• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal tracking control for automatic transmission shift process

    2015-04-22 02:33:16WANGuoqiang萬(wàn)國(guó)強(qiáng)LIKeqiang李克強(qiáng)PEILing裴玲HUANGYing黃英ZHANGFujun張付軍
    關(guān)鍵詞:黃英主要參數(shù)萬(wàn)國(guó)

    WAN Guo-qiang(萬(wàn)國(guó)強(qiáng)), LI Ke-qiang(李克強(qiáng)), PEI Ling(裴玲),HUANG Ying(黃英),, ZHANG Fu-jun(張付軍)

    (1.State Key Laboratory of Automotive Safety and Energy,Tsinghua University, Beijing 100084, China;2.Laboratory for Integrated Power System Technology, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Optimal tracking control for automatic transmission shift process

    WAN Guo-qiang(萬(wàn)國(guó)強(qiáng))1, LI Ke-qiang(李克強(qiáng))1, PEI Ling(裴玲)2,HUANG Ying(黃英), ZHANG Fu-jun(張付軍)2

    (1.State Key Laboratory of Automotive Safety and Energy,Tsinghua University, Beijing 100084, China;2.Laboratory for Integrated Power System Technology, Beijing Institute of Technology, Beijing 100081, China)

    In order to improve the shift quality, a linear quadratic optimal tracking control algorithm for automatic transmission shift process is proposed. The dynamic equations of the shift process are derived using a Lagrange method. And a powertrain model is built in the Matlab/Simulink and verified by the measurements. Considering the shift jerk and friction loss during the shift process, the tracking trajectories of the turbine speed and output shaft speed are defined. Furthermore, the linear quadratic optimal tracking control performance index is proposed. Based on the Pontryagin’s minimum principle, the optimal control law of the shift process is presented. Finally, the simulation study of the 1-2 upshift process under different load conditions is carried out with the powertrain model. The simulation results demonstrate that the shift jerk and friction loss can be significantly reduced by applying the proposed optimal tracking control method.

    powertrain; automatic transmission; shift process; optimal tracking control

    Drivability and fuel economy arecontinuously emphasized during the development of automatic transmission[1-2]. The clutch-to-clutch shift control technology is the key enabler for a compact, light mass and low cost automatic transmission design, especially when the transmission has an extended number of speeds.

    To improve the shift quality, a number of researches have focused on the clutch-to-clutch shift control technologies. D. Cho developed a clutch-to-clutch shift controller based on the sliding mode control[3]. To compensate for the effects of the life cycle and build-to-build variations, K. Hebbale and C. Kao presented a model reference adaptive controller[4]. T. Minowa et al. proposed anH∞controller to restrain the torque fluctuation when shift characteristics change occurs[5]. To minimize the performance measure, A. Haj-Fraj and F. Pfeiffer presented a model-based optimal control approach using a dynamic programming method[6]. To overcome the unmodeled dynamics or the variations of system characteristics, J. O. Hahn et al. proposed a self-learning algorithm for the inertia phase[7]. S. Watechagit and K. Srinivasan presented a model-based sliding mode observer to provide on-line estimates of the clutch pressures[8]. To enable a precise pressure-based control and avoid the chattering effect, Xingyong Song and Zongxuan Sun designed a sliding-mode controller[9]. Using the concept of input-to-state stability, Bingzhao Gao et al. presented a clutch pressure observer to improve the estimation accuracy during the torque phase[10].

    To minimize the jerk and friction loss of shift process, a linear quadratic optimal tracking control method is proposed in this paper. The paper is organized as follows. A powertrain model is built and verified in Section 1. In Section 2, the optimal tracking control for automatic transmission shift process is proposed. Section 3 shows the simulation results. Conclusions are drawn in section 4.

    1 Powertrain model

    A powertrain system with automatic transmission consists of four components: engine, torque converter, planetary gearbox and output train, as shown in Fig.1. To analyze the shift process, the powertrain system can be simplified as a lumped mass multi-degree of freedom system. Each component of the powertrain can be considered as a rigid multibody subsystem. The rigid bodies are connected with each other by ideal rigid joints, clutches and force elements.

    CL—the lockup clutch; C1-C5—the clutch/brake; P1, P2, P3—the planetary gear set

    1.1 Engine

    For investigation of the shift process, the high-frequency vibrations of the engine can be neglected. Therefore, the engine can be modeled as a rotating rigid body. The indicated torque of engine can be described by the following equation

    Tin=mfHuηi

    (1)

    whereTinis the indicated torque of engine;mfis the fuel delivery per cycle;Huis the low heating value of diesel;ηiis the indicated thermal efficiency.

    The effective torque of engine can be described as

    Te=Tin-Tf

    (2)

    whereTeis the effective torque of engine;Tfis the friction torque of engine.

    The equation of motion of the engine crankshaft can be written as

    (3)

    where Ieisthemomentofinertiaofcrankshaft;ωeis the engine angular velocity;Tpis the pump torque.

    1.2 Torque converter

    The pump torque and turbine torque can be obtained by

    (4)

    Tt=kTp

    (5)

    whereλis the pump torque coefficient;ρis the fluid density;gis the acceleration of gravity;Dis the equivalent diameter of torque converter;neis the engine speed;Ttis the turbine torque;kis the torque ratio of torque converter.

