• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification Method for Exciting Force Source Inside Underwater Structure Based on PSO_GA

    2015-12-12 08:52:08XIAOYanSHANGDejiang
    船舶力學(xué) 2015年3期

    XIAO Yan,SHANG De-jiang

    (a.Acoustic Science and Technology Laboratory;b.College of Underwater Acoustic Engineering,Harbin Engineering University,Harbin 150001,China)

    0 Introduction

    In the underwater acoustic domain,there are many noise source identification methods,such as method based on the multiple input/output model[1-2],adaptive noise cancellation method[3],power flow analysis[4],system identification method based on state space[5],and blind signal processing technology[6-8].In addition,sound intensity measurement method[9]and acoustic holography technology[10-12]are also widely applied to underwater structure noise source identification.The two methods are valid to identify the underwater sound noise.But the measurement requirements are relatively high,and the effects of the sound field boundary condition on the identification accuracy and stability are very huge[12].Most important is that these two noise source identification technologies are only based on the surface source strength of the structure but not the internal exciting force sources inside the structure.Other identification methods for the exciting force sources are most based on measurement results of the force sources signals which are hardly to be obtained accurately.In view of the identification method for underwater elastic structure exciting force source,a new matched field processing(MFP)method is proposed.

    As an acoustic signal processing method,MFP technology is always the research hotspot.In recent years,the MFP technology is widely used in underwater target detection,passive positioning,the marine environment acoustic parameter inversion and other application aspects[13].When MFP technology is used for underwater structure noise source identification,the actual sound field measurement results and the model predicted results are matched processing.And the predict result which is closest to the actual result is regarded as the estimated value of the actual sound field.Then,the location,contribution and other information are obtained to identify the exciting force sources inside the underwater structure.Comparing with the NAH technology or the sound intensity measurement method,the selection for measurement points is more flexible.The design and the manufacture of the measuring array are more easily.And more,the purpose of this MFP identification method for exciting force source is to sort the contribution for the sound field of each exciting force sources inside the structure,but not the surface source strength of the structure.

    1 The basic principle of exciting force source identification by MFP

    In the MFP identification for underwater elastic structure exciting force source,the underwater structure and acoustic field are considered as a‘channel’,the spectrum characteristics of the exciting force source are seemed as‘input’.The surface vibration characteristics or the sound radiation characteristics of the underwater structure can be seemed as‘output’[14].The identification process can be mainly divided into two parts:the generalized copy field prediction and matched search.The sound pressures,vibrations,sound radiation power,or the acoustic radiation efficiency can be used as the quantities to be matched.They are collectively referred to generalized copy field.The generalized copy field is established by the numerical calculated result of the transfer function.Taken the sound pressure copy field as example,the specific identification method is as follows:

    Step1:Building the structure numerical model

    According to the actual underwater elastic structure,a finite element model is built.It is assumed that there are n exciting force sources inside the model,and there are m(m≥n)measurement points in the sound field.The unit frequency response function of i-th exciting force source is marked as Fi(1≤i≤n),the sound pressure of j-th(1≤j≤m)measurement point is marked as Pj,and the sound pressure transfer function from i-th unit exciting force source to j-th measurement point is marked as Hij.So Pjcould be calculated by the following equation:

    where Δiis the source strength of the i-th exciting force source.

    Step 2:Calculating the copy field of sound pressure transfer function

    The sound pressure transfer function Hijis numerical calculated,and then the total sound pressure transfer function at the j-th measurement point Hican be expressed as follows:

    where δiis the source strength proportion coefficient of the i-th source,0≤δi≤1.

    From equation(1)and equation(2),it can be seen that the relationship of δiand Δiis as follows:

    The copy field is constituted by all the total transfer functions:

    Step 3:Constructing the objective function

    When the copy field is matched with sound pressure measurement result,the measurement result and copy field are nearly in phase.Thus,the objective function for matching processing is constructed as follows:

    Step 4:Searching for the optimal source strength

    The optimal total sound pressure transfer function Hjis determined by optimal searching result ofwhich makes the corresponding FPjis most closed to zero.Then the source strength Δiis calculated by equation(3).Both the working condition and the source strength of each source can be determined.

    The flow chart of the matched processing is shown in Fig.1.

    Fig.1 The flowchart of exciting force source identification by MFP

    2 The principle of the particle swarm optimization_genetic algorithm

    Particle swarm optimization algorithm(PSO)was put forward by Dr.Eberhart and Dr.Kennedy.The algorithm is an evolutionary computation technique based on the swarm intelligence method[15].The system is initialized to a group of random solutions,and then the optimal value is searched by iterative method.The searching is simply following the optimal particles in the solution space.The advantage of the algorithm is that it can be easily implemented and with an intelligence background.Therefore,the algorithm is suitable for scientific research and especially for engineering application.

