• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Active disturbance rejection control for precise position tracking of piezoelectric actuators①

    2015-04-17 06:27:07ZhengZhaoying鄭兆瑛LuQishuaiZhangSijiong
    High Technology Letters 2015年3期

    Zheng Zhaoying (鄭兆瑛), Lu Qishuai, Zhang Sijiong

    (*National Astronomical Observatories / Nanjing Institute of Astronomical Optics & Technology,Chinese Academy of Sciences, Nanjing 210042, P.R.China)(**Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology,Chinese Academy of Sciences, Nanjing 210042, P.R.China)(***University of Chinese Academy of Sciences, Beijing 100049, P.R.China)

    ?

    Active disturbance rejection control for precise position tracking of piezoelectric actuators①

    Zheng Zhaoying (鄭兆瑛)******, Lu Qishuai***, Zhang Sijiong②

    (*National Astronomical Observatories / Nanjing Institute of Astronomical Optics & Technology,Chinese Academy of Sciences, Nanjing 210042, P.R.China)(**Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology,Chinese Academy of Sciences, Nanjing 210042, P.R.China)(***University of Chinese Academy of Sciences, Beijing 100049, P.R.China)

    Positioning with high precision piezoelectric actuators is widely used. To overcome positioning inaccuracy caused by hysteresis and creep of actuators, a precise tracking method for piezoelectric actuators using active disturbance rejection control (ADRC) has been proposed in this paper. This method, in real-time, actively estimates and compensates parameter uncertainties, nonlinear factors such as hysteresis, and external disturbances in the tracking system. Precise tracking of the piezoelectric actuator can be achieved without any form of feedforward compensations. The experimental results demonstrate that the active disturbance rejection controller can reduce tracking errors by over 90% comparing with those using the PID controller. Those features of the proposed control method are very suitable for applications in adaptive optics.

    active disturbance rejection control (ADRC), piezoelectric actuators, position tracking

    0 Introduction

    Piezoelectric actuators can implement micrometers and even nanometers positioning. In recent years, piezoelectric actuators are increasingly applied in scanning probe microscopes[1], atomic force microscopes[2,3], micropositioning mechanisms[4,5], aerospace applications[6]and adaptive optics systems[7,8]. However, there are some disadvantages of piezoelectric actuators such as hysteresis, creep and so on. Those disadvantages of piezoelectric actuators result in positioning inaccuracy and limiting the whole system performances in which piezoelectric actuators are used as the correcting units. The control methods to improve the accuracy for the position tracking of piezoelectric actuators are needed.

    To achieve highly precise positioning for piezoelectric actuators, a lot of researches on control algorithms for these devices have been done in recent years. In order to suppress the effect of hysteresis of piezoelectric actuators, the main nonlinear constituent, on their positioning, piezoelectric actuators can be driven by charge[9]. However, the implementation of the charge amplifier is complex and expensive. For this reason the piezoelectric actuators driven by voltage are widely chosen in many applications. For previous researches on suppressing the effect of hysteresis of piezoelectric actuators, a theoretical hysteresis model is firstly established, then the inversion of the hysteresis as a feedforward is set up in a control loop to compensate the positioning inaccuracy caused by the hysteresis[10]. Song, et al.[11]built up a classical Preisach model, and applied the inverse model and a feedback controller to eliminate the hysteresis for the micro position tracking control. However, this method only applies to low frequency input and is rate-dependent. Guo, et al.[12]proposed a real-time inverse hysteresis compensation method with a modified Prandtl-Ishlinskii model. Ru, et al.[13]applied a novel mathematical model obtained based on Prandtl-Ishlinskii operator to characterizing hysteresis and employed an adaptive inverse control algorithm to reduce hysteresis. Zhu, et al.[14]developed an ellipse-like model to describe the hysteresis of piezoelectric actuators and the accuracy of tracking control has been improved by a real-time feedforward controller with the inverse model. However, these methods are also rate-dependent. Eielsen, et al.[15]argued an online adaptive nonlinear hysteresis compensation method for certain periodic desired trajectories. However, the certain periodic trajectories are only suited for scanning applications of piezoelectric actuators, such as atomic force microscopes. Our main purpose for control piezoelectric actuators is to precisely regulate a tip/tilt mirror to achieve a high image quality. These rate-dependent control methods are not appropriate for the applications in adaptive optics. Li, et al.[16]proposed a fuzzy hysteresis model (FHM), and developed the enhanced adaptive hybrid controller to achieve high performance tracking. Although the algorithm is rate-independent, it is highly complex. Because atmospheric turbulences change rapidly, the control method must be simple and suitable for the real-time implementation in adaptive optics.