    1.3 Planetary gearbox

    The planetary gearbox consists of three planetary gear sets, two clutches and three brakes as shown in Fig.1. By the engagement of the clutches/brakes in various combinations, the planetary sets act singly or together to provide five forward ranges, neutral, and reverse. In the paper, the gear upshift from the first to the second gear will be considered. C1 and C5 engage to attain the first gear. During the 1-2 shift process, solenoid A energizes and exhausts clutch C5. Solenoid B energizes and engages clutch C4. C1 and C4 engage to attain the second gear. Solenoid A and solenoid B are pressures proportional to current solenoids. Varying currents to these solenoids changes the applied pressures to specific clutches. The currents of the solenoids are controlled by the powertrain control module.

    Clutch C1 keeps engagement during the 1-2 shift process. To analyze the 1-2 shift process, the planetary gearbox can be further simplified as shown in Fig.2.

    Fig.2 Simplified planetary gearbox diagram

    1.3.1 Kinematics analysis

    According to the motion property equation of planetary gear train, the following equations are obtained

    (ki+1)ωPCi=ωSi+kiωRi(i=1,2,3)

    (6)

    (7)

    where kisthegearratiobetweentheringgearandsungear; iistheserialnumberoftheplanetaryset;ωPCis the planet carrier angular velocity;ωSis the sun gear angular velocity;ωRis the ring gear angular velocity;ωPis planet pinion angular velocity.

    Choosing the turbine angular velocityωtand the output shaft angular velocityωoas variables, according to Eqs.(6)(7),we obtain

    (8)

    1.3.2 Dynamic analysis based on the Lagrange method

    In the paper, the Lagrange method was applied for the dynamic analysis of the 1-2 upshift process. The input shaft angleφtand output shaft angleφoare chosen as the generalized coordinates, that isq1=φt,q2=φo.

    The virtual work of the system in terms of the virtual displacements is

    ∑δW=Tiδφt+TC4δφR2-TC5δφR3-Toδφo

    (9)

    where δWis the virtual work of the system;Tiis the input torque of gearbox;TC4is the friction torque of clutch C4;TC5is the friction torque of clutch C5;Tois the output torque of gearbox;φR2is the angle of R2;φR3is the angle of R3.

    The generalized forcesQ1,Q2are defined as

    (10)

    (11)

    Lagrangian functionLis defined as

    L=K-V

    (12)

    whereKis the total kinetic energy of the system;Vis the total potential energy of the system.

    Each planetary set has four pinions. In this case, there is no potential energy change due to the rotation of the pinions around the sun. Thus,V=0.

    The kinetic energy of the system is

    (13)

    where IS2S3isthemomentofinertiaofS2,S3andtheconnectedshafts; IR2isthemomentofinertiaofR2andtheconnectedshaft; IPC2R3isthemomentofinertiaofPC2,R3andtheconnectedshafts;IPC3isthemomentofinertiaofPC3andtheconnectedshafts; IP2andIP3aretheequivalentmomentofinertiaofP2andP3.

    Lagrange’sequationforthesystemis

    (14)

    (15)

    Theequationofmotionoftheturbineshaftcanbedescribedas

    (16)

    whereIttheequivalentmomentofinertiaofturbineshaft.

    NotethatclutchC4andclutchC5arebrakes,theirpassivefrictionplatesarefixed.ωR2andωR3are the relative speed of clutch C4 and C5, respectively. In this paper, the clutch C4 is taken as an example to demonstrate the torque characteristics of the wet clutch.

    WhenωR2≠0, the clutch C4 slips. The friction torque is calculated as

    TC4=-sgn(ωR2)μkApzrep

    (17)

    whereμkis the dynamic friction coefficient;Apis the area of piston surface;zis the number of friction surfaces;reis the equivalent friction radius;pis the clutch pressure.

    Thedynamic friction coefficientμkis specified as a tabulated discrete function of the relative angular speedωR2.

    μk=0.063 1+0.050 4exp (-0.033ωR2)

    (18)

    WhenωR2=0, the clutch C4 sticks. The static friction torque can be calculated as

    TC4=μsApzrep

    (19)

    whereμsis the static friction coefficient.

    1.4 Output train

    The equation of motion of the wheels can be indicated as

    (20)

    where Iwisthemomentofinertiaofthewheels;ωwis the wheel angular velocity;iois the transmission ratio of the rear differential;Tois the output torque of gearbox;Twis the output torque of wheels.

    TL=(Froll+Fwind+Fincl)r

    (21)

    whereFrollis the rolling force;Fwindis the wind force;Finclis the inclination force;ris wheel radius.

    The equation of motion of the output train with the vehicle mass can be written as

    (22)

    where misvehiclemass.

    Thewheelangularvelocityandoutputshaftangularvelocityhasthefollowingrelation

    ωo=ioωw

    (23)

    1.5 Model verification

    To develop and investigate the optimal tracking control for the shift process of automatic transmission, the powertrain system is built in the Matlab/Simulink. A two-stage, torque phase and inertia phase, control strategy is used during the 1-2 shift process. In the torque phase the open-loop control of the clutch pressure was applied[9], while in the inertia phase the feedback control based on the predetermined target turbine speed was adopted. The comparison between simulations performed with the presented model and the measurements carried out on the test bench during the 1-2 shift process under different load conditions shows a very good agreement, as shown in Fig.3 and Fig.4. Therefore the powertrain model can be used to develop a model-based optimal tracking control for the shift process. Moreover, the simulation results of the two-stage control will be regarded as the reference in the following section.

