• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flow field simulation of supercritical carbon dioxide jet: Comparison and sensitivity analysis*

    2015-04-20 05:52:23WANGHaizhu王海柱LIGensheng李根生TIANShouceng田守嶒CHENGYuxiong程宇雄HEZhenguo賀振國(guó)YUShuijie于水杰
    關(guān)鍵詞:振國(guó)

    WANG Hai-zhu (王海柱), LI Gen-sheng (李根生), TIAN Shou-ceng (田守嶒),CHENG Yu-xiong (程宇雄), HE Zhen-guo (賀振國(guó)), YU Shui-jie (于水杰)

    1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing),Beijing 102200, China, E-mail: whz0001@126.com 2. Sinopec International Petroleum Exploration and Production Corporation, Beijing 100029, China

    Introduction

    During previous decades, the high-pressure water jet technology plays an important role in the oil and gas well drilling and the fracturing stimulations[1,2].Meanwhile, with the rapid development of the oil and gas exploitation, in the petroleum industry, the unconventional oil and gas exploration starts to attract attentions[3]. However, the operating risks and costs of the unconventional oil and gas exploration are high, while not much improvement of the water jet technology can be made. In this context, the supercritical carbon dioxide (SC-CO2) jet technology was proposed[4]. The unique properties of the SC-CO2fluid, such as the adjustable density, the low viscosity and the high diffusivity, bring about many advantages for the SC-CO2jet to be applied in the oil and gas exploration[5].

    Firstly, the threshold pressure of the SC-CO2jet is far smaller than that of the water jet. The experiment results indicate that the threshold pressure of the CO2jet is 2/3 of that of the water jet for the granite and less than half of that of the water jet for the shale[6-8]. Secondly, because there is no solid particle or water in the SC-CO2fluid, the SC-CO2flooding in oil and gas reservoirs makes no damage to the reservoirs, while increasing the porosity and the permeability of the pay zone, enlarging the fluidity of the crude oil, and enhancing the reservoir energy[9]. Furthermore,since the adsorption capacity of CO2with respect to the reservoir rocks is stronger than that of CH4, CO2would replace the adsorbed shale-gas and the coal bed methane, enhancing the single well production and the oil and gas recovery[10].

    Experimental results show that the rock-breakingcapacity of the SC-CO2jet is much better than that of the water jet[6]. However its mechanism remains not very clear. Meanwhile, the influences of various parameters on the flow field of the SC-CO2jet also remain to be explored. In this paper, the flow fields of the SCCO2jet are simulated using the computational fluid dynamics (CFD) method. The pressure and velocity fields of the SC-CO2jet are compared with those of the water jet. The influences of several parameters on the flow field of the SC-CO2jet are studied as well.These results provide a theoretical basis for the application of the SC-CO2jet in the oil and gas well drilling and the fracturing stimulation.

    Fig.1 Geometric model of the flow field

    1. CFD model

    1.1 Flow field

    As shown in Fig.1, a two-dimensional geometric model of the SC-CO2jet flow field is built for the simulation, where the cylindrical polar coordinate system is used. The model consists of two parts: the internal space of the nozzle (including the conical section and the cylinder section), and the jet region. This model is symmetrical vertically with respect to the nozzle axis (bd). According to the literature about the conical nozzle for the water jet[11,12], the structure parameters of the conical nozzle for the SC-CO2jet are chosen. The length parameters are as follows: the diameter of the nozzle inlet (a1) is 0.016 m, the diameter of the nozzle outlet (hj) is 0.006 m, the length of the conical section (bc) is 0.020 m, the length of the cylinder (ci) is 0.012 m, the standoff distance (id) is 0.028 m, and the height of the flow field (me) is 0.100 m.

    In the SC-CO2jet, SC-CO2flows through the nozzle inlet (a1), enters the jet region, impacts on the wall (me), and then flows out of the flow field through the outlet (fg) and (kn). The nozzle inlet (a1) is defined as the pressure inlet boundary, while the flow field outlets (fg) and (kn) are defined as the pressure outlet boundary, with the pressure called the confining pressure. Other boundaries (fe, em, nm) are defined as no-slip wall boundaries.

    1.2 Model details

    The SC-CO2jet fracturing involves the heat transfer and the compressible fluid, therefore, the energy equations, as well as the mass equations and the momentum equations, should be considered. As the SCCO2jet is a turbulent flow of the high-speed CO2fluid,the gravity is ignored, and the standardk-εmodel is adopted for the turbulence closure. The governing equations are as follows[13]:

    The mass equations are

    whereρis the density,vis the velocity vector.

    In the cylindrical polar coordinate system, the momentum equations take the form

    wherexis the axial coordinate,ris the radial coordinate,vxis the axial velocity,vris the radial velocity,vzis the swirl velocity,μis the dynamic viscosity,pis the pressure,FxandFrare the components of the body force.