    PSO algorithm is a well global optimization algorithm.It is mainly used for optimizing complex nonlinear functions,and can also be used to solve combinatorial optimization problems.Searching the extreme value of the objective function as formula(5)is actually an extreme value optimization problem for nonlinear function.Thus,the PSO algorithm is used to match searching the exciting force source strengths.In the optimization process,as the particle swarm is closer to the optimal particle,its speed is smaller.So the particle swarm has a strong homoplasy,and it is easily fallen into local minimum point[16].In order to enhance the global search ability,the PSO algorithm is combined with the genetic algorithm in this paper[17-19].

    The matching search process is as follows:

    ①Take the weights of the response function δ1,δ2,…,δnas particles,so the dimension of each particle is as same as the number of the exciting force sources.The variables are defined as follows:

    x:the current positions of the particles;?x:the particles fitness at the current positions;xbest:the optimum positions of the particles in current iteration process;?xbest:the particles fitness at the optimum positions in current iteration process;gbest:the global optimum positions of the particles;?gbest:the particles fitness at the global optimum positions.

    ②Initialize the positions of the particles x0,and then calculate the fitness ?x0.The fitness of each particleis calculated by the following formula:

    where M is the number of the particles in the particle swarm.FPjis as formula(5).

    ④Update the particles velocities and the positions by the equations as follows:

    where k=1,2,…,N,N is the total iteration numbers.is the d-th dimension position component of particles i in k-th iteration process.is the d-th dimension velocity component of particles i in k-th iteration process.η1and η2are two random numbers inc1is the self acceleration constant of the particles,and c2is the global acceleration constant of the particles.is the d-th dimension component of the optimum positions in the k-1-th iteration process.is the d-th dimension component of the global optimum positions.w is the inertia weight,the coefficient to maintain the original particle velocity.Because the linear adjusting strategy for the inertia weight is simple and intuitive,the inertia weight is calculated by the linear gradient strategy:

    where max w is the maximum value of inertia weight,min w is the minimum value of inertia weight.

    ⑥Estimate that whether the algorithm is fell into the local extreme value,the judgment formula is as follows:

    If the algorithm is fell into the local extreme value,choose a positionwhich fitness sort is in front,two optional positionsandAnd then the crossover mutation is operated as the following formula:

    After the variation,repeat step(5)until that the algorithm is not fell into local extreme value.

    ⑦Estimate that whether the algorithm could achieve the specified number of iterations or achieved the specified fitness value.If yes,the search process is over,the optimal positions and the corresponding fitness value are output.Otherwise,return to step④until achieve the maximum iteration number,or meet the requirements of fitness value.

    3 Simulation analysis results

    In order to verify the effectiveness of the PSO_GA for structure exciting force source identification,the algorithm is simulated in different conditions.A multi-excitation underwater single cylinder shell is established as the physical model.The finite element method(FEM)and boundary element method(BEM)are used in this paper to forecast acoustic radiation in the sound field and establish the generalized copy field of sound pressure transfer function.The interior medium of the structure is air and exterior medium is the infinite water.

    The length of the shell is 1 m,the radius is 0.08 m,the thickness is 3mm,and the thickness of both end covers are 12 mm.The material parameters:Young’s modulus E=2.06×1011N/m2,Poisson’s ratio σ=0.3,density ρ=7 800 kg/m3.The fluid density ρ0=1 000 kg/m3,sound velocity v=1 500 m/s.

    Take the model geometric center as the origin of coordinate,and the length direction as z axis.Calculate the sound pressure transfer functions from the exciting force source to the sound field point in the case that the source strength is 1 N and the force direction is radial outward.The research field points are distributed on a cylindrical surface which geometric center is consistent with the model.The radius of the cylindrical surface is 0.3 m,and the length of the cylindrical surface is 1.5 m.The copy field{}H for exciting force source matching analysis is consisted of the transfer functions at all the chosen research points.

    Marked the algorithm threshold value as tc,so the algorithm terminates condition is:

    The simulation conditions are as follows:

    tc=0.000 1°,M=10,N=800,c1=1.49,c2=1.49,maxw=0.94,minw=0.4,fk=1.2,ζ=50%,and R=1.

    It is supposed that there are four exciting force sources in the shell.The source strengths are separately marked as Δ1,Δ2,Δ3,and Δ4.The locations of the four sources areThe matched searching for the source strengths is carried out in different exciting force combination conditions.The number of the particles in one swarm M is 10,the number of iterations N is 800.The simulation results in different SNR(noise is additive)conditions are shown in Tab.1.

    Tab.1 Simulation results of matched processing for the exciting force source

    Continue Tab.1

    As seen from Tab.1,the proportion coefficient of each exciting force source can be accurately searched by PSO_GA.The errors of source strength identification results are much less than 1%.As the SNR increasing,the accuracy is improving.When the SNR is larger than 40 dB,the search results are almost consistent with the default theoretical values.