    MRI試驗(yàn)主要參數(shù):重復(fù)時(shí)間TR=1000 ms;矩陣256×256;信號(hào)接收帶寬SW=40 kHz;采樣次數(shù)NS=4;根據(jù)CPMG序列測(cè)得的T2值,選擇回波時(shí)間TE=1 ms進(jìn)行成像,采集數(shù)據(jù),同時(shí),通過(guò)調(diào)整MSE序列中的選層梯度、相位編碼梯度和頻率編碼梯度,獲取樣品側(cè)視成像數(shù)據(jù)[11]。

    Fig.3 Comparison of simulations and measurements, TL=750 N·m

    Fig.4 Comparison of simulations and measurements, TL=1 500 N·m

    2 Optimal tracking control for shift process

    In order to minimize the shift jerk and friction loss, an optimal tracking control algorithm is developed for the inertia phase during the shift process. The control strategy during the torque phase still uses the open-loop control of clutch pressure.

    2.1 State space representation

    It should be noted that the clutch C4 slips during the inertia phase, while the clutch C5 is supposed to be disengaged andTC5is set to zero[11]. Therefore, the dynamic equations of planetary gearbox can be written as

    (24)

    According to Eqs. (16) (20) (22)-(24), the equations of motion of the gearbox during the inertia phase can be concluded as

    (25)

    The dynamics of the 1-2 shift process can be described byωtandωo. Then the state vector is defined as

    (26)

    Introducing the control vector consisting of the turbine torque TtandthefrictiontorqueofclutchC4 TC4

    (27)

    Theequationsofmotionofthepowertrainmodelcanbeformulatedas

    (28)

    (29)

    Therefore,thefollowingstatespaceequationcanbeobtained

    (30)

    In order to eliminate theinfluence of disturbanceΓ, assuming that

    (31)

    (32)

    uo=-B-1Γ

    (33)

    then the system can be written as

    (34)

    2.2 Problem formulation

    The shift jerk is a general index for evaluating the shift comfort. The shift jerk is defined as the derivative of the longitudinal acceleration with respect to time.

    (35)

    where jistheshiftjerk; aisthelongitudinalacceleration.

    Eq.(35)showsthattheshiftjerkcanbeminimizedaslongasthevalueofωois fixed or variable in a fixed rate. In this paper, the tracking trajectory of the output shaft angular velocityz1is set as

    (36)

    whereωo0is the initial value of the output speed in the inertia phase;aois the desired vehicle acceleration.

    The friction loss is defined as the work done by the relative slip of the driving and driven friction plates during clutch engaging process.

    (37)

    where WC4isthefrictionlossofclutchC4.

    Thetrackingtrajectoryoftheoutputshaftangularvelocityhasbeendetermined.Therefore,thecontrolproblemtominimizethefrictionlosscanbetransformedintoaturbinespeedtrackingcontrolproblem.Alargenumberofresearchesshowthatafeedbackcontroloftheturbinespeedcansignificantlyimprovetheshiftquality.Generally,thedesiredturbinespeedissettovaryinafixedrate[10].Thereby,thetrackingtrajectoryoftheturbinespeedangularvelocityz2issetas

    z2(t)=ωt0-αt0t

    (38)

    whereωt0is the initial value of the turbine speed in the inertia phase;αt0is the desired turbine angular acceleration.

    The expected output z(t) is defined as

    (39)

    In the paper, the control objection of the optimal tracking control is to ensure that y(t) can accurately track z(t) with the minimal control energy consumption. The performance index of the optimal tracking control during the shift process is formulated as

    (40)

    where Q and R are the weight matrices.

    The shift quality control problem has been transformed to a linear quadratic optimal tracking control problem, that is

    (41)

    2.3 Optimal tracking control law

    The linear quadratic optimal tracking control problem is solved by the Pontryagin’s minimum principle[12]. The optimal control law is obtained

    (42)

    P(t) satisfies the matrix differential Riccati equation

    (43)

    In the paper, an integrated powertrain control is proposed to achieve the optimal control law. The engine is controlled by the turbine torque closed loop control based on the PID algorithm. Meanwhile, the transmission is controlled by the clutch pressure open loop control according to Eqs.(17)(19).

    3 Results

    In the following, some results achieved by applying the proposed optimal tracking control law to the verified powertrain simulation model are presented. The reference control is the same one used to verify the simulation model.

    Fig.5 shows the shift jerk and friction loss in the case that the load torque is 750 N·m. With the reference control, the maximum positive jerk is 28 m/s3and the maximum negative jerk is -14 m/s3. Additionally, the friction loss is 4 300 J. As expected, by applying the optimal tracking control, the maximum positive jerk and negative jerk are reduced to 23 m/s3and -8 m/s3, respectively. Furthermore, the friction loss is reduced to 3 300 J.