    The energy equations are

    whereCpis the isobaric specific heat,Tis the temperature,kis the heat transfer coefficient,STis the viscous dissipation term.

    2. The comparison of flow fields between sc-co2 jet and water jet

    2.1 Conversion between velocity and pressure

    The velocities and the pressures along the axis are compared between the SC-CO2jet and the water jet. As shown in Fig.2, wherevmeans the fluid velocity,Dmeans the distance to the nozzle outlet along theZaxis, when SC-CO2and water flow through the conical section of the nozzle, the fluid velocity increases gradually while the pressure decreases,indicating that the pressure energy is converted into the kinetic energy. After SC-CO2and water enter the cylinder section of the nozzle, the pressure and the velocity remain constant, indicating that no conversion happens between the pressure energy and the kinetic energy. When SC-CO2enters the jet region and impacts on the wall, the velocity decreases sharply while the pressure increases, indicating that the kinetic energy is converted into the pressure energy. Finally, the velocity becomes zero and the pressure increases to a value, slightly lower than the nozzle inlet pressure.The results indicate that like the water jet, the velocity and the pressure of the SC-CO2jet could be converted to each other.

    Fig.2 Velocity and pressure curves of the two jets

    According to the fluid mechanics theory, the impact pressure on the wall of the high-speed fluid is

    2.2 Comparison of pressure field

    As shown in Fig.3, for three different nozzle pressure drops (10 MPa, 20 MPa, 30 MPa), the axial pressures of the two jets are substantially consistent. The main difference is that the axial pressures of the SCCO2jet are slightly higher than those of the water jet at the right end, indicating that the SC-CO2jet has a stronger impact pressure than the water jet. This can partly explain why the SC-CO2jet has a smaller threshold pressure and a stronger rock-breaking capacity than the water jet. This has also to do with the fact that the penetration capability of the SC-CO2fluid is stronger because of its lower viscosity and surface tension,so the impact pressure of the SC-CO2jet can be transmitted to the micro pores and fractures easily[4]. In a word, the stronger impact pressure of the SC-CO2jet is advantageous for the rock breaking and can increase the rate of penetration of the SC-CO2jet drilling.

    Fig.3 Axial pressure comparison of the two jets

    Fig.4 Comparison of pressure loss ratio

    The relation between the pressure loss ratio and the nozzle pressure drop is shown in Fig.4. The pressure loss ratioRPLis defined as

    wherePinis the nozzle inlet pressure. As shown in Fig.4, wherenPmeans the nozzle pressure drop, the pressure loss ratio of the SC-CO2jet is smaller than that of the water jet for the three different nozzle pressure drops. It is indicated that the SC-CO2jet has a smaller pressure energy loss than the water jet underthe same conditions. It is mainly because the viscosity of the SC-CO2is much smaller than that of the water

    Fig.5 Velocity contours of SC-CO2 jet and water jet (m/s)

    Fig.6 Axial velocity comparison of the two jets

    2.3 Comparison of velocity field

    As shown in Fig.5, the maximum velocity of the SC-CO2jet reaches up to 228 m/s, apparently higher than that of the water jet (163 m/s). This is because the SC-CO2jet has a higher impact pressure than the water jet under the same nozzle inlet pressure and confining pressure, as discussed previously, and the density of the SC-CO2(657 kg/m3-664 kg/m3) in the high-speed jet region is apparently smaller than that of the water (1 000 kg/m3). So according to Eq.(5), with the neglect of the influence ofPf, the maximum velocity of the SC-CO2jet is larger than that of the water jet. The results indicate that the SC-CO2jet has a higher velocity than the water jet under the same conditions, which would increase the perforation speed of the SC-CO2jet against abrasives.

    The axial velocities of the two jets under the same conditions are compared as well. As shown in Fig.6, the SC-CO2jet has apparently a higher maximum velocity than the water jet for the two different nozzle pressure drops (10 MPa, 30 MPa).

    3. Parameteric sensitivity analyses

    3.1 Nozzle pressure drop

    The nozzle pressure drop is a key parameter determining the kinetic energy of the jet and the kinetic energy of the jet directly affects the flow field[14]. So the axial pressure and the velocity of the SC-CO2jet with different nozzle pressure drops are studied. As shown in Fig.7, the maximum velocity of the SC-CO2jet increases with the increase of the nozzle pressure drop.