    The searing accuracy and times are analyzed in different threshold value conditions.The SNR is set as 40 dB.The default theoretical source strengths are Δ1=0.15,Δ2=0.25,Δ3=0.30,and Δ4=0.30.The algorithm threshold value tcis from 0.1°×10-2to 0.1°×10-5.The mean errors of the repeated 5 times simulations are shown in Fig.2,and the searing times are shown in Fig.3.

    Fig.2 The searching accuracy in different threshold value conditions

    Fig.3 The searching times in different threshold value conditions

    As shown in the figures,the searching accuracy of the algorithm is improving and the searching time of the algorithm is increasing as the algorithm threshold value tcdecreasing.When tc<0.1°×10-3,the search results are almost consistent with the default theoretical values,and the searching times are tended to be stable.Therefore,the algorithm threshold value tcshould be considered with the actual problem.

    4 The experiment results analysis

    In order to verify the efficiency of the identification technology by MFP,the radiation sound pressures of a cylinder shell have been measured in an anechoic tank.The parameters of the measurement model are as the same as the numerical simulation model.The length of the elastic cylinder shell is 1 m,and the diameter is 0.08 m.There are two composite longitudinal vibrators inside the shell used for exciting force sources.The locations of the sources are as follows:

    Fig.4 The scheme of the exciting force sources inside the shell

    The shell is installed on the slewing arrangement in the anechoic tank,vertically put into the water.The geometric center of the shell is located at 2 m subsurface.The hydrophone array is vertically put into the water too.The array is composed of 12 hydrophones,the length of the array is 1.65 m,and the distance between the adjacent hydrophones is 0.15 m.The sound absorption materials could not be placed on the water surface above the shell and the hydrophone array,so the influence of the surface interference could not be ignored.

    In order to ensure that difference of the direct sound pressure and the surface reflect sound pressure are more than 15 dB,the path difference of the direct sound and the reflect sound is approximately 6.Therefore,the distance form the array to the shell geometric center is 0.5 m,and the distance between the top hydrophone and the water surface is 1.25 m.

    Using the two signal channels of the signal generation system to control the exciting force sources respectively,the two signals are switched in two power amplifiers in same type.The enlargement factors of the two power amplifiers are consistent during the measurement process.And it is must be sure that the SNR is more than 30 dB.The shell is rotated 15°every time,and the number of the times is 24.Then the sound pressures on a cylindrical surface whose radius is 0.5 m are measured.The sound pressure transfer function copy field is consisted of the measurement results when the two force sources are exciting separately.

    The source strengths are searched by PSO_GA.The number of particles in one swarm M=10,and the max iteration number N=500.The algorithm terminates threshold value tc=0.01.The other conditions are as the same as the simulation condition.

    The measurement results are matched processing with the copy field to obtain the source strength proportion coefficient.Then,the sound field is forecasted by the matched searching resultsThe partial searched results are shown in Tab.2.

    Tab.2 Searched results of the source strength proportion coefficient

    Continue Tab.2

    The measurement points on the circles at different depths parallel to xoy plane are taken as the research points.The radiation sound pressures forecasted results at frequency 7 000 Hz are compared with the measurement results as Fig.5.

    Fig.5 The comparison results at the condition that f=7 000 Hz

    As it can be seen from Fig.5,the forecasted results are close to the measurement results,but there are still prediction errors which can not be ignored.Therefore,the radiation sound power of the model is analyzed,the results is as follows.

    From the Fig.6,the radiation sound power measurement results are almost the same with the forecasted results.Therefore,this method is very effective to identify and analyze the exciting force source strength inside the underwater structure.

    Fig.6 The comparison results of the sound power

    However,it must be clear that,the copy field used in the matched searching process is actually the radiation sound field measurement results when each exciting force source is working separately.If the copy field is consisted of the numerical simulation results,the higher numerical forecasting accuracy of the structure vibration and the radiation sound field are required.

    5 Conclusions

    The particle swarm optimization algorithm based on the mutation law of genetic algorithm is applied for searching the optimization force source strengths.The simulation analysis is taken in different conditions.And more,the feasibility of this algorithm is verified by the analysis results of measurement data.Both the simulation results and the experiment results show that:if both SNR and the algorithm terminate conditions are meet the requirements,the accuracy and efficiency are very high.And the sound field can be well forecasted by the matched searching results.Because the measurement requirements are not very strictly,this identification technology proposed in this paper will have very good prospects.

    [1]Zhang Baocheng,Xu Xuexian.Method of analysis for quantitative estimation of contribution of submarine noise sources[J].Journal of Ship Mechanic,1997,1(1):57-66.

    [2]Chakravorty P k.Identification of self noise sources in a ship[J].Naval Engineers Journal,1990,102:67-69.

    [3]Jiang Guojian,Ren Keming,Ma Jie,Wang Huaiying.Estimating and rejecting the main self-noise of sonar-position by noise canceling method[J].ACTA ACUSTICA,1996,21:289-296.