    Active disturbance rejection control (ADRC)[17-19]is a control algorithm that satisfies the requirements of adaptive optics systems aforementioned. ADRC technique has been widely applied in many fields[20-22]. The gist of the ADRC algorithm is explained as follows. Taking the second order system as an example, the system is taken as a double integrator model, and an extended state observer (ESO) built up for this system model, in which there is an extra extended state variable used for estimating modeling errors, parameter uncertainties, internal and external disturbances in the system. The control algorithm actively compensates for all the factors mentioned above in real-time with updated estimation of those by the ESO so as to achieve precise position tracking of actuators. Moreover, the advantages of the ADRC algorithm are of low complexity and requiring a little prior information of the real system. To verify the effectiveness of the ADRC algorithm on position tracking of piezoelectric actuators, several cases of trajectories are designed to track in a series of experiments.

    This paper is arranged as follows. In the first section, an experimental system is described in detail and a simple model of piezo platform is given. The second section presents the ADRC method. The experimental results are provided in Section 3. Finally, this paper ends with conclusions in Section 4.

    1 System description

    1.1 Experimental setup

    An experimental system, as shown in Fig.1, has been established for the investigation of the ADRC control algorithm. The architecture of the experimental system is depicted in the sketch as shown in Fig.2. It consists of a piezo tip/tilt platform with inbuilt strain gauge sensors to measure its angle changes, a servo controller card, voltage amplifiers, a sensor processing module, and Zynq-7000 with a digital-to-analogue (D/A) board and an analog-to-digital (A/D) board.

    Fig.1 Experimental platform

    Fig.2 Sketch of the experimental architecture

    The piezo tip/tilt platform employed is from PI (Physik Instrumente), which has the nominal 2 mrads angular displacement range corresponding to a range of operating voltage from 0 to 100V. The servo controller card can be switched servo status on and off. When the servo status is in the off mode, there’s only a slew rate limiter active. Voltage amplifiers with a fixed gain of 10 provide voltage ranging from -20V to +120V. The sensor processing module is connected with both the platform and Zynq-7000. The voltage conversion ranges of the D/A and A/D boards are from 0V to 3.3V with 12-bit resolution. Zynq-7000 includes the programmable logic (PL) and the processing system (PS). The D/A and A/D cards are driven by PL, and the real-time control algorithm is run on PS. In these experiments, the sampling frequency of the control loop is set at 5kHz.

    1.2 Piezo tip/tilt platform

    As shown in Fig.3, when control input voltage changes, the voltage of one PZT (Piezoelectric Ceramic Transducer) actuator of each pair increases and the voltage of the other decreases by the exact same magnitude. It may be simply modeled as a lightly damped second order system. The angular displacement of platform in tip axis is modeled as

    (1)

    M(t)=nU(t)+φ(U,t)

    (2)

    where n is the proportional coefficient between moment M(t) and the control voltage U(t), φ(U,t) is the moment caused by nonlinear factors such as hysteresis of piezoelectric actuators, uncertain disturbances and so on.

    Fig.3 Working principle of one axis motion (from PI user manual)

    2 Active disturbance rejection control (ADRC)

    In this paper, linear active disturbance rejection control (ADRC) is applied to control the piezo tip/tilt platform. The dynamics of the platform in tip axis can be regarded as

    (3)

    where b=n/J.