    Fig.7 Influences of nozzle pressure drop on the axial velocity of SC-CO2 jet

    Fig.8 Influences of nozzle pressure drop on the axial pressure of SC-CO2 jet

    As shown in Fig.8, the axial pressures in the nozzle cylinder section for five different nozzle pressure drops are coincided with each other, which are mainly dominated by the confining pressure (30 MPa in thesecases). When the SC-CO2fluid reaches the nozzle cylinder section, the pressure energy is converted into the kinetic energy and the axial pressures for different nozzle pressure drops are all reduced to the confining pressure. At the right end of the flow field, the impact pressure increases with the increase of the nozzle pressure drop, because the larger the nozzle pressure drop,the larger the kinetic energy and the impact pressure will be.

    3.2 Confining pressure

    As shown in Fig.9, whereiPmeans the impact pressure andcPmeans the confining pressure, the impact pressure increases gradually with the increase of the confining pressure, but the increment is small. The increase rate decreases with the increase of the confining pressure.

    Fig.9 Influence of confining pressure on impact pressure of SCCO2 jet

    Fig.10 Influences of confining pressure on axial velocity of SCCO2 jet

    The influences of the confining pressure on the axial velocity of the SC-CO2jet are shown in Fig.10.It is indicated that, for the same nozzle pressure drops and the fluid temperatures, the velocity in the highspeed jet region increases with the increase of the confining pressure.

    3.3 SC-CO2 temperature

    The properties of the SC-CO2fluid are sensitive to the temperature and the change of the properties can influence the structural form of the SC-CO2jet[15-18]. So the influences of the SC-CO2temperature on the axial pressure and the velocity of the SC-CO2jet are studied.

    As shown in Fig.11, the axial pressure of the SCCO2jet is substantially the same when the temperature increases from 360 K to 420 K, which indicates that under the stimulation conditions of this study the pressure distributions of the SC-CO2jet are hardly affected by the temperature change. However, as shown in the enlarged drawings of the impact pressure, the impact pressure decreases slightly with the increase of the temperature. In general, the influence of the SCCO2temperature on the impact pressure could be neglected in engineering applications.

    Fig.11 Influence of temperature on axial pressure of SC-CO2 jet

    Fig.12 Influences of SC-CO2 temperature on axial velocity of SC-CO2 jet

    As shown in Fig.12, the maximum velocity increases with the increase of the SC-CO2temperature.It is mainly due to the decrease of the fluid density along with the increase of the SC-CO2temperature,without considering the influence of the temperature on the impact pressure. So according to Eq.(5), ignoring the influence ofPf, the maximum velocity increases with the increase of the fluid temperature.

    4. Conclusions

    (1) Like the water jet, the velocity and the pre-ssure of the SC-CO2jet could be converted to each other, and the SC-CO2jet can generate a significant impact pressure on the wall.

    (2) The SC-CO2jet can generate a stronger impact pressure on the wall than the water jet under the same conditions, which is advantageous for the rock breaking and can increase the rate of penetration of the SC-CO2jet drilling.

    (3) The SC-CO2jet has a higher velocity than the water jet under the same conditions, which would increase the perforation speed of the SC-CO2jet against abrasives.

    (4) The maximum velocity and the impact pressure of the SC-CO2jet increase with the increase of the nozzle pressure drop.

    (5) In the stimulation condition of this study, the influence of the SC-CO2temperature on the impact pressure is small and can be neglected in engineering applications, while the maximum velocity of the SCCO2jet increases with the increase of the fluid temperature.

    Acknowledgement

    This work was supported by the Science Foundation of China University of Petroleum (Beijing) (Grant No. 2462013YJRC017).

    [1] NI Hong-jian, DU Yu-kun and MA Lin et al. Study on structure optimization of self-excited pulsed jet with suck-in annulus fluids[J]. Chinese Journal of Hydrodynamics, 2011, 26(4): 487-493(in Chinese).

    [2] ABDULLAH A. F. Mechanistic modeling of an underbalanced drilling operation utilizing supercritical carbon dioxide[D]. Doctoral Thesis, Baton Rouge, USA:Louisiana State University, 2007.

    [3] WANG H., SHEN Z. and LI G. The development and prospect of supercritical carbon dioxide drilling[J]. Petroleum Science and Technology, 2012, 30(16): 1670-1676.

    [4] WANG H., LI G. and SHEN Z. A feasibility analysis on shale gas exploitation with supercritical carbon dioxide[J]. Energy Source Part A, 2012, 34(15): 1426-1435.

    [5] BI G., LI G. and SHEN Z. et al. Experimental research on the technology of hydra-jet sidetracking of radial micro-borehole[J]. Journal of Engineering Science and Technology Review, 2013, 6(5): 137-142.

    [6] KOLLE J. J. Coiled-tubing drilling with supercritical carbon dioxide[C]. SPE65534. Calgary, Alberta,Canada, 2000.

    [7] GUPTA A. P., GUPTA A. and LANGLINAIS J. Feasibility of supercritical carbon dioxide as a drilling fluid for deep underbalanced drilling operation[C].SPE96992. Dallas, Texas, USA, 2005.