    Fig.5 Results of TL=750 N·m

    Fig.6 shows the results for the case that the load torque is 1 500 N·m. By the application of the reference control, the maximum positive jerk is 25 m/s3and the maximum negative jerk is -12 m/s3. Additionally, the friction loss is 6400J. While, applying the optimal tracking control algorithm, the maximum positive jerk and negative jerk are only 15 m/s3and -9 m/s3, which apparently improve the shifting comfort. Furthermore, the friction loss is reduced to 5 300 J, which improves the life expectancy of the friction discs.

    The results demonstrate that the shift jerk and friction loss can be significantly reduced by applying the proposed optimal tracking control algorithm. Moreover, the proposed control approach is found to be robust under different load cases.

    Fig.6 Results of TL=1 500 N·m

    4 Conclusions

    An optimal tracking control algorithm of the shift process for the vehicle with automatic transmissions was proposed in this paper. Based on the dynamic analysis of the shift process using the Lagrange method, a mechanical model of the powertrain system is developed and verified. Considering the shift jerk and friction loss during the shift process, the turbine speed and output shaft speed tracking trajectories are defined. Then the shift quality control problem has been transformed to a linear quadratic optimal tracking control problem. The problem has been solved by the Pontryagin’s minimum principle.

    The optimal control law of the shift process derived in this paper consists of both a feedforward and a feedback portion. The feedforward control is to match the load torque. Meanwhile, the feedback control is to ensure that the system can accurately track the target trajectories.

    The simulation study of the 1-2 upshift process under different load conditionsis carried out based on the verified powertrain model. The simulation results show that the shift jerk and friction loss can be significantly reduced by application of the proposed optimal tracking control.

    [1] Sun Z, Hebbale K. Challenges and opportunities in automotive transmission control[C]// Proceedings of the 2005 American Control Conference, Portland, Oregon, USA, 2005: 3284-3289.

    [2] Greiner J, Grumbach M. Automatic transmission systems beyond 2020: challenges and competition[C]// SAE 2013 World Congress & Exhibition, Detroit, Michigan, USA, 2013: 2013-01-1273.

    [3] Cho D. Nonlinear control method for automotive powertrain system[D]. Massachusetts: Massachusetts Institute of Technology, 1987.

    [4] Hebbale K, Kao C. Adaptive control of shifts in automatic transmissions[C]// Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, California, USA, 1995: 171-182.

    [5] Minowa T, Ochi T, Kuroiwa H, et al. Smooth gear shift control technology for clutch-to-clutch shifting[C]// International Congress and Exposition, Detroit, Michigan, USA, 1999: 1999-01-1051.

    [6] Haj-Fraj A, Pfeiffer F. Optimal control of gear shift operations in automatic transmissions[J]. Journal of the Franklin Institute, 2001, 338(2-3): 371-390.

    [7] Hahn J O, Hur J W, Choi G W, et al. Self- learning approach to automatic transmission shift control in a commercial construction vehicle during the inertia phase[J]. Proceeding of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2002, 216(11): 909-919.

    [8] Watechagit S, Srinivasan K. Implementation of on-line clutch pressure estimation for stepped automatic transmission[C]// Proceedings of the 2005 American Control Conference, Portland, Oregon, USA, 2005: 1607-1612.

    [9] Song X, Sun Z. Pressure-based clutch control for automotive transmission using a sliding-mode controller[J]. Transactions of the IEEE/ASME on Mechatronics, 2012, 17(3): 534-546.

    [10] Gao B, Chen H, Tian L, et al. A nonlinear clutch pressure observer for automatic transmission: considering drive-shaft compliance[J]. Transactions of the ASME, Journal of Dynamics Systems, Measurement, and Control, 2012, 134(1): 11-18.

    [11] Tokura T, Asami T, Hasegawa Y, et al. Development of smooth up-shift control technology for automatic transmissions with integrated control of engine and automatic transmission[C]// SAE World Congress & Exhibition, Detroit, Michigan, USA, 2007: 2007-01-1310.

    [12] Naidu D S. Optimal control systems[M]. Boca Raton, FL: CRC Press, 2002: 125-141.

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0405

    U 27 Document code: A Article ID: 1004- 0579(2015)04- 0458- 08

    Received 2014-10- 31

    Supported by the National Natural Science Foundation of China(51475043)

