(FVM),the secondorder upwind difference scheme was adopted for the convection term and the centric difference scheme for the dissipation term.Multi-grid acceleration and SIMPLE(Semi-Implicit Method for Pressure Linked Equations)algorithms are used for solving the difference equation system.

    The incident waves are generated from the inflow boundary by prescribing a wavy velocity profile.The outgoing waves are dissipated inside an artificial damping zone located at the rear part of the computational domain.It can also be referred to Refs.[6-7]for the details of wave generation and absorption in numerical simulations.

    2.2 Computational domain and boundary conditions

    The origin of the coordinate system for the computational domain locates on the intersection of calm water surface,symmetric plane and vertical-transverse mid-plane of the hull.The computational domain’s extents are:-1.7LPP~3.0LPPin x-direction including damping zones with length of about 1.5LPP,-1.2LPP~1.2LPPin y-direction and-1.2LPP~0.4LPPin z-direction.Only half of the ship hull is used in the computation,thus a‘symmetry’boundary condition is adopted at the center plane of the domain.

    The boundary of the computational domain is composed of inlet boundary,outlet boundary,wall boundary(hull surface),and outer boundary(include bottom,proof and side of the domain).On the inlet boundary,a velocity profile resembling flexible flap wave-maker motions and volume fraction are prescribed.On the outlet boundary,the free surface here is assumed to be calm after the waves pass through the artificial damping zone and the hydrostatic pressure is set.On the surface of ship hulls,the standard wall function is introduced.On the outer boundary,zero stress is specified.

    The computational domain is discretized by H-O type multi-block structural mesh.There are at least 30 cells per wave length in x-direction for the shortest waves,10~20 cells within the region of wave height.The mesh near the bow and stern and around the ship hull is refined locally in order to well solve the complex flow around the hull,while the mesh becomes coarser towards the outer and outlet boundary.The y+is about 50 in general except some areas of bow and stern.Fig.3 shows the computational domain and mesh.

    As ship motion responses in short waves are usually insignificant,the added resistance caused by the ship motions can be neglected.So in CFD computations,the hull is fixed and without motion responses to the incoming waves.

    Fig.3 Computational domain and mesh

    3 Computational results

    3.1 Simulation of short waves

    As mentioned before,one of the most challenges in the CFD computation is the simulation of short waves with high quality.So the simulation results of short waves will be presented firstly.

    The wave patterns of KVLCC2 advancing in regular head waves with wave lengths of 0.2LPP(left)and 0.3LPP(right)are presented in Fig.4.As can be seen from the figure,for wave with λ/LPP=0.20,the wave decays a little when propagating from the inlet boundary to the ship stern,while within the range from ship bow to stern,the wave maintains quite stable and the decay is insignificant.For wave with λ/LPP=0.30,the wave is very stable when propagating from the inlet boundary to the ship stern and the decay can be neglected.Waves will decay quickly after propagating into the damping zone.

    Fig.4 Wave patterns for KVLCC2 advancing in head waves

    The wave in the region occupied by the ship is more important to added resistance than in the whole computational domain.Fig.5 gives the wave profile for wave with λ/LPP=0.20 within the range from ship bow and stern.From the figure we can see that the decay of the wave is insignificant and can be neglected.For longer waves,the decay will be even less.

    Fig.5 Wave profile for wave with λ/LPP=0.20

    The simulation results indicate that the quality of the simulated short waves is quite satisfactory for the computation of added resistance.

    3.2 Added resistance

    The non-dimensional added resistance could be expressed as,

    The added resistance for KVLCC2 in head short waves at Fr=0.092(left)and Fr=0.142(right)computed by CFD method are depicted in Fig.6(solid square points).The experimental data are also plotted in the figure(hollow circular points).

    It can be seen from the figure that the computed results agree with the experimental data quite well.The ship motion responses are insignificant in short waves and hence their contribution to added resistance is negligible.So the added resistance in short waves computed by CFD method is quite accurate even when the model hull is fixed and without motion responses to incoming waves.

    Fig.6 Added resistance computed by CFD method

    Because more and more attentions are paid on the performance of ship operating in seaway,the objective of hull form optimization is turning to improving powering performance in waves now.The primary way to achieve this goal is to minimize the added resistance in waves.