    [8] WANG Rui-he, HUO Hong-jun and SONG Hui-fang et al. An experimental study of bottom hole temperature and pressure distribution of SC-CO2jet[C]. Asia-Pacific Power and Energy Engineering Conference.Shanghai, China, 2012.

    [9] WANG Zai-ming. Feature research of supercritical carbon dioxide drilling fluid[D]. Doctoral Thesis,Qingdao, China: China University of Petroleum (East China), 2008(in Chinese).

    [10] SHEN Z., WANG H. and LI G. Feasibility analysis of coiled tubing drilling with super critical carbon dioxide[J]. Petroleum Exploration and Development, 2010,37(6): 743-747.

    [11] QU H., LI G. and HUANG Z. et al. The boosting mechanism and effects in cavity during hydrajet fracturing process[J]. Petroleum Science and Technology. 2010,28(13): 1345-1350.

    [12] HUANG Zhong-hua, XIE Ya. Research on structure parameters of conical nozzle[J]. Journal of Machine Design, 2011, 28(12): 62-65(in Chinese).

    [13] SPAN R., WAGNER W. A new equation of state for carbon dioxide covering the fluid region from the triplepoint temperature to 1100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1999, 25(6): 1509-1596.

    [14] NIU Ji-lei, LI Gens-heng and SONG Jian et al. An experimental study on abrasive water jet perforation parameters[J]. Petroleum Drilling Techniques, 2003, 31(2):14-16(in Chinese).

    [15] HAN Bu-xing. Supercritical fluid science and technology[M]. Beijing, China: China Petrochemical Press,2005(in Chinese).

    [16] CHENG Y., LI G. and WANG H. et al. Pressure boosting effect in perforation cavity during supercritical carbon dioxide jet fracturing[J]. Atomization and Spray, 2013, 23(5): 463-474.

    [17] DU Yu-kun, WANG Rui-he and NI Hong-jian et al.Rock-breaking experiment with supercritical carbon dioxide jet[J]. Journal of China University of Petroleum (East China), 2012, 36(4): 93-96(in Chinese).

    [18] GUPTA A. Feasibility of supercritical carbon dioxide as a drilling fluid for deep underbalanced drilling operations[D]. Master Thesis, Baton Rouge, USA: Louisiana State University, 2006.