    Fig.4 Block diagram of the control system

    2.1 ESO design

    (4)

    The Luenberger observer of this system expressed by Eq.(4) in state-form space is designed as

    (5)

    λ(s)=s3+l1s2+l2s+l3=(s+ω0)3

    (6)

    So the observer poles are all placed at -ωoin Laplace s-plane. This design can let the observer gain vector L of ESO be easily tuned by just changing the observer bandwidth ωo. Thus only adjusting the observer bandwidth ωo, the three components of the observer gain vector L can be tuned. The larger the ωois, the faster and the more accurate the observer is. However, a larger ωoalso increases noise sensitivity, and is limited by hardware constraints. Hence a proper ωoshould be tuned between the tracking performance and hardware constraints.

    2.2 Control Algorithm

    (7)

    Disregarding the estimation error, the model of the platform in tip axis is reduced to a double integrator,

    (8)

    The original problem is simplified to a much simpler one, which can be dealt by a proportional-derivative (PD) controller

    U0(t)=kp[θd(t)-z1(t)]-kdz2(t)

    (9)

    (10)

    where ωcis the bandwidth of the controller. Obviously, the larger it is, the faster the response speed is. However, like ωo, ωcis tuned based on the competing requirements of tracking performance, noise sensitivity and stability margin.

    3 Experimental results

    3.1 Single frequency triangular trajectory

    The frequency of the desired triangular trajectory in this experiment is 10Hz and the amplitude of that is 50μrad. To show the characteristics of the ADRC algorithm, the tracking results using ADRC are compared with ones using PID and hybrid controllers[16], shown in Fig.5. The hybrid control algorithm takes more than 1ms. Even if FHM is identified at first, the hybrid controller without updating FHM online still takes about 20μs. ADRC just takes less than 1μs. As shown in Fig.5, because of the precise position tracking of ADRC algorithm, the trajectory tracked by ADRC controller (the blue dash curve) nearly coincides with the desired one (the black solid curve). ADRC controller can obtain 1.01μrad maximum tracking error, and the root mean square (RMS) error is 0.29μrad, which is about the noise level. The RMS error with the PID controller is 3.29μrad, and that with hybrid controller is 1.14μrad. Compared with PID controller, the ADRC controller reduces RMS error by 91.2%. And ADRC controller reduces time cost significantly.

    Fig.5 Tracking performances of ADRC comparing with those of servo card at 10Hz with 50μrad triangular waveform trajectory

    3.2 Single frequency sinusoidal trajectory

    Fig.6 shows the experimental result of the desired single sinusoidal trajectory, whose frequency is 50Hz and amplitude is 50μrad. The maximum error decreased from 23.60μrad with PID controller to 1.84μrad with ADRC controller, and reduced by 92%. The reduction of RMS error of angular displacement tracking is approximately 98% for the ADRC controller compared with that of the PID controller. More experimental results of the desired trajectories with other different frequencies and amplitudes are shown in Table 1.

    Fig.6 Tracking performances of ADRC comparing with those of servo card at 50Hz with 50μrad sinusoidal waveform trajectory

    Table 1 Tracking errors using ADRC and servo card as to several sinusoidal trajectories with different frequencies and amplitudes

    Desiredtrajectory(μrad)ErrorMAX(μrad)PIDADRCErrorRMS(μrad)PIDADRC50@50Hz23.601.8415.400.3225@50Hz12.041.507.670.29100@50Hz45.563.8430.610.4850@100Hz40.213.6627.430.6050@30Hz15.551.489.990.3950@10Hz6.320.973.600.28

    3.3 Multiple frequencies sinusoidal trajectory

    To further demonstrate the advantages of ADRC controller method, the tracking experiment with a multiple frequencies sinusoidal trajectory is implemented. The desired trajectory is 300+60sin(40πt)+40sin(100πt)+20sin(200πt)μrad. The experimental result is shown in Fig.7. Using the PID controller, the maximum tracking error of angular displacement is 36.12μrad, and the RMS tracking error is 18.16μrad. However, the ADRC controller can obtain 3.48μrad maximum error, decreased by 90.37%, and 0.45μrad RMS error, decreased by 97.52%.