    The added resistance at different parts of the model hull is investigated to provide some guidance to hull form optimization in waves.The computed added resistance for different segments of the hull at Fr=0.092(left)and Fr=0.142(right)is shown in Fig.7(solid points).The experimental data are also presented in the figures(hollow points).

    The figures indicate that the added resistance is primarily concentrated at the fore-segment,whereas the added resistance at the aft-segment is rather small,while the contribution from the mid-segment can be neglected.

    Fig.7 Added resistance at different hull segments

    Fig.8 shows the wave pattern for the KVLCC2 model advancing in head short wave(λ/LPP=0.20).As can be seen from the figure,some strong nonlinear phenomena,such as wave rolling up and wave break near the ship bow can be captured by CFD simulation.

    Fig.8 Wave pattern for KVLCC2 advancing in head wave—bow view(λ/LPP=0.20)

    4 Conclusions

    CFD computations of added resistance for KVLCC2 model advancing in head short waves with different speeds were carried out in this paper.Added resistance at different parts of the ship hull was also investigated by dividing the hull into three segments and monitoring the resistance of each segment in CFD computations.Some conclusions can be drawn according to the analysis of computed results:

    (1)CFD computation can predict added resistance of ship heading in short waves quite accurately even while the model hull is fixed and without motion responses to the incoming waves.

    (2)Added resistance of ship heading in waves is primarily concentrated at the fore-segment,whereas the aft-segment contributes a little to the added resistance,while the contribution from the mid-segment can be neglected.

    (3)Some strong nonlinear phenomena,such as wave rolling up and wave break near the ship bow can also be captured by CFD simulation.

    The research work in this paper indicates that CFD can be an effective tool for the investigation and prediction of added resistance in short waves.

    [1]Pérez Arribas F.Some methods to obtain the added resistance of a ship advancing in waves[J].Ocean Engineering,2007,34:946-955.

    [2]Wu Chengsheng,Lu Jiang,Yan Daijun Bu Shuxia,Qiu Gengyao.A combined viscous and potential method for the computation of added resistance in head waves[C]//Proceeding of the 11th International Conference on Hydrodynamics.Singapore,2014.

    [3]Wilson R,Paterson E,Stern F.Unsteady RANS CFD for naval combatants in waves[C]//Proceedings of the 22nd Symposium on Naval Hydrodynamics.Washington D.C.,USA,1998.

    [4]Hochbaum A C,Vogt M.Towards the simulation of seakeeping and manoeuvring based on the computation of the free surface viscous ship flow[C]//Proceedings of the 24th Symposium on Naval Hydrodynamics.Fukuoka,Japan,2002.

    [5]Luquet R,Gentaz L,Ferrant P,Alessandrini B.Viscous flow simulation past a ship in waves using the SWENSE approach[C]//Proceedings of the 25th Symposium on Naval Hydrodynamics.St.John’s,Newfoundland and Labrador,Canada,2004.

    [6]Wu Chengsheng,Zhu Dexiang,Gu Min.Computation of hydrodynamic forces for a ship in regular heading waves by a viscous numerical wave tank[J].Journal of Ship Mechanics,2008,12(2):168-179.

    [7]Wu Chengsheng,Zhu Dexiang,Gu Min.Development of a viscous numerical wave tank and simulation of wave induced motions for a ship in regular head waves[C]//Proceeding of the 8th International Conference on Hydrodynamics.Nantes,France,2008.

    [8]Guo B J,Steen S.Experiment on added resistance of a ship moving in short waves[C]//Proceedings of the 28th Symposium on Naval Hydrodynamics.California,USA,2010.

    [9]Guo B J,Steen S.Evaluation of added resistance of KVLCC2 in short waves[J].Journal of Hydrodynamics,2011,23:709-722.