    E-mail: hy111@bit.edu.cn

    猜你喜歡
    黃英主要參數(shù)萬(wàn)國(guó)
    生活垃圾分類對(duì)垃圾主要參數(shù)的影響分析
    有機(jī)硅流化床氣體分布板主要參數(shù)設(shè)計(jì)
    黃英推出傾心之作《奶奶的蒲扇》
    青年歌聲(2019年12期)2019-12-17 06:49:54
    春節(jié)700萬(wàn)國(guó)人出境游
    馬萬(wàn)國(guó)作品
    紀(jì)念卡拉斯,是紀(jì)念一種精神——聽黃英致敬卡拉斯音樂會(huì)
    歌劇(2017年4期)2017-05-17 04:06:56
    碎邊剪剪切特性分析與主要參數(shù)確定
    “萬(wàn)國(guó)茶幫”拜媽祖
    海峽姐妹(2016年7期)2016-02-27 15:21:38
    影響輪軌粘滑振動(dòng)的主要參數(shù)分析
    黃英 不改野路子
    音樂周刊(2011年1期)2011-08-16 03:32:14
    国产精品久久久久久久久免| 欧美一区二区亚洲| 精品熟女少妇av免费看| 国产乱来视频区| 亚洲av福利一区| 国内精品一区二区在线观看| 内地一区二区视频在线| 狠狠狠狠99中文字幕| 99视频精品全部免费 在线| 亚洲国产精品久久男人天堂| 亚洲欧美中文字幕日韩二区| 国产视频首页在线观看| av天堂中文字幕网| 日韩一区二区三区影片| 九色成人免费人妻av| 人人妻人人澡欧美一区二区| 日韩欧美在线乱码| 禁无遮挡网站| 久久亚洲精品不卡| 日韩精品青青久久久久久| 国产成人a区在线观看| 欧美一区二区亚洲| 亚洲精品乱码久久久久久按摩| 国产伦在线观看视频一区| 欧美成人精品欧美一级黄| 97在线视频观看| 亚洲激情五月婷婷啪啪| 伦理电影大哥的女人| 精品久久久久久成人av| 乱人视频在线观看| 国产免费一级a男人的天堂| kizo精华| 国产一级毛片在线| 综合色av麻豆| 欧美精品一区二区大全| 国语自产精品视频在线第100页| 精品99又大又爽又粗少妇毛片| 亚洲av电影在线观看一区二区三区 | 国产精品久久久久久精品电影小说 | 成年版毛片免费区| 国产成人aa在线观看| АⅤ资源中文在线天堂| 波多野结衣高清无吗| 日本熟妇午夜| 在线免费十八禁| 高清av免费在线| 欧美一区二区国产精品久久精品| 精品国产一区二区三区久久久樱花 | 国产三级中文精品| 最近最新中文字幕大全电影3| 国产中年淑女户外野战色| 精品免费久久久久久久清纯| 自拍偷自拍亚洲精品老妇| 日本午夜av视频| 男女啪啪激烈高潮av片| 高清视频免费观看一区二区 | 亚洲精品影视一区二区三区av| 少妇裸体淫交视频免费看高清| 国产精品福利在线免费观看| 97超碰精品成人国产| 精品久久久久久久久久久久久| 国语对白做爰xxxⅹ性视频网站| 看非洲黑人一级黄片| 看免费成人av毛片| 岛国毛片在线播放| 欧美极品一区二区三区四区| 综合色av麻豆| 色噜噜av男人的天堂激情| 日本免费一区二区三区高清不卡| 免费观看精品视频网站| 亚洲成人久久爱视频| 日韩亚洲欧美综合| 免费不卡的大黄色大毛片视频在线观看 | 国产91av在线免费观看| 国产老妇伦熟女老妇高清| 在线免费观看的www视频| 男人舔奶头视频| 全区人妻精品视频| 天堂网av新在线| 又爽又黄a免费视频| 一本一本综合久久| 一边亲一边摸免费视频| 亚洲怡红院男人天堂| 国产一区二区在线观看日韩| 精品国产露脸久久av麻豆 | av在线天堂中文字幕| 又粗又爽又猛毛片免费看| 国产又色又爽无遮挡免| 久久久欧美国产精品| 99热全是精品| 超碰av人人做人人爽久久| 色哟哟·www| 久久久亚洲精品成人影院| 精品少妇黑人巨大在线播放 | 国产成人精品久久久久久| 夜夜看夜夜爽夜夜摸| 国产精品麻豆人妻色哟哟久久 | 日本黄色片子视频| 最近中文字幕高清免费大全6| 亚洲国产精品sss在线观看| 亚洲自拍偷在线| 欧美激情久久久久久爽电影| videos熟女内射| 99久久精品一区二区三区| 水蜜桃什么品种好| 69人妻影院| 综合色av麻豆| 久久99蜜桃精品久久| 少妇高潮的动态图| 看免费成人av毛片| 精品久久久久久久久久久久久| 日韩 亚洲 欧美在线| 久99久视频精品免费| 狂野欧美激情性xxxx在线观看| 亚洲真实伦在线观看| 久久99精品国语久久久| 伦精品一区二区三区| 国产免费男女视频| 尤物成人国产欧美一区二区三区| 一区二区三区免费毛片| 91久久精品国产一区二区三区| 日韩大片免费观看网站 | 免费搜索国产男女视频| 久久久久久伊人网av| 中文精品一卡2卡3卡4更新| 