    猜你喜歡
    振國(guó)
    Magnetic ground state of plutonium dioxide: DFT+U calculations
    Magnetic phase diagram of single-layer CrBr3?
    NOx storage and reduction assisted by non-thermal plasma over Co/Pt/Ba/γ-Al2O3 catalyst using CH4 as reductant
    愛(ài)在拉薩
    我和繼父13年
    我和繼父13年
    文苑·感悟(2019年12期)2019-12-23 07:24:46
    我和繼父13 年
    文苑(2019年23期)2019-12-05 06:50:22
    Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases?
    我和繼父13年
    我和繼父的13年
    中外文摘(2019年16期)2019-08-29 06:01:30
    日韩中文字幕欧美一区二区| 一边摸一边抽搐一进一出视频| 国产精品98久久久久久宅男小说| 新久久久久国产一级毛片| 久久精品熟女亚洲av麻豆精品| 亚洲九九香蕉| 无人区码免费观看不卡 | 波多野结衣av一区二区av| 美女高潮喷水抽搐中文字幕| 免费人妻精品一区二区三区视频| av一本久久久久| 国产老妇伦熟女老妇高清| av天堂在线播放| 国产三级黄色录像| 欧美日韩一级在线毛片| 亚洲欧美日韩高清在线视频 | 操出白浆在线播放| 亚洲情色 制服丝袜| 国产精品免费视频内射| 精品人妻在线不人妻| 免费高清在线观看日韩| 老司机午夜十八禁免费视频| 亚洲国产欧美网| 蜜桃国产av成人99| 精品人妻熟女毛片av久久网站| 久久久久国内视频| av一本久久久久| 国产精品一区二区精品视频观看| 久久久精品免费免费高清| 久久精品国产亚洲av高清一级| 夜夜夜夜夜久久久久| 黄色毛片三级朝国网站| 男人舔女人的私密视频| 国产欧美日韩精品亚洲av| 91国产中文字幕| 搡老乐熟女国产| 黄色成人免费大全| 一进一出好大好爽视频| 亚洲av国产av综合av卡| 久久影院123| 久久国产精品影院| 欧美午夜高清在线| 十八禁人妻一区二区| 高清在线国产一区| 一二三四在线观看免费中文在| 国产淫语在线视频| 午夜福利在线观看吧| 午夜成年电影在线免费观看| 久久国产精品影院| 久久av网站| 99riav亚洲国产免费| 高清在线国产一区| 精品国产超薄肉色丝袜足j| 亚洲成人国产一区在线观看| 两性夫妻黄色片| 两个人看的免费小视频| 激情在线观看视频在线高清 | 男人舔女人的私密视频| 欧美午夜高清在线| 黄片大片在线免费观看| 黄色怎么调成土黄色| 欧美日韩黄片免| 国产伦理片在线播放av一区| 大陆偷拍与自拍| 久久精品人人爽人人爽视色| 一夜夜www| 亚洲成国产人片在线观看| av电影中文网址| 午夜福利视频在线观看免费| 亚洲一码二码三码区别大吗| 夫妻午夜视频| 亚洲中文字幕日韩| 亚洲av美国av| 一区在线观看完整版| 怎么达到女性高潮| 韩国精品一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲男人天堂网一区| 欧美成狂野欧美在线观看| 色视频在线一区二区三区| 亚洲精品中文字幕在线视频| 国产亚洲欧美在线一区二区| e午夜精品久久久久久久| 女人爽到高潮嗷嗷叫在线视频| 精品亚洲成a人片在线观看| 香蕉丝袜av| 欧美黄色淫秽网站| 日本黄色日本黄色录像| 免费在线观看黄色视频的| 真人做人爱边吃奶动态| 亚洲美女黄片视频| 国产成人精品久久二区二区91| 亚洲avbb在线观看| 中文亚洲av片在线观看爽 | 色精品久久人妻99蜜桃| 青青草视频在线视频观看| 精品一区二区三区视频在线观看免费 | 99久久国产精品久久久| 久久亚洲真实| 国产日韩欧美视频二区| 久久精品亚洲熟妇少妇任你| 国产日韩欧美视频二区| 热re99久久精品国产66热6| 黄色视频在线播放观看不卡| 在线十欧美十亚洲十日本专区| 一边摸一边做爽爽视频免费| 国产高清视频在线播放一区| 成年动漫av网址| h视频一区二区三区| 一本久久精品| 一区二区三区乱码不卡18| 国产精品熟女久久久久浪| 国产精品亚洲一级av第二区| 91成人精品电影| 性色av乱码一区二区三区2| 人妻久久中文字幕网| 午夜激情av网站| 宅男免费午夜| 99久久国产精品久久久| 久久久久网色| 亚洲,欧美精品.