    [4]Li Tianyun,Liu Li,Liu Shiguang.Energy flow analysis method of identification of structure borne sound source[J].Chinese Journal of Mechanical Engineering,1999,35:29-33.

    [5]Cho Yongman.Noise source and transmission path identification via state-space system identification[J].Control Eng.Practice,1997,5:1243-1251.

    [6]Briolle F,Wan Chunru,Chee Hongtat,et a1.Blind separation of underwater sources in shallow water[J].Underwater Defence Technology Proceeding,1997,24:186-190.

    [7]Peter WT Yuen.Enhancement of detection efficiency for minute signals embedded in large background using non-stantionarity[C].Underwater Defence Technology Proceeding,05-00-UDT-150,2000.

    [8]Fay J,Menhta S K,Kirsteins I P.Application of principle component based face recognition methods to classify underwater signals[C].Underwater Defence Technology Proceeding.05-00-UDT-163,2000.

    [9]Shi Shengguo,Yang Desen.An underwater sound intensity measurement system and its application to radiation noise measurement of underwater structure in the near-field[J].Journal of Test and Measurement Technology,2002,16:475-480.

    [10]Williams E G.Continuation of acoustic near-fields[J].JASA,2003,113:1273-1281.

    [11]Shang D,Liu Y.The investigation on sound source identification in semi-space by NAH[M].Acoustic 08 Paris.2008:749-754.

    [12]Yang Diange,Zheng Sifa,Li Bing,Li Keqiang,Lian Xianmin.Video visualization for moving sound sources based on binoculars stereo and acoustical holography[J].ACTA ACUSTICA,2010,35:20-25.

    [13]Baggeroer A B,Kuperman W A.An overview of matched field methods in ocean acoustics[J].IEEE Journal of Oceanic Enigeeing,1993,18:425-427.

    [14]Dong Shumin,Liu Hongbo,Zhao bo,Liang Guolong.Study on method of parallel computing in match field localization[J].Application Research of Computers,2012,29(2):514-517.

    [15]Kennedy J,Eberhart R C.Particle Swarm Optimization[C]//IEEE International Conference on Neural Networks.Piscataway,New Jersey,1995:1942-1948.

    [16]Greengard L,Vladimir R.A fast algorithm for particle simulations[J].Journal of Computational Physics,1987,73(2):325-348.

    [17]Shi Y,Eberhar t R.Fuzzy adaptive particle swarm optimization[C]//IEEE World Congress on Evolutionary Computation.Seoul,2001:101-106.

    [18]Liu Chengyang,Yan Changqi,Wang Jianjun,Liu Zhenhai.Particle swarm genetic algorithm and its application[J].Nuclear Power Engineering,2012,33(4):29-33.

    [19]Wang Xuemei,Wang Yihe.The combination of simulated annealing and genetic algorithms[J].Chinese J Computers,1997,20(4):381-384.