国产乱人视频| 伦理电影大哥的女人| 一个人看的www免费观看视频| 亚洲在线观看片| 嘟嘟电影网在线观看| 午夜激情福利司机影院| 两个人视频免费观看高清| 亚洲aⅴ乱码一区二区在线播放| 国产欧美另类精品又又久久亚洲欧美| 国产爱豆传媒在线观看| 成人毛片a级毛片在线播放| 激情 狠狠 欧美| 美女大奶头视频| 久久99精品国语久久久| 国产女主播在线喷水免费视频网站 | 六月丁香七月| 69人妻影院| 我的女老师完整版在线观看| 神马国产精品三级电影在线观看| 男人舔奶头视频| 国语自产精品视频在线第100页| 欧美日韩综合久久久久久| 欧美变态另类bdsm刘玥| 亚洲国产精品久久男人天堂| 亚洲天堂国产精品一区在线| 国产淫片久久久久久久久| 亚洲国产精品成人综合色| 岛国在线免费视频观看| 亚洲av福利一区| 国产高清视频在线观看网站| 黄片无遮挡物在线观看| 大话2 男鬼变身卡| av播播在线观看一区| 日本免费在线观看一区| 伊人久久精品亚洲午夜| 熟妇人妻久久中文字幕3abv| 国产大屁股一区二区在线视频| 又爽又黄a免费视频| 干丝袜人妻中文字幕| 成人无遮挡网站| 亚洲国产色片| 少妇猛男粗大的猛烈进出视频 | 久久亚洲国产成人精品v| 国产毛片a区久久久久| 久久人妻av系列| 97超碰精品成人国产| 国产又黄又爽又无遮挡在线| 国产探花在线观看一区二区| 女的被弄到高潮叫床怎么办| 精品无人区乱码1区二区| 国产乱来视频区| 亚洲va在线va天堂va国产| 国产黄色小视频在线观看| 久久精品久久精品一区二区三区| 国产成人精品婷婷| 长腿黑丝高跟| 日韩精品有码人妻一区| 午夜日本视频在线| 美女黄网站色视频| 日韩欧美精品v在线| 精品一区二区免费观看| 汤姆久久久久久久影院中文字幕 | 国内精品宾馆在线| 精品欧美国产一区二区三| 嫩草影院新地址| 国产成人a∨麻豆精品| 听说在线观看完整版免费高清| 亚洲伊人久久精品综合 | 丰满人妻一区二区三区视频av| 亚洲精品色激情综合| 男女下面进入的视频免费午夜| 天天躁夜夜躁狠狠久久av| 男人舔女人下体高潮全视频| 人人妻人人澡欧美一区二区| 国产一区亚洲一区在线观看| 日本wwww免费看| 婷婷六月久久综合丁香| 日本色播在线视频| 亚洲精品自拍成人| 色综合亚洲欧美另类图片| 日本色播在线视频| 国产不卡一卡二| 村上凉子中文字幕在线| 日韩人妻高清精品专区| 日本五十路高清| av在线蜜桃| eeuss影院久久| 欧美不卡视频在线免费观看| 内射极品少妇av片p| 最近中文字幕2019免费版| 91精品一卡2卡3卡4卡| 国产精品综合久久久久久久免费| 国产高清不卡午夜福利| 日本-黄色视频高清免费观看| 国产白丝娇喘喷水9色精品| 亚洲无线观看免费| 你懂的网址亚洲精品在线观看 | 综合色丁香网| 亚洲精品国产成人久久av| 亚洲av熟女| 我要搜黄色片| 黄色欧美视频在线观看| a级一级毛片免费在线观看| 国产又黄又爽又无遮挡在线| 亚洲在久久综合| 国产精品不卡视频一区二区| 欧美日本视频| 亚洲性久久影院| 欧美高清成人免费视频www| 在线观看66精品国产| 搞女人的毛片| 国产白丝娇喘喷水9色精品| 日日摸夜夜添夜夜添av毛片| 久久这里有精品视频免费| 一个人看的www免费观看视频| 国产精品乱码一区二三区的特点| 欧美三级亚洲精品| 国语自产精品视频在线第100页| 国产精品一区二区三区四区免费观看| 熟妇人妻久久中文字幕3abv| 免费一级毛片在线播放高清视频| 秋霞伦理黄片| 联通29元200g的流量卡| 欧美97在线视频| 国产黄片美女视频| 在线观看66精品国产| 亚洲成人中文字幕在线播放| 亚洲精品成人久久久久久| 国产不卡一卡二| 国产一区二区在线观看日韩| 亚洲国产精品sss在线观看| 九色成人免费人妻av| 国产成人精品婷婷| 久久久久久久久大av| 美女国产视频在线观看| 国产亚洲午夜精品一区二区久久 | 欧美极品一区二区三区四区| 亚洲,欧美,日韩| 91午夜精品亚洲一区二区三区| 亚洲精品久久久久久婷婷小说 | 午夜a级毛片| 美女国产视频在线观看| av免费在线看不卡| 女人十人毛片免费观看3o分钟| 综合色丁香网| 麻豆成人午夜福利视频| 成人性生交大片免费视频hd| 久久精品国产亚洲网站| 国产一级毛片在线| 晚上一个人看的免费电影| kizo精华| 少妇熟女aⅴ在线视频| 国产三级中文精品| av在线观看视频网站免费| 长腿黑丝高跟| 一级毛片电影观看 | 男人的好看免费观看在线视频| 男人的好看免费观看在线视频| 99热全是精品| 又爽又黄无遮挡网站| 99热精品在线国产| 国产在线男女| 欧美三级亚洲精品| 日韩欧美 国产精品| 美女大奶头视频| 草草在线视频免费看| 亚洲av免费在线观看| 