| 国产熟女午夜一区二区三区| 亚洲午夜理论影院| 天天影视国产精品| av超薄肉色丝袜交足视频| 中文字幕最新亚洲高清| 亚洲 国产 在线| 久久中文字幕人妻熟女| 夫妻午夜视频| 狠狠精品人妻久久久久久综合| 90打野战视频偷拍视频| 国产激情久久老熟女| 国产视频一区二区在线看| 亚洲熟妇熟女久久| 最新在线观看一区二区三区| 黄色视频在线播放观看不卡| 在线天堂中文资源库| 久久这里只有精品19| 我要看黄色一级片免费的| 国产主播在线观看一区二区| 最黄视频免费看| 咕卡用的链子| 日韩欧美一区二区三区在线观看 | 精品福利永久在线观看| 久久人人爽av亚洲精品天堂| 亚洲伊人色综图| 天堂中文最新版在线下载| 国产片内射在线| 每晚都被弄得嗷嗷叫到高潮| 18禁美女被吸乳视频| 黑人猛操日本美女一级片| 不卡一级毛片| 久久人妻福利社区极品人妻图片| 久久久精品94久久精品| 亚洲专区中文字幕在线| av网站免费在线观看视频| 人人澡人人妻人| 成人国产一区最新在线观看| 丝袜美腿诱惑在线| 黑丝袜美女国产一区| 国产精品一区二区精品视频观看| 欧美成人午夜精品| 中文字幕制服av| 久久久精品免费免费高清| 香蕉丝袜av| 亚洲天堂av无毛| 桃花免费在线播放| 免费在线观看日本一区| 天天躁狠狠躁夜夜躁狠狠躁| 欧美成狂野欧美在线观看| 9191精品国产免费久久| 欧美午夜高清在线| 两人在一起打扑克的视频| 97人妻天天添夜夜摸| 久久久水蜜桃国产精品网| 国产成人免费观看mmmm| 一区二区三区激情视频| 91av网站免费观看| 亚洲情色 制服丝袜| 精品国产亚洲在线| 日韩欧美一区二区三区在线观看 | 黄片小视频在线播放| 国产精品秋霞免费鲁丝片| 激情在线观看视频在线高清 | 美女主播在线视频| 久久久久网色| 成人免费观看视频高清| 国产精品免费大片| 大型黄色视频在线免费观看| 国产福利在线免费观看视频| 亚洲第一欧美日韩一区二区三区 | 黄片大片在线免费观看| 日韩大片免费观看网站| 黑人操中国人逼视频| 黄色 视频免费看| 久久毛片免费看一区二区三区| 色94色欧美一区二区| 久久九九热精品免费| 欧美中文综合在线视频| 久久精品亚洲av国产电影网| 中文字幕高清在线视频| 宅男免费午夜| 成人国产av品久久久| 十八禁网站网址无遮挡| 中国美女看黄片| 国产精品久久电影中文字幕 | 精品午夜福利视频在线观看一区 | tube8黄色片| 精品免费久久久久久久清纯 | 另类精品久久| 亚洲欧美一区二区三区黑人| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩另类电影网站| 欧美变态另类bdsm刘玥| 久久免费观看电影| 丰满迷人的少妇在线观看| 飞空精品影院首页| 午夜福利免费观看在线| 91大片在线观看| 国产在线一区二区三区精| 男女边摸边吃奶| 成人精品一区二区免费| 久久中文看片网| 欧美黄色淫秽网站| 每晚都被弄得嗷嗷叫到高潮| 中国美女看黄片| 天天躁日日躁夜夜躁夜夜| 欧美老熟妇乱子伦牲交| 2018国产大陆天天弄谢| 男女午夜视频在线观看| 一区在线观看完整版| a级毛片黄视频| av有码第一页| 青青草视频在线视频观看| 丁香欧美五月| bbb黄色大片| 欧美日韩av久久| 国产成人精品在线电影| 国产日韩一区二区三区精品不卡| av在线播放免费不卡| 欧美日韩福利视频一区二区| 国产精品99久久99久久久不卡| 国产成人精品在线电影| 日本av手机在线免费观看| 精品国产一区二区三区四区第35| 99久久精品国产亚洲精品| 在线观看www视频免费| 免费观看av网站的网址| 成人精品一区二区免费| 天堂动漫精品| 伦理电影免费视频| 日韩视频在线欧美| e午夜精品久久久久久久| 久久久久久免费高清国产稀缺| 最近最新中文字幕大全免费视频| 久久99热这里只频精品6学生| 久久久久久人人人人人| 日韩欧美三级三区| 中文欧美无线码| 久久ye,这里只有精品| 亚洲欧美精品综合一区二区三区| 少妇被粗大的猛进出69影院| cao死你这个sao货| 欧美日韩亚洲国产一区二区在线观看 | 免费av中文字幕在线| 午夜免费成人在线视频| 国产精品美女特级片免费视频播放器 | 中文字幕另类日韩欧美亚洲嫩草| 免费一级毛片在线播放高清视频 | 男男h啪啪无遮挡| 国产一卡二卡三卡精品| 国产精品免费大片| 国产又爽黄色视频| 99热网站在线观看| 好男人电影高清在线观看| 亚洲五月婷婷丁香| 亚洲欧美精品综合一区二区三区| 亚洲一码二码三码区别大吗| 国产精品久久久久成人av| 久久久久精品人妻al黑| 精品第一国产精品| 久久狼人影院| 一本色道久久久久久精品综合| 三上悠亚av全集在线观看| 久久精品成人免费网站| 午夜激情av网站| 狠狠婷婷综合久久久久久88av| 中文字幕av电影在线播放| 一进一出好大好爽视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲 国产 在线| 国产成人影院久久av| 在线观看免费高清a一片| 国产在线一区二区三区精| 精品国产乱码久久久久久男人| 午夜久久久在线观看| 国产精品影院久久| 一进一出抽搐动态| 女人被躁到高潮嗷嗷叫费观| 久久精品亚洲av国产电影网| 黑人巨大精品欧美一区二区mp4| 男女之事视频高清在线观看| 一本久久精品| 亚洲九九香蕉| 搡老熟女国产l中国老女人| 亚洲精品国产精品久久久不卡| 国产精品一区二区在线不卡| 国产免费av片在线观看野外av| 久久久久国产一级毛片高清牌| 韩国精品一区二区三区| 国产成人一区二区三区免费视频网站| 亚洲全国av大片| 亚洲天堂av无毛| 日韩一区二区三区影片| a在线观看视频网站| 欧美日韩精品网址| 一级片免费观看大全| 精品久久久精品久久久| 叶爱在线成人免费视频播放| 国产在视频线精品| 欧美日韩亚洲综合一区二区三区_| 窝窝影院91人妻| 免费在线观看完整版高清| 久久久精品94久久精品| 他把我摸到了高潮在线观看 | 久久中文看片网| 色综合欧美亚洲国产小说| 亚洲成人免费电影在线观看| 99国产精品免费福利视频| 亚洲色图 男人天堂 中文字幕| 午夜久久久在线观看| 免费在线观看影片大全网站| 国产av精品麻豆| 人妻久久中文字幕网| 久久久久久久大尺度免费视频| 欧美亚洲 丝袜 人妻 在线| 成年版毛片免费区| 母亲3免费完整高清在线观看| 老司机亚洲免费影院| 欧美日韩亚洲综合一区二区三区_| 色综合婷婷激情| 国产三级黄色录像| 热re99久久国产66热| 美女高潮到喷水免费观看| 精品少妇久久久久久888优播| 精品乱码久久久久久99久播| 国产精品一区二区在线不卡| 美女高潮喷水抽搐中文字幕| 久久香蕉激情| 成人av一区二区三区在线看| 亚洲熟女精品中文字幕| 丝袜在线中文字幕| 99热国产这里只有精品6| 悠悠久久av| 如日韩欧美国产精品一区二区三区| 麻豆乱淫一区二区| 青草久久国产| 热re99久久精品国产66热6| 亚洲五月婷婷丁香| 美女视频免费永久观看网站| 香蕉国产在线看| 超碰97精品在线观看| 青草久久国产| 午夜视频精品福利| 亚洲人成伊人成综合网2020| videos熟女内射| 女警被强在线播放| 97在线人人人人妻| 日本撒尿小便嘘嘘汇集6| 99国产极品粉嫩在线观看| 午夜老司机福利片| 免费看a级黄色片| 夜夜夜夜夜久久久久| 国产亚洲精品第一综合不卡| 亚洲国产欧美在线一区| 人妻 亚洲 视频| 一级毛片电影观看| 久久中文看片网| 久久国产精品人妻蜜桃| 日本精品一区二区三区蜜桃| 精品国内亚洲2022精品成人 | 狠狠婷婷综合久久久久久88av| 久久精品亚洲精品国产色婷小说| 满18在线观看网站| 欧美精品亚洲一区二区| 十八禁人妻一区二区| 一区二区三区激情视频| 99精品久久久久人妻精品| 国产欧美日韩一区二区三区在线| 菩萨蛮人人尽说江南好唐韦庄| 97在线人人人人妻| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品在线美女| 啪啪无遮挡十八禁网站| 亚洲精品av麻豆狂野| 日韩精品免费视频一区二区三区| 日本av免费视频播放| 不卡av一区二区三区| 欧美日本中文国产一区发布| 成年女人毛片免费观看观看9 | 色老头精品视频在线观看| 亚洲七黄色美女视频| 激情在线观看视频在线高清 | 丰满人妻熟妇乱又伦精品不卡| 欧美午夜高清在线| 免费在线观看日本一区| 免费高清在线观看日韩| 免费日韩欧美在线观看| 一边摸一边抽搐一进一小说 | 精品少妇黑人巨大在线播放| 成人精品一区二区免费| 黄频高清免费视频| 国产精品99久久99久久久不卡| 一边摸一边抽搐一进一小说 | 一二三四社区在线视频社区8| 亚洲精品久久午夜乱码| 成人亚洲精品一区在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产日韩欧美在线精品| 欧美国产精品一级二级三级| 国产精品二区激情视频| 色综合婷婷激情| 亚洲九九香蕉| 欧美精品亚洲一区二区| 制服诱惑二区| av天堂在线播放| 可以免费在线观看a视频的电影网站| 欧美在线黄色| av天堂久久9| 99在线人妻在线中文字幕 | 日本五十路高清| 亚洲成国产人片在线观看| 久久狼人影院| 久久久久久久久免费视频了| 90打野战视频偷拍视频| 热99国产精品久久久久久7| 久久免费观看电影| 丝袜在线中文字幕| 国产区一区二久久| 国产高清激情床上av| 91大片在线观看| 国产午夜精品久久久久久| 看免费av毛片| 久久久欧美国产精品| 日本vs欧美在线观看视频| 一级a爱视频在线免费观看| 老司机影院毛片| 一级毛片女人18水好多| 日韩欧美一区二区三区在线观看 | 