    天天躁夜夜躁狠狠躁躁| 爱豆传媒免费全集在线观看| 搡老岳熟女国产| 99久久综合免费| 亚洲美女黄色视频免费看| 一二三四社区在线视频社区8| 国产一区有黄有色的免费视频| 欧美日韩黄片免| 又黄又粗又硬又大视频| 一级毛片女人18水好多 | 一级黄色大片毛片| 午夜91福利影院| 精品少妇久久久久久888优播| 国产片内射在线| 欧美日韩亚洲国产一区二区在线观看 | 多毛熟女@视频| 人人妻人人澡人人看| 香蕉国产在线看| 亚洲精品日韩在线中文字幕| 肉色欧美久久久久久久蜜桃| 男女床上黄色一级片免费看| 国产在线观看jvid| 亚洲av成人不卡在线观看播放网 | 国产老妇伦熟女老妇高清| 人人妻人人添人人爽欧美一区卜| 极品人妻少妇av视频| 欧美日韩视频精品一区| 亚洲九九香蕉| 久久亚洲精品不卡| 飞空精品影院首页| 91九色精品人成在线观看| 人人妻人人添人人爽欧美一区卜| 国产精品欧美亚洲77777| 日韩中文字幕视频在线看片| 又大又黄又爽视频免费| 两性夫妻黄色片| 天天添夜夜摸| 国产精品香港三级国产av潘金莲 | 青草久久国产| 精品熟女少妇八av免费久了| 又大又爽又粗| 女人久久www免费人成看片| 人妻 亚洲 视频| 嫩草影视91久久| 一边摸一边做爽爽视频免费| 高清欧美精品videossex| 黄色a级毛片大全视频| 少妇的丰满在线观看| 国产成人av教育| 天天操日日干夜夜撸| 欧美老熟妇乱子伦牲交| 午夜免费观看性视频| 午夜福利视频在线观看免费| 伊人久久大香线蕉亚洲五| 在线亚洲精品国产二区图片欧美| 晚上一个人看的免费电影| 亚洲精品中文字幕在线视频| 国产亚洲av高清不卡| 一级a爱视频在线免费观看| 午夜91福利影院| 久久99热这里只频精品6学生| 亚洲精品乱久久久久久| 日本午夜av视频| 久久天躁狠狠躁夜夜2o2o | 国产精品 国内视频| 老汉色av国产亚洲站长工具| 亚洲国产毛片av蜜桃av| 丝袜在线中文字幕| 一级黄色大片毛片| 啦啦啦啦在线视频资源| 国产精品国产三级国产专区5o| 在现免费观看毛片| 日本av手机在线免费观看| 男女高潮啪啪啪动态图| 爱豆传媒免费全集在线观看| 国产成人欧美在线观看 | 国产精品国产三级专区第一集| 女人久久www免费人成看片| 看免费成人av毛片| 少妇被粗大的猛进出69影院| 在线观看免费视频网站a站| 精品亚洲乱码少妇综合久久| 蜜桃国产av成人99| 又紧又爽又黄一区二区| 无限看片的www在线观看| 欧美日韩国产mv在线观看视频| 中文字幕高清在线视频| 我的亚洲天堂| 国产精品欧美亚洲77777| 丰满人妻熟妇乱又伦精品不卡| www.精华液| av一本久久久久| 欧美久久黑人一区二区| 精品一区在线观看国产| 国产一区亚洲一区在线观看| 老司机午夜十八禁免费视频| 久久99精品国语久久久| 丝袜美腿诱惑在线| 人体艺术视频欧美日本| 国产精品.久久久| 人妻一区二区av| 午夜免费观看性视频| 美女中出高潮动态图| 久久久久久免费高清国产稀缺| 一级a爱视频在线免费观看| 欧美日韩av久久| 国产精品熟女久久久久浪| 在现免费观看毛片| 中文字幕精品免费在线观看视频| 亚洲成人手机| 午夜福利视频精品| 91精品国产国语对白视频| 国产日韩一区二区三区精品不卡| 国产人伦9x9x在线观看| 91麻豆av在线| 日韩中文字幕视频在线看片| 欧美精品av麻豆av| 欧美久久黑人一区二区| 国产一区二区 视频在线| 男女高潮啪啪啪动态图| 777米奇影视久久| 久久这里只有精品19| 久久精品久久久久久噜噜老黄| 视频区图区小说| 精品一区二区三区四区五区乱码 | 免费在线观看日本一区| 啦啦啦中文免费视频观看日本| 一级毛片我不卡| 美国免费a级毛片| 欧美日韩国产mv在线观看视频| 久久青草综合色| 精品第一国产精品| 男男h啪啪无遮挡| 午夜福利视频精品| 脱女人内裤的视频| 天堂8中文在线网| 777米奇影视久久| www.