    大码成人一级视频| 波野结衣二区三区在线| 五月天丁香电影| 久久人人爽av亚洲精品天堂| 久久青草综合色| 国产成人免费观看mmmm| 亚洲激情五月婷婷啪啪| 免费高清在线观看视频在线观看| 两个人免费观看高清视频| 亚洲成人一二三区av| 日韩一区二区三区影片| 国产精品免费大片| 亚洲av男天堂| 成人国产麻豆网| 观看av在线不卡| 国产福利在线免费观看视频| 九色亚洲精品在线播放| 亚洲色图综合在线观看| 欧美日韩视频高清一区二区三区二| 青春草亚洲视频在线观看| 精品午夜福利在线看| 午夜福利网站1000一区二区三区| 久久久久久久久久成人| 在线观看一区二区三区激情| 一边摸一边做爽爽视频免费| 国产1区2区3区精品| 亚洲中文av在线| 日日啪夜夜爽| 91在线精品国自产拍蜜月| 国产精品秋霞免费鲁丝片| 欧美xxⅹ黑人| 国产av一区二区精品久久| 少妇熟女欧美另类| 嫩草影院入口| 国产片内射在线| 精品一区二区三区四区五区乱码 | 男女边吃奶边做爰视频| 欧美日韩视频精品一区| 国产黄色免费在线视频| 免费少妇av软件| 狂野欧美激情性bbbbbb| 一区二区三区乱码不卡18| 午夜福利视频精品| 香蕉国产在线看| 男女无遮挡免费网站观看| 国产欧美日韩一区二区三区在线| 亚洲国产成人一精品久久久| av线在线观看网站| 久久国内精品自在自线图片| 亚洲婷婷狠狠爱综合网| www日本在线高清视频| 亚洲人与动物交配视频| 另类精品久久| 97精品久久久久久久久久精品| 精品一区二区免费观看| 大陆偷拍与自拍| 精品人妻熟女毛片av久久网站| kizo精华| 亚洲在久久综合| 久久精品aⅴ一区二区三区四区 | 搡女人真爽免费视频火全软件| 亚洲av日韩在线播放| 亚洲,欧美精品.| 国产在线视频一区二区| 成人亚洲精品一区在线观看| 亚洲第一区二区三区不卡| 日韩,欧美,国产一区二区三区| 亚洲性久久影院| 精品酒店卫生间| 两个人免费观看高清视频| 少妇精品久久久久久久| 亚洲人成网站在线观看播放| 亚洲精品美女久久av网站| 国产白丝娇喘喷水9色精品| 免费看光身美女| 韩国av在线不卡| 国精品久久久久久国模美| 国产免费一区二区三区四区乱码| 丰满少妇做爰视频| 又黄又粗又硬又大视频| 国产激情久久老熟女| 26uuu在线亚洲综合色| 黄片无遮挡物在线观看| 国产永久视频网站| 香蕉丝袜av| 90打野战视频偷拍视频| 成人综合一区亚洲| 国产精品久久久av美女十八| 热99国产精品久久久久久7| 一级毛片电影观看| 中国三级夫妇交换| av又黄又爽大尺度在线免费看| 一本色道久久久久久精品综合| 2022亚洲国产成人精品| 黑丝袜美女国产一区| 国产白丝娇喘喷水9色精品| 考比视频在线观看| 丁香六月天网| 精品一品国产午夜福利视频| 亚洲性久久影院| 日韩电影二区| 9191精品国产免费久久| 国产一区二区三区av在线| 永久免费av网站大全| 欧美亚洲 丝袜 人妻 在线| 免费播放大片免费观看视频在线观看| 亚洲美女黄色视频免费看| 男女下面插进去视频免费观看 | 日本av手机在线免费观看| 咕卡用的链子| 秋霞在线观看毛片| 大片免费播放器 马上看| 精品国产一区二区久久| 一级毛片 在线播放| 国精品久久久久久国模美| 最新的欧美精品一区二区| 母亲3免费完整高清在线观看 | 免费在线观看完整版高清| 精品酒店卫生间| 亚洲av电影在线进入| 日韩,欧美,国产一区二区三区| 在线天堂中文资源库| 久久久久久久久久久免费av| 熟女av电影| 亚洲精华国产精华液的使用体验| 伦理电影大哥的女人| 