我要看日韩黄色一级片| 日本av手机在线免费观看| 最近的中文字幕免费完整| 国产中年淑女户外野战色| 免费一级毛片在线播放高清视频| 国产精品人妻久久久久久| 1000部很黄的大片| 日产精品乱码卡一卡2卡三| 久久久久久国产a免费观看| 国产精品精品国产色婷婷| 国产亚洲精品久久久com| 国产美女午夜福利| 国产精品蜜桃在线观看| 久久精品国产亚洲av天美| 国产淫语在线视频| 亚洲欧美日韩东京热| 最近中文字幕2019免费版| 欧美bdsm另类| av免费在线看不卡| 一区二区三区免费毛片| 99在线视频只有这里精品首页| 一级爰片在线观看| 亚洲成av人片在线播放无| 永久免费av网站大全| 蜜臀久久99精品久久宅男| 国产成人精品婷婷| 久久综合国产亚洲精品| 国产精品嫩草影院av在线观看| 日韩一区二区三区影片| 久久人妻av系列| 中国美白少妇内射xxxbb| 伊人久久精品亚洲午夜| 边亲边吃奶的免费视频| 国产亚洲5aaaaa淫片| 国产高清国产精品国产三级 | 亚洲av.av天堂| 色综合站精品国产| 欧美xxxx黑人xx丫x性爽| 99久国产av精品国产电影| 免费观看精品视频网站| 免费av观看视频| 午夜福利在线在线| 3wmmmm亚洲av在线观看| 六月丁香七月| 久久久久网色| 国产在线一区二区三区精 | 久久久久国产网址| 波野结衣二区三区在线| 日韩人妻高清精品专区| 国产亚洲5aaaaa淫片| 草草在线视频免费看| 色综合站精品国产| 一夜夜www| 91精品国产九色| 乱码一卡2卡4卡精品| 亚洲色图av天堂| ponron亚洲| 高清av免费在线| 岛国在线免费视频观看| 日本三级黄在线观看| 联通29元200g的流量卡| 你懂的网址亚洲精品在线观看 | 亚洲婷婷狠狠爱综合网| 美女cb高潮喷水在线观看| 又爽又黄a免费视频| 小蜜桃在线观看免费完整版高清| 寂寞人妻少妇视频99o| 午夜日本视频在线| 视频中文字幕在线观看| 男插女下体视频免费在线播放| 女的被弄到高潮叫床怎么办| av在线老鸭窝| 看十八女毛片水多多多| 欧美精品一区二区大全| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品夜夜夜夜夜久久蜜豆| 性插视频无遮挡在线免费观看| 啦啦啦啦在线视频资源| 女的被弄到高潮叫床怎么办| 成人美女网站在线观看视频| 久久久久国产网址| 国产极品精品免费视频能看的| 亚洲国产精品sss在线观看| АⅤ资源中文在线天堂| 国产免费视频播放在线视频 | 好男人视频免费观看在线| 蜜桃久久精品国产亚洲av| 免费人成在线观看视频色| 国产精品综合久久久久久久免费| 在线观看一区二区三区| 国产黄片视频在线免费观看| 一级毛片我不卡| 免费看av在线观看网站| 啦啦啦观看免费观看视频高清| 成人毛片60女人毛片免费| 哪个播放器可以免费观看大片| 一区二区三区四区激情视频| 一级毛片我不卡| av线在线观看网站| 亚洲成av人片在线播放无| 亚洲欧美精品专区久久| 亚洲国产欧洲综合997久久,| 久久国内精品自在自线图片| 欧美成人免费av一区二区三区| 国产成人freesex在线| 国产女主播在线喷水免费视频网站 | 国产免费又黄又爽又色| 成年版毛片免费区| 深夜a级毛片| 欧美一区二区国产精品久久精品| 欧美成人a在线观看| 桃色一区二区三区在线观看| 国产探花在线观看一区二区| 熟女电影av网| 国产伦精品一区二区三区视频9| 色播亚洲综合网| 成人鲁丝片一二三区免费| 国产精品乱码一区二三区的特点| 久久久亚洲精品成人影院| 麻豆国产97在线/欧美| 国产亚洲av嫩草精品影院| 免费一级毛片在线播放高清视频| 欧美日韩综合久久久久久| 变态另类丝袜制服| 久久国内精品自在自线图片| 99久久成人亚洲精品观看| 人妻制服诱惑在线中文字幕| 只有这里有精品99| 国产精品日韩av在线免费观看| 日本一二三区视频观看| 日本一本二区三区精品| 人体艺术视频欧美日本| 国产伦精品一区二区三区视频9| 日本免费a在线| 久久精品国产亚洲av天美| 人妻制服诱惑在线中文字幕| 国产精品,欧美在线| 欧美xxxx黑人xx丫x性爽| 直男gayav资源| 国产精品国产高清国产av| 精华霜和精华液先用哪个| 日本av手机在线免费观看| a级毛色黄片| 麻豆成人av视频| 久久99蜜桃精品久久| 亚洲国产最新在线播放| 99久久人妻综合| 三级男女做爰猛烈吃奶摸视频| 热99在线观看视频| 亚洲av成人精品一区久久| 国产成年人精品一区二区| av在线播放精品| 欧美xxxx性猛交bbbb| 蜜桃亚洲精品一区二区三区| 欧美一级a爱片免费观看看| 看十八女毛片水多多多| 久久99精品国语久久久| 亚洲内射少妇av| 免费观看的影片在线观看| 