成人黄色视频免费在线看| 九色亚洲精品在线播放| 国产av又大| 91字幕亚洲| 亚洲免费av在线视频| 午夜福利欧美成人| 国产一区二区 视频在线| 女人久久www免费人成看片| 黄片大片在线免费观看| 啦啦啦视频在线资源免费观看| 黄片小视频在线播放| 婷婷丁香在线五月| 新久久久久国产一级毛片| 操出白浆在线播放| a级毛片黄视频| 欧美老熟妇乱子伦牲交| 人妻久久中文字幕网| 999久久久国产精品视频| 日本a在线网址| 免费日韩欧美在线观看| 久久精品亚洲av国产电影网| 精品亚洲乱码少妇综合久久| 夫妻午夜视频| 国产一区二区三区综合在线观看| 午夜福利影视在线免费观看| 麻豆av在线久日| 亚洲国产成人一精品久久久| 日韩中文字幕视频在线看片| 亚洲精品一二三| 丁香六月欧美| 亚洲av第一区精品v没综合| 国产精品亚洲一级av第二区| 国产成人av教育| 搡老岳熟女国产| 久久ye,这里只有精品| 国产一区二区激情短视频| 夜夜骑夜夜射夜夜干| a级毛片在线看网站| 免费在线观看影片大全网站| 狂野欧美激情性xxxx| 国产精品国产av在线观看| 免费在线观看日本一区| 精品免费久久久久久久清纯 | 亚洲第一青青草原| 精品国产国语对白av| av网站免费在线观看视频| 国产成人欧美| 亚洲国产欧美在线一区| 99国产精品免费福利视频| 一本久久精品| 欧美亚洲 丝袜 人妻 在线| 老熟女久久久| www.熟女人妻精品国产| 成人免费观看视频高清| 黄色视频在线播放观看不卡| 日韩有码中文字幕| 久久精品熟女亚洲av麻豆精品| 高潮久久久久久久久久久不卡| 99精国产麻豆久久婷婷| 国产日韩欧美视频二区| 日本撒尿小便嘘嘘汇集6| 两个人免费观看高清视频| 日日夜夜操网爽| 在线看a的网站| 亚洲精品中文字幕在线视频| av又黄又爽大尺度在线免费看| 美女高潮喷水抽搐中文字幕| 一本大道久久a久久精品| a在线观看视频网站| 99国产极品粉嫩在线观看| 男女高潮啪啪啪动态图| 国产亚洲欧美在线一区二区| 欧美精品亚洲一区二区| 热99re8久久精品国产| 欧美黑人精品巨大| 啦啦啦视频在线资源免费观看| 亚洲一码二码三码区别大吗| 成人av一区二区三区在线看| 自线自在国产av| 亚洲avbb在线观看| 日本黄色日本黄色录像| 色老头精品视频在线观看| 国产熟女午夜一区二区三区| 美女午夜性视频免费| 精品国产乱子伦一区二区三区| 91av网站免费观看| 动漫黄色视频在线观看| 国产单亲对白刺激| 男女床上黄色一级片免费看| 久久精品亚洲熟妇少妇任你| 久9热在线精品视频| 日韩 欧美 亚洲 中文字幕| 久久99热这里只频精品6学生| 性色av乱码一区二区三区2| 999精品在线视频| 欧美成人免费av一区二区三区 | 99国产综合亚洲精品| 亚洲五月色婷婷综合| 色婷婷av一区二区三区视频| 精品乱码久久久久久99久播| 高清欧美精品videossex| 久久午夜亚洲精品久久| 精品一区二区三卡| 国产1区2区3区精品| 最近最新免费中文字幕在线| 国产在线一区二区三区精| 制服人妻中文乱码| 国产av精品麻豆| 动漫黄色视频在线观看| 亚洲第一欧美日韩一区二区三区 | 搡老乐熟女国产| 女性生殖器流出的白浆| 又黄又粗又硬又大视频| 纵有疾风起免费观看全集完整版| 久热爱精品视频在线9| 国产成人影院久久av| 妹子高潮喷水视频| 一区在线观看完整版| 亚洲av成人不卡在线观看播放网| 日本撒尿小便嘘嘘汇集6| 国产日韩欧美在线精品| 午夜成年电影在线免费观看| 免费在线观看完整版高清| 亚洲精品av麻豆狂野| 亚洲九九香蕉| 欧美日韩精品网址| 日本av免费视频播放| 国产又色又爽无遮挡免费看| 男男h啪啪无遮挡| 十八禁人妻一区二区| 涩涩av久久男人的天堂| 国产成人av激情在线播放| 久久久久久久精品吃奶| 日韩欧美国产一区二区入口| 精品第一国产精品| 国产成人精品无人区| 91字幕亚洲| 国产精品一区二区在线不卡| 久久人妻熟女aⅴ| 久久久久久人人人人人| av一本久久久久| 中文字幕人妻丝袜制服| 欧美 日韩 精品 国产| 久久久精品94久久精品| 91av网站免费观看| 中文字幕制服av| 久久ye,这里只有精品| 日本a在线网址| 好男人电影高清在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲七黄色美女视频| 欧美+亚洲+日韩+国产| svipshipincom国产片| 99国产综合亚洲精品| 老汉色∧v一级毛片| 成人18禁在线播放| 日韩欧美免费精品| 午夜精品国产一区二区电影| 正在播放国产对白刺激| 免费女性裸体啪啪无遮挡网站| 亚洲国产成人一精品久久久| 成人影院久久| 18禁美女被吸乳视频| 韩国精品一区二区三区| 淫妇啪啪啪对白视频| 老鸭窝网址在线观看|