国产免费福利视频在线观看| 欧美日韩成人在线一区二区| 国产精品成人在线| 91aial.com中文字幕在线观看| 日韩伦理黄色片| 成人黄色视频免费在线看| 久久99蜜桃精品久久| 久久精品国产自在天天线| 国产成人免费观看mmmm| 久久99热这里只频精品6学生| 中文字幕精品免费在线观看视频 | 丝袜美足系列| 国产综合精华液| 看免费av毛片| 久久久久网色| 久久精品国产亚洲av天美| 免费看av在线观看网站| 国产av国产精品国产| 久久青草综合色| 少妇猛男粗大的猛烈进出视频| 91精品伊人久久大香线蕉| 亚洲国产最新在线播放| 色婷婷久久久亚洲欧美| 男男h啪啪无遮挡| 免费久久久久久久精品成人欧美视频 | 大片免费播放器 马上看| 亚洲内射少妇av| 永久免费av网站大全| 寂寞人妻少妇视频99o| 日本免费在线观看一区| 美女脱内裤让男人舔精品视频| 波野结衣二区三区在线| 国产免费现黄频在线看| 性高湖久久久久久久久免费观看| 岛国毛片在线播放| 大陆偷拍与自拍| 日韩熟女老妇一区二区性免费视频| 伦理电影大哥的女人| 亚洲av欧美aⅴ国产| 日韩中字成人| 日韩av免费高清视频| 女人精品久久久久毛片| 少妇被粗大猛烈的视频| 最近最新中文字幕免费大全7| 成人影院久久| 人妻人人澡人人爽人人| 国产无遮挡羞羞视频在线观看| 精品人妻一区二区三区麻豆| 天堂俺去俺来也www色官网| 久久精品国产a三级三级三级| 蜜桃在线观看..| 国产免费福利视频在线观看| 国产国语露脸激情在线看| 大码成人一级视频| 久久久国产一区二区| 亚洲综合色网址| 男女边吃奶边做爰视频| av国产久精品久网站免费入址| 韩国高清视频一区二区三区| 久久久国产欧美日韩av| 捣出白浆h1v1| 国产免费一级a男人的天堂| 免费高清在线观看视频在线观看| 18在线观看网站| 超色免费av| 大香蕉久久成人网| 国产精品秋霞免费鲁丝片| 一边亲一边摸免费视频| 日本vs欧美在线观看视频| 免费不卡的大黄色大毛片视频在线观看| 国产免费一区二区三区四区乱码| 97精品久久久久久久久久精品| 麻豆精品久久久久久蜜桃| 丁香六月天网| 岛国毛片在线播放| 永久免费av网站大全| 亚洲一区二区三区欧美精品| 国产精品一国产av| √禁漫天堂资源中文www| 午夜老司机福利剧场| 国产欧美日韩一区二区三区在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精品视频女| 亚洲精品,欧美精品| 国产精品人妻久久久影院| 久久久久久久精品精品| 欧美xxxx性猛交bbbb| 欧美最新免费一区二区三区| 国产成人精品在线电影| 成年美女黄网站色视频大全免费| 国产黄色免费在线视频| 搡女人真爽免费视频火全软件| 精品久久蜜臀av无| 成人漫画全彩无遮挡| 人妻人人澡人人爽人人| 一二三四在线观看免费中文在 | 欧美激情 高清一区二区三区| videosex国产| 九草在线视频观看| 免费观看av网站的网址| 天天躁夜夜躁狠狠久久av| 亚洲天堂av无毛| 少妇人妻久久综合中文| 国产一区亚洲一区在线观看| 久久久精品94久久精品| 一区二区三区四区激情视频| 亚洲精品国产av成人精品| 97精品久久久久久久久久精品| 亚洲国产欧美日韩在线播放| 精品人妻一区二区三区麻豆| 精品人妻在线不人妻| 亚洲久久久国产精品| 九九在线视频观看精品| 国产福利在线免费观看视频| 免费观看a级毛片全部| 一区二区三区精品91| 国产成人91sexporn| 国产免费视频播放在线视频| 久久精品久久久久久久性| a级毛片黄视频| 