亚洲国产精品国产精品| 国产探花极品一区二区| 亚洲精品,欧美精品| 亚洲精品色激情综合| 男插女下体视频免费在线播放| 女的被弄到高潮叫床怎么办| 最近中文字幕2019免费版| 日本色播在线视频| 欧美zozozo另类| 中文字幕亚洲精品专区| 中国美白少妇内射xxxbb| 天天躁夜夜躁狠狠久久av| 国产国拍精品亚洲av在线观看| videossex国产| 国产 一区 欧美 日韩| 亚洲第一区二区三区不卡| 丰满人妻一区二区三区视频av| 亚洲欧美中文字幕日韩二区| 天堂网av新在线| 亚洲欧美日韩高清专用| 亚洲国产成人一精品久久久| 不卡视频在线观看欧美| 久久国产乱子免费精品| 69人妻影院| av线在线观看网站| 亚洲成人av在线免费| 国产一区二区亚洲精品在线观看| 在现免费观看毛片| 99久久精品一区二区三区| 欧美精品一区二区大全| 色哟哟·www| 九九爱精品视频在线观看| 国产白丝娇喘喷水9色精品| 亚洲精品乱久久久久久| 国产片特级美女逼逼视频| 欧美97在线视频| 成人国产麻豆网| 色播亚洲综合网| 真实男女啪啪啪动态图| 三级国产精品欧美在线观看| 亚洲国产欧美在线一区| 国产黄色视频一区二区在线观看 | 黄片无遮挡物在线观看| 校园人妻丝袜中文字幕| 午夜福利成人在线免费观看| 欧美区成人在线视频| 亚洲精品色激情综合| 国产精品蜜桃在线观看| 国产高清不卡午夜福利| 床上黄色一级片| 尤物成人国产欧美一区二区三区| 大话2 男鬼变身卡| 国产精品精品国产色婷婷| 特大巨黑吊av在线直播| 中文亚洲av片在线观看爽| 一级毛片电影观看 | 一级毛片aaaaaa免费看小| 久久精品人妻少妇| 综合色丁香网| 久久人妻av系列| 国产一级毛片七仙女欲春2| 国产精品精品国产色婷婷| 99久国产av精品| 国产av码专区亚洲av| 国产精品三级大全| 少妇熟女欧美另类| 欧美日韩综合久久久久久| 国产亚洲91精品色在线| 免费在线观看成人毛片| 久久久久久久久久久免费av| 国产精品,欧美在线| 午夜精品国产一区二区电影 | 国产真实伦视频高清在线观看| 少妇猛男粗大的猛烈进出视频 | 日本午夜av视频| 午夜老司机福利剧场| 欧美高清成人免费视频www| 91av网一区二区| 日本一二三区视频观看| 一个人看视频在线观看www免费| www.色视频.com| 水蜜桃什么品种好| 看免费成人av毛片| 亚洲精品色激情综合| 男人狂女人下面高潮的视频| 亚洲中文字幕日韩| 亚洲最大成人av| 国产av一区在线观看免费| 22中文网久久字幕| 欧美激情在线99| 夜夜爽夜夜爽视频| 97人妻精品一区二区三区麻豆| 2021少妇久久久久久久久久久| 亚洲精华国产精华液的使用体验| 欧美bdsm另类| 国产精品嫩草影院av在线观看| 亚洲精华国产精华液的使用体验| 久久久久久伊人网av| 乱系列少妇在线播放| 伦精品一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲va在线va天堂va国产| 国产在线男女| 免费av毛片视频| 女人被狂操c到高潮| 全区人妻精品视频| 激情 狠狠 欧美| 中文字幕久久专区| 欧美bdsm另类| 最近手机中文字幕大全| 高清视频免费观看一区二区 | 亚洲精品自拍成人| 一个人观看的视频www高清免费观看| 亚洲在线自拍视频| 亚洲激情五月婷婷啪啪| 国产黄色小视频在线观看| 亚洲av中文字字幕乱码综合| 国产一区二区在线观看日韩| 精品一区二区三区视频在线| 岛国毛片在线播放| 亚洲欧洲日产国产| 午夜精品国产一区二区电影 | 黄片无遮挡物在线观看| 亚洲婷婷狠狠爱综合网| 看免费成人av毛片| 国产精品爽爽va在线观看网站| 国产在线一区二区三区精 | 久久精品影院6| 亚洲在线自拍视频| 亚洲欧洲国产日韩| 麻豆成人午夜福利视频| 亚洲欧美精品自产自拍| 欧美激情在线99| 国产精品不卡视频一区二区| 噜噜噜噜噜久久久久久91| 又爽又黄a免费视频| 91aial.com中文字幕在线观看| 亚洲一区高清亚洲精品| 日韩av不卡免费在线播放| 日本欧美国产在线视频| 国产午夜福利久久久久久| 国产精品久久视频播放| 日韩国内少妇激情av| 嫩草影院新地址| 免费看光身美女| 一级二级三级毛片免费看| 久久久欧美国产精品| 长腿黑丝高跟| 午夜久久久久精精品| 精品一区二区免费观看| 亚洲国产精品国产精品| 男女下面进入的视频免费午夜| 超碰97精品在线观看| 五月伊人婷婷丁香| 青春草国产在线视频| 22中文网久久字幕| 三级国产精品片| 91午夜精品亚洲一区二区三区| 男人和女人高潮做爰伦理| 高清午夜精品一区二区三区| 女的被弄到高潮叫床怎么办| 欧美日本亚洲视频在线播放| 少妇人妻精品综合一区二区| 亚洲真实伦在线观看|