熟女人妻精品国产| 黑人欧美特级aaaaaa片| 丁香六月欧美| 久久久久久久精品精品| 黑人欧美特级aaaaaa片| 久久久久久久精品精品| 亚洲色图综合在线观看| 中国国产av一级| 91老司机精品| 国产成人av激情在线播放| 久久ye,这里只有精品| 中文字幕最新亚洲高清| 国产日韩一区二区三区精品不卡| 午夜免费鲁丝| 日日爽夜夜爽网站| 免费一级毛片在线播放高清视频 | 中文字幕精品免费在线观看视频| 一边摸一边抽搐一进一出视频| 午夜激情av网站| 欧美激情高清一区二区三区| 亚洲精品日韩在线中文字幕| 一区二区三区精品91| 丝袜人妻中文字幕| 久9热在线精品视频| 日韩制服骚丝袜av| 午夜久久久在线观看| 中文字幕av电影在线播放| 亚洲精品一卡2卡三卡4卡5卡 | 日日夜夜操网爽| 中文字幕精品免费在线观看视频| 亚洲专区国产一区二区| 国产黄色视频一区二区在线观看| 9热在线视频观看99| 热re99久久精品国产66热6| 亚洲国产精品国产精品| 欧美在线黄色| 国产av一区二区精品久久| 亚洲成av片中文字幕在线观看| 19禁男女啪啪无遮挡网站| 少妇裸体淫交视频免费看高清 | 亚洲人成77777在线视频| 在线看a的网站| 国产成人影院久久av| 国产一区二区三区av在线| 成人三级做爰电影| 热re99久久国产66热| 在线观看www视频免费| 国产真人三级小视频在线观看| 美女高潮到喷水免费观看| 夫妻性生交免费视频一级片| 美女脱内裤让男人舔精品视频| 亚洲av欧美aⅴ国产| 青草久久国产| 爱豆传媒免费全集在线观看| 欧美少妇被猛烈插入视频| 两个人看的免费小视频| 男男h啪啪无遮挡| 九色亚洲精品在线播放| 免费看av在线观看网站| 亚洲国产成人一精品久久久| 精品一品国产午夜福利视频| 蜜桃在线观看..| 最近中文字幕2019免费版| 亚洲天堂av无毛| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品久久午夜乱码| 免费在线观看视频国产中文字幕亚洲 | av又黄又爽大尺度在线免费看| 两个人看的免费小视频| 一区二区三区乱码不卡18| 老司机在亚洲福利影院| 亚洲av综合色区一区| 极品少妇高潮喷水抽搐| 深夜精品福利| 亚洲av欧美aⅴ国产| 成人国语在线视频| av一本久久久久| 丁香六月欧美| 中文乱码字字幕精品一区二区三区| 精品福利观看| 在线观看www视频免费| 午夜福利视频在线观看免费| 亚洲第一青青草原| 啦啦啦 在线观看视频| 亚洲人成77777在线视频| 久久免费观看电影| 国产极品粉嫩免费观看在线| 一本色道久久久久久精品综合| 日日夜夜操网爽| 成年人午夜在线观看视频| 性色av一级| 精品人妻一区二区三区麻豆| 国产精品国产av在线观看| 狠狠婷婷综合久久久久久88av| 观看av在线不卡| 91老司机精品| 国产在视频线精品| 热re99久久精品国产66热6| 国产xxxxx性猛交| 看免费成人av毛片| 亚洲欧美精品自产自拍| 久久免费观看电影| 色婷婷av一区二区三区视频| 欧美另类一区| 天天躁日日躁夜夜躁夜夜| 在线亚洲精品国产二区图片欧美| 国产在线观看jvid| 国产一区二区激情短视频 | 亚洲一码二码三码区别大吗| 国产精品秋霞免费鲁丝片| 伦理电影免费视频| 咕卡用的链子| 少妇粗大呻吟视频| 国产又爽黄色视频| 高清视频免费观看一区二区| 狠狠婷婷综合久久久久久88av| 别揉我奶头~嗯~啊~动态视频 | 777米奇影视久久| 黄片播放在线免费| 一本大道久久a久久精品| 999久久久国产精品视频| 日韩欧美一区视频在线观看| 国产女主播在线喷水免费视频网站| 制服诱惑二区| 午夜久久久在线观看| 亚洲国产最新在线播放| 亚洲精品国产区一区二| 免费黄频网站在线观看国产| 99re6热这里在线精品视频| 亚洲精品久久久久久婷婷小说| 成人国语在线视频| 精品少妇久久久久久888优播| 久热爱精品视频在线9| 搡老岳熟女国产| 欧美激情高清一区二区三区| 老司机午夜十八禁免费视频| 久久99热这里只频精品6学生| 手机成人av网站| 日本91视频免费播放| 国产欧美日韩精品亚洲av| 日韩人妻精品一区2区三区| 国产成人欧美在线观看 | 精品国产国语对白av| 欧美日韩黄片免| 亚洲男人天堂网一区| 中国美女看黄片| 成年女人毛片免费观看观看9 | 亚洲国产av新网站| 色视频在线一区二区三区| 97精品久久久久久久久久精品| 久久久国产欧美日韩av| 成在线人永久免费视频| av福利片在线| 91精品国产国语对白视频| 中文字幕亚洲精品专区| 99国产精品免费福利视频| 麻豆国产av国片精品| 9色porny在线观看| 国产片特级美女逼逼视频| 亚洲第一av免费看| 高清黄色对白视频在线免费看| 久久久国产一区二区| 色婷婷久久久亚洲欧美| 国产精品麻豆人妻色哟哟久久| 国产精品av久久久久免费| 可以免费在线观看a视频的电影网站| 亚洲国产欧美网| 国产视频一区二区在线看| 久久精品aⅴ一区二区三区四区| 国产av精品麻豆| 首页视频小说图片口味搜索 | 亚洲精品美女久久久久99蜜臀 | 国产精品熟女久久久久浪| 免费少妇av软件| 大型av网站在线播放| 啦啦啦在线观看免费高清www| 美女福利国产在线| 亚洲国产精品国产精品| 国产精品.