国产精品久久久久久精品古装| 精品99又大又爽又粗少妇毛片| 国产伦理片在线播放av一区| 亚洲一码二码三码区别大吗| 七月丁香在线播放| 欧美日韩国产mv在线观看视频| 欧美丝袜亚洲另类| 秋霞伦理黄片| 亚洲欧美精品自产自拍| 我的女老师完整版在线观看| 成人无遮挡网站| 新久久久久国产一级毛片| 久久久久久久久久人人人人人人| 国产成人精品无人区| 性高湖久久久久久久久免费观看| 国产一区二区激情短视频 | 99久国产av精品国产电影| 免费黄频网站在线观看国产| 丝袜喷水一区| 国产精品不卡视频一区二区| 久久人妻熟女aⅴ| 香蕉国产在线看| 一级毛片电影观看| 久久韩国三级中文字幕| 如何舔出高潮| 欧美激情国产日韩精品一区| 成人手机av| 黑人欧美特级aaaaaa片| www日本在线高清视频| 亚洲美女搞黄在线观看| 九草在线视频观看| 亚洲天堂av无毛| 成人影院久久| 一二三四在线观看免费中文在 | 国产一区二区三区综合在线观看 | 热re99久久国产66热| 国产精品久久久久久精品古装| 久久久久久久国产电影| 老女人水多毛片| 日韩熟女老妇一区二区性免费视频| 26uuu在线亚洲综合色| 高清不卡的av网站| 久久久久久久国产电影| 伦理电影大哥的女人| 最近最新中文字幕大全免费视频 | 美女国产视频在线观看| 午夜免费鲁丝| 国产爽快片一区二区三区| 日韩在线高清观看一区二区三区| 国产成人精品久久久久久| 亚洲国产av影院在线观看| 精品少妇久久久久久888优播| 黄网站色视频无遮挡免费观看| 日本91视频免费播放| 伦理电影大哥的女人| 美女国产视频在线观看| 精品久久久精品久久久| 日韩 亚洲 欧美在线| 精品亚洲成国产av| 欧美激情极品国产一区二区三区 | 好男人视频免费观看在线| 久久精品久久久久久久性| 国产淫语在线视频| 欧美最新免费一区二区三区| 亚洲美女黄色视频免费看| 国产精品三级大全| 午夜福利影视在线免费观看| 中文字幕制服av| 日韩成人伦理影院| 久久久久久久久久久久大奶| 菩萨蛮人人尽说江南好唐韦庄| 久久热在线av| 国产成人aa在线观看| 欧美精品高潮呻吟av久久| 国产免费现黄频在线看| 香蕉国产在线看| 男女边吃奶边做爰视频| 一区二区三区乱码不卡18| 久久久久久久大尺度免费视频| 成人午夜精彩视频在线观看| av网站免费在线观看视频| 国产一区亚洲一区在线观看| av电影中文网址| 97在线人人人人妻| 国产成人精品久久久久久| 黑人猛操日本美女一级片| 三级国产精品片| 亚洲国产精品999| 肉色欧美久久久久久久蜜桃| 亚洲伊人久久精品综合| av电影中文网址| 国产精品麻豆人妻色哟哟久久| 满18在线观看网站| 91久久精品国产一区二区三区| 亚洲av综合色区一区| 老司机影院毛片| 色婷婷av一区二区三区视频| 最后的刺客免费高清国语| 成年av动漫网址| 天堂中文最新版在线下载| 一级毛片电影观看| 韩国av在线不卡| 精品酒店卫生间| 精品久久久久久电影网| 国产日韩一区二区三区精品不卡| 大片免费播放器 马上看| 三上悠亚av全集在线观看| 久久久国产精品麻豆| 亚洲成国产人片在线观看| 国产精品久久久久久精品电影小说| kizo精华| 日本wwww免费看| 午夜福利视频精品| 国产乱来视频区| 午夜影院在线不卡| 中文字幕人妻丝袜制服| 久久99蜜桃精品久久| 中文精品一卡2卡3卡4更新| 国产精品欧美亚洲77777| 9色porny在线观看| 久久久久久久大尺度免费视频| 99国产综合亚洲精品| 国产精品免费大片| 婷婷色av中文字幕| 大陆偷拍与自拍| av免费在线看不卡| 