    Fig.7 Tracking performances of ADRC comparing with those of servo card for multiple frequency sinusoidal trajectory

    4 Conclusions

    In this paper, a control algorithm, active disturbance rejection control, has been developed for piezoelectric actuators. The control algorithm is model independent and more tolerant to uncertain dynamics and unknown disturbances. The hysteresis and creep of piezoelectric actuators can be treated as parts of the unknown disturbances. The ADRC control algorithm actively estimates and compensates disturbances to control systems in real-time, such that precise tracking of the piezoelectric actuators without any hysteresis models can be implemented. This algorithm is of low complexity, and takes less than 1μs on the Zynq-7000 platform. So ADRC suits for real-time implementation. The experimental results clearly show the effectiveness of this algorithm. It provides a reduction of more than 90% tracking error compared with that of PID controller card. ADRC is suitable for controlling requirements of adaptive optics and other areas for precise positioning.

    Acknowledgement

    Many thanks to Dr. Li Changwei at Nanjing Institute of Astronomical Optics & Technology.

    [ 1] Yeh H C, Ni W T, Pan S S. Digital closed-loop nanopositioning using rectilinear flexure stage and laser interferometry. Control Engineering Practice, 2005, 13(5): 559-566

    [ 2] Habibullah, Pota H R, Petersen I R, et al. Creep, hysteresis, and cross-coupling reduction in the high-precision positioning of the piezoelectric scanner stage of an atomic force microscope. IEEE Transactions on Nanotechnology, 2013, 12(6): 1125-1134

    [ 3] Leang K K, Zou Q Z, Devasia S. Feedforward control of piezoactuators in atomic force microscope systems. IEEE Control Systems Magazine, 2009, 29(1): 70-82

    [ 4] Hwang D, Byun J, Jeong J, et al. Robust design and performance verification of an in-plane XY theta micropositioning stage. IEEE Transactions on Nanotechnology, 2011, 10(6): 1412-1423

    [ 5] Li Y M, Xu Q S. Design and robust repetitive control of a new parallel-kinematic XY piezostage for micro/nanomanipulation. IEEE-Asme Transactions on Mechatronics, 2012, 17(6): 1120-1132

    [ 6] Sente P A, Labrique F M, Alexandre P J. Efficient control of a piezoelectric linear actuator embedded into a servo-valve for aeronautic applications. IEEE Transactions on Industrial Electronics, 2012, 59(4): 1971-1979

    [ 7] Kanno I, Kunisawa T, Suzuki T, et al. Development of deformable mirror composed of piezoelectric thin films for adaptive optics. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(2): 155-161

    [ 8] Sato M, Tsuda S, Kanno I, et al. Development of piezoelectric MEMS deformable mirror. Microsystem Technologies Micro and Nano systems Information Storage and Processing Systems, 2011, 17(5-7): 931-935

    [ 9] Zhang J, Zhang L S, Feng Z H. Integration of strain feedback and charge drive for high-performance of piezoelectric actuators. Review of Scientific Instruments, 2013, 84(5): 54705-54705

    [10] Qin Y D, Tian Y L, Zhang D W, et al. A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications. IEEE-ASME Transactions on Mechatronics, 2013, 18(3): 981-989

    [11] Song G, Zhao J Q, Zhou X Q, et al. Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model. IEEE-ASME Transactions on Mechatronics, 2005, 10(2): 198-209

    [12] Gu G Y, Yang M J, Zhu L M. Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model. Review of Scientific Instruments, 2012, 83(6): 65106-65106

    [13] Ru C H, Chen L G, Shao B, et al. A hysteresis compensation method of piezoelectric actuator: Model, identification and control. Control Engineering Practice, 2009, 17(9): 1107-1114

    [14] Gu G Y, Zhu L M. Modeling of rate-dependent hysteresis in piezoelectric actuators using a family of ellipses. Sensors and Actuators a-Physical, 2011, 165(2): 303-309

    [15] Eielsen A A, Gravdahl J T, Pettersen K Y. Adaptive feed-forward hysteresis compensation for piezoelectric actuators. Review of Scientific Instruments, 2012, 83(8): 85001-85001

    [16] Li P Z, Yan F, Ge C, et al. Ultra-precise tracking control of piezoelectric actuators via a fuzzy hysteresis model. Review of Scientific Instruments, 2012, 83(8): 85114-