久久久| 69精品国产乱码久久久| 青春草亚洲视频在线观看| 亚洲精品在线美女| 精品视频人人做人人爽| 天天添夜夜摸| 又大又黄又爽视频免费| 高潮久久久久久久久久久不卡| 男人爽女人下面视频在线观看| 日韩制服丝袜自拍偷拍| 亚洲成av片中文字幕在线观看| 如日韩欧美国产精品一区二区三区| 啦啦啦中文免费视频观看日本| 国产高清视频在线播放一区 | 在线天堂中文资源库| 如日韩欧美国产精品一区二区三区| 国产片内射在线| 久久久久国产精品人妻一区二区| 在线观看一区二区三区激情| 欧美激情高清一区二区三区| 日韩大片免费观看网站| 老司机深夜福利视频在线观看 | 精品国产一区二区三区四区第35| 1024视频免费在线观看| 丁香六月欧美| 极品少妇高潮喷水抽搐| 亚洲精品国产一区二区精华液| 精品福利观看| 亚洲,欧美精品.| 老司机午夜十八禁免费视频| 一区二区三区乱码不卡18| 女人高潮潮喷娇喘18禁视频| 亚洲黑人精品在线| 亚洲欧美日韩高清在线视频 | 别揉我奶头~嗯~啊~动态视频 | 精品少妇久久久久久888优播| 悠悠久久av| 国产成人精品在线电影| 国产麻豆69| 中文字幕精品免费在线观看视频| 涩涩av久久男人的天堂| av网站免费在线观看视频| 久久国产精品人妻蜜桃| 中文字幕制服av| 精品国产乱码久久久久久男人| 亚洲av男天堂| www日本在线高清视频| 天天影视国产精品| 亚洲黑人精品在线| 欧美精品av麻豆av| 乱人伦中国视频| 高清黄色对白视频在线免费看| 亚洲精品国产色婷婷电影| 午夜视频精品福利| 色网站视频免费| 久久午夜综合久久蜜桃| 国产爽快片一区二区三区| 免费高清在线观看日韩| 久久久国产一区二区| 热re99久久精品国产66热6| 天天添夜夜摸| 国产精品免费大片| 国产视频一区二区在线看| 国产精品久久久久久精品电影小说| 考比视频在线观看| 亚洲人成电影免费在线| 亚洲一区中文字幕在线| 1024香蕉在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产视频一区二区在线看| 夫妻性生交免费视频一级片| 欧美少妇被猛烈插入视频| 亚洲精品国产av蜜桃| 你懂的网址亚洲精品在线观看| 夫妻午夜视频| 久久久久久人人人人人| 久久精品国产亚洲av高清一级| 9色porny在线观看| 国产精品麻豆人妻色哟哟久久| 欧美精品一区二区大全| 国产高清videossex| 国产无遮挡羞羞视频在线观看| 成人亚洲欧美一区二区av| 大片电影免费在线观看免费| 老汉色∧v一级毛片| 波野结衣二区三区在线| 777米奇影视久久| 韩国高清视频一区二区三区| 免费女性裸体啪啪无遮挡网站| 国产av国产精品国产| 国产淫语在线视频| 亚洲天堂av无毛| 黄色视频在线播放观看不卡| 亚洲精品美女久久久久99蜜臀 | 自线自在国产av| 亚洲av欧美aⅴ国产| 脱女人内裤的视频| 精品一区二区三卡| 精品熟女少妇八av免费久了| 美女国产高潮福利片在线看| 亚洲久久久国产精品| 亚洲国产欧美在线一区| 秋霞在线观看毛片| 亚洲中文av在线| 又粗又硬又长又爽又黄的视频| 国产无遮挡羞羞视频在线观看| 夫妻性生交免费视频一级片| 国产激情久久老熟女| 亚洲精品国产av蜜桃| cao死你这个sao货| 50天的宝宝边吃奶边哭怎么回事| 亚洲av成人不卡在线观看播放网 | 国产伦人伦偷精品视频| 丰满人妻熟妇乱又伦精品不卡| 久久久精品区二区三区| 国产熟女欧美一区二区| 亚洲 欧美一区二区三区| 搡老岳熟女国产| 制服诱惑二区| 夜夜骑夜夜射夜夜干| 老汉色av国产亚洲站长工具| 国产成人91sexporn| 少妇 在线观看| 午夜福利免费观看在线| 亚洲欧洲日产国产| 国产亚洲精品久久久久5区| 日韩中文字幕视频在线看片| 91字幕亚洲| 欧美成狂野欧美在线观看| 国产精品久久久久久精品电影小说| 女人久久www免费人成看片| 午夜免费鲁丝| 欧美激情 高清一区二区三区| 精品一区在线观看国产| 国产xxxxx性猛交| 亚洲成国产人片在线观看| 男女午夜视频在线观看| 免费观看a级毛片全部| 亚洲欧美激情在线| 天堂中文最新版在线下载| 久久国产亚洲av麻豆专区| 午夜福利一区二区在线看| 18禁裸乳无遮挡动漫免费视频| 亚洲av综合色区一区| 欧美在线一区亚洲| av国产久精品久网站免费入址| 