夜夜骑夜夜射夜夜干| 久久精品aⅴ一区二区三区四区 | 内地一区二区视频在线| 九九在线视频观看精品| 国国产精品蜜臀av免费| 晚上一个人看的免费电影| 中文字幕人妻丝袜制服| 久久久精品94久久精品| 18禁观看日本| 国产男女超爽视频在线观看| 大香蕉久久成人网| 亚洲国产欧美在线一区| 国产成人aa在线观看| 99国产精品免费福利视频| 久久久久久伊人网av| 97人妻天天添夜夜摸| 黄色配什么色好看| 大码成人一级视频| 婷婷色综合www| 免费黄网站久久成人精品| 波野结衣二区三区在线| av片东京热男人的天堂| 精品国产国语对白av| 在线观看人妻少妇| 日本-黄色视频高清免费观看| 国产成人精品婷婷| 日韩 亚洲 欧美在线| 在线观看免费视频网站a站| 亚洲av国产av综合av卡| 啦啦啦中文免费视频观看日本| 男女午夜视频在线观看 | 大码成人一级视频| 午夜激情av网站| 日韩在线高清观看一区二区三区| 免费人妻精品一区二区三区视频| 亚洲美女视频黄频| 美国免费a级毛片| 国产高清三级在线| 午夜福利网站1000一区二区三区| 九色成人免费人妻av| 国产黄色视频一区二区在线观看| 国产精品麻豆人妻色哟哟久久| 老司机影院毛片| 欧美精品av麻豆av| 天天躁夜夜躁狠狠躁躁| 1024视频免费在线观看| 91精品伊人久久大香线蕉| 香蕉精品网在线| 在线看a的网站| 看免费av毛片| 精品人妻一区二区三区麻豆| 22中文网久久字幕| 一边亲一边摸免费视频| 好男人视频免费观看在线| 美女视频免费永久观看网站| 亚洲第一区二区三区不卡| 亚洲精品久久午夜乱码| 亚洲精品久久成人aⅴ小说| 日韩精品有码人妻一区| 国产黄色视频一区二区在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国语对白做爰xxxⅹ性视频网站| 精品人妻在线不人妻| 最黄视频免费看| 国产精品99久久99久久久不卡 | 国产成人精品婷婷| 水蜜桃什么品种好| 91精品三级在线观看| 久久久国产精品麻豆| 久久精品aⅴ一区二区三区四区 | 国产成人午夜福利电影在线观看| 26uuu在线亚洲综合色| 欧美xxxx性猛交bbbb| videosex国产| 国产成人精品婷婷| 18禁动态无遮挡网站| 国产永久视频网站| 99九九在线精品视频| 亚洲精品一二三| 精品午夜福利在线看| 国产欧美日韩一区二区三区在线| 伊人亚洲综合成人网| 日日摸夜夜添夜夜爱| 国产精品不卡视频一区二区| 亚洲综合色惰| 亚洲五月色婷婷综合| videosex国产| 狂野欧美激情性xxxx在线观看| tube8黄色片| 91aial.com中文字幕在线观看| 久久国内精品自在自线图片| 免费看光身美女| 多毛熟女@视频| 18禁动态无遮挡网站| 最近中文字幕2019免费版| 国产视频首页在线观看| 高清在线视频一区二区三区| 18在线观看网站| 婷婷色综合www| 精品少妇黑人巨大在线播放| 亚洲精品色激情综合| 超碰97精品在线观看| 肉色欧美久久久久久久蜜桃| 欧美性感艳星| 夜夜爽夜夜爽视频| 少妇人妻久久综合中文| 亚洲国产欧美日韩在线播放| 国产黄色免费在线视频| 性色avwww在线观看| 伦精品一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 韩国高清视频一区二区三区| 最近中文字幕2019免费版| 亚洲欧洲精品一区二区精品久久久 | 久久久久久久精品精品| av在线老鸭窝| 午夜av观看不卡| 欧美国产精品va在线观看不卡| 在线精品无人区一区二区三| 精品久久蜜臀av无| 欧美成人精品欧美一级黄| 成人毛片60女人毛片免费| 国精品久久久久久国模美| 亚洲精品久久成人aⅴ小说| 亚洲欧洲国产日韩| 亚洲精品第二区| 香蕉丝袜av| 久久99热这里只频精品6学生| 精品国产一区二区三区四区第35| 免费观看a级毛片全部| av女优亚洲男人天堂| 国产毛片在线视频| 18禁裸乳无遮挡动漫免费视频| 成人二区视频| 伊人亚洲综合成人网| 王馨瑶露胸无遮挡在线观看| 日韩成人伦理影院| 国产一区亚洲一区在线观看| 国产成人欧美| 久久久亚洲精品成人影院| 日韩欧美精品免费久久| 日韩在线高清观看一区二区三区| 一本色道久久久久久精品综合| 黄色 视频免费看| 亚洲激情五月婷婷啪啪| 春色校园在线视频观看| 女性生殖器流出的白浆| xxxhd国产人妻xxx| 国产精品国产av在线观看| 久久人人爽人人爽人人片va| 新久久久久国产一级毛片| 精品国产乱码久久久久久小说| 国产精品久久久久久久久免| 国产一区二区三区av在线| 欧美精品亚洲一区二区| 色网站视频免费| 一区二区三区四区激情视频| 国产精品人妻久久久久久| 国产激情久久老熟女| 国产又爽黄色视频| 成人国语在线视频| 国产亚洲精品第一综合不卡 | 国产精品久久久久久久久免| 哪个播放器可以免费观看大片| 亚洲精品456在线播放app| 日本午夜av视频| 美女视频免费永久观看网站| 免费高清在线观看视频在线观看| 五月天丁香电影| 肉色欧美久久久久久久蜜桃| 9191精品国产免费久久| 亚洲经典国产精华液单| 毛片一级片免费看久久久久| 九草在线视频观看| 中文字幕av电影在线播放| 日韩熟女老妇一区二区性免费视频| 亚洲色图综合在线观看| 久久精品国产亚洲av涩爱| 美女xxoo啪啪120秒动态图| 一区二区日韩欧美中文字幕 | 精品少妇久久久久久888优播| 国产精品国产av在线观看| 夫妻午夜视频| 国产午夜精品一二区理论片| √禁漫天堂资源中文www| 亚洲精品中文字幕在线视频| 黄片无遮挡物在线观看| 国产69精品久久久久777片| 国产精品国产三级专区第一集| 在线免费观看不下载黄p国产| 一级片免费观看大全| 水蜜桃什么品种好| 一级,二级,三级黄色视频| 99热全是精品| 最新的欧美精品一区二区| a级毛色黄片| 2022亚洲国产成人精品| 亚洲精品成人av观看孕妇| 一级,二级,三级黄色视频| 国产精品一区www在线观看| 欧美精品一区二区大全| 老司机影院成人| 欧美精品一区二区大全| a级毛片黄视频| 亚洲av欧美aⅴ国产| 日韩 亚洲 欧美在线| 这个男人来自地球电影免费观看 | 国产免费福利视频在线观看| 免费日韩欧美在线观看| 男女免费视频国产| 99久国产av精品国产电影| 制服丝袜香蕉在线| 丝袜脚勾引网站| 1024视频免费在线观看| 三级国产精品片| 波多野结衣一区麻豆| 婷婷色av中文字幕| 国产精品无大码| 亚洲成人一二三区av| 成人黄色视频免费在线看| 久久久久久久大尺度免费视频| 精品一区二区免费观看| 欧美精品高潮呻吟av久久| 少妇的逼好多水| 一区二区日韩欧美中文字幕 | 亚洲精品第二区| 超色免费av| 丝袜在线中文字幕| 久久精品久久久久久噜噜老黄| 午夜精品国产一区二区电影| 亚洲欧美日韩卡通动漫| 亚洲性久久影院| 亚洲,一卡二卡三卡| 国产男女超爽视频在线观看| 在现免费观看毛片| 午夜福利网站1000一区二区三区| 水蜜桃什么品种好| 免费高清在线观看视频在线观看| 国产一级毛片在线| 精品国产一区二区久久| 新久久久久国产一级毛片| 爱豆传媒免费全集在线观看| 精品国产一区二区三区四区第35|