亚洲国产精品999| 国产视频首页在线观看| 国产淫语在线视频| 18禁裸乳无遮挡动漫免费视频| 乱人伦中国视频| 一区二区av电影网| 热re99久久精品国产66热6| 天堂中文最新版在线下载| 一级毛片电影观看| 久久人人97超碰香蕉20202| 日韩av不卡免费在线播放| 中文字幕高清在线视频| 国产精品国产av在线观看| 亚洲欧洲日产国产| 国产在线一区二区三区精| 制服诱惑二区| 一边摸一边抽搐一进一出视频| 黄色视频不卡| svipshipincom国产片| 久久久久国产精品人妻一区二区| 女性生殖器流出的白浆| 大片电影免费在线观看免费| 国产视频一区二区在线看| 99国产综合亚洲精品| 丰满人妻熟妇乱又伦精品不卡| 狠狠精品人妻久久久久久综合| 男女下面插进去视频免费观看| 一级毛片女人18水好多 | 后天国语完整版免费观看| 国产片特级美女逼逼视频| 欧美老熟妇乱子伦牲交| 亚洲国产中文字幕在线视频| 免费少妇av软件| 日韩大片免费观看网站| 精品亚洲乱码少妇综合久久| 亚洲美女黄色视频免费看| 精品福利观看| 国产精品av久久久久免费| 午夜福利视频精品| 国产在线免费精品| 亚洲欧美日韩高清在线视频 | 中文精品一卡2卡3卡4更新| 久久精品国产a三级三级三级| 欧美成狂野欧美在线观看| 亚洲欧美精品综合一区二区三区| 国产成人精品久久久久久| 无限看片的www在线观看| 国产亚洲精品久久久久5区| 男女之事视频高清在线观看 | 久久精品国产a三级三级三级| 一区在线观看完整版| 亚洲第一青青草原| 99热网站在线观看| 18禁观看日本| 中文字幕人妻熟女乱码| 天堂俺去俺来也www色官网| 欧美精品人与动牲交sv欧美| 亚洲精品国产av成人精品| 国产三级黄色录像| 精品第一国产精品| kizo精华| 欧美精品av麻豆av| 考比视频在线观看| 一本色道久久久久久精品综合| 久久精品国产a三级三级三级| 一区在线观看完整版| 亚洲中文字幕日韩| 日韩av在线免费看完整版不卡| a级毛片黄视频| 日本a在线网址| 美国免费a级毛片| 视频区欧美日本亚洲| 高清不卡的av网站| 久久精品国产亚洲av涩爱| 国产日韩一区二区三区精品不卡| 日韩精品免费视频一区二区三区| 成人国产av品久久久| 成人免费观看视频高清| 亚洲av电影在线观看一区二区三区| 国产在线一区二区三区精| 欧美日韩视频精品一区| 日韩中文字幕欧美一区二区 | av在线播放精品| www.999成人在线观看| 欧美日韩亚洲国产一区二区在线观看 | 免费观看人在逋| 日日夜夜操网爽| 亚洲精品美女久久av网站| 脱女人内裤的视频| 亚洲视频免费观看视频| 丰满人妻熟妇乱又伦精品不卡| 久久天堂一区二区三区四区| 亚洲精品国产色婷婷电影| 国产一卡二卡三卡精品| av一本久久久久| 精品一品国产午夜福利视频| 亚洲国产欧美在线一区| 好男人电影高清在线观看| 少妇裸体淫交视频免费看高清 | 99精国产麻豆久久婷婷| 精品卡一卡二卡四卡免费| 90打野战视频偷拍视频| 亚洲精品国产av成人精品| 亚洲七黄色美女视频| 在线 av 中文字幕| 国产精品 国内视频| 亚洲精品成人av观看孕妇| 亚洲精品日韩在线中文字幕| 精品国产超薄肉色丝袜足j| 美女主播在线视频| 乱人伦中国视频| 国产精品人妻久久久影院| 亚洲国产毛片av蜜桃av| 又粗又硬又长又爽又黄的视频| 国产日韩欧美亚洲二区| 亚洲av成人精品一二三区| 亚洲少妇的诱惑av| 国产精品亚洲av一区麻豆| videos熟女内射| 2018国产大陆天天弄谢| 国产xxxxx性猛交| 18禁裸乳无遮挡动漫免费视频| 午夜福利视频在线观看免费| 日韩大片免费观看网站| av在线老鸭窝| 可以免费在线观看a视频的电影网站| 国产亚洲精品第一综合不卡| 最新在线观看一区二区三区 | 黄色视频不卡| 国产免费视频播放在线视频| 久久精品人人爽人人爽视色| 热re99久久国产66热| 国产高清不卡午夜福利| 好男人视频免费观看在线| 99精国产麻豆久久婷婷| 一本综合久久免费| 国产成人精品久久久久久| 色婷婷久久久亚洲欧美| 国产成人精品无人区| 97人妻天天添夜夜摸| 亚洲五月婷婷丁香| 欧美 日韩 精品 国产| 久久这里只有精品19| 精品人妻1区二区| 两人在一起打扑克的视频| 少妇精品久久久久久久| 中文字幕色久视频| 天天躁狠狠躁夜夜躁狠狠躁| 少妇的丰满在线观看| 精品视频人人做人人爽| 黑人猛操日本美女一级片| 另类亚洲欧美激情| 丰满迷人的少妇在线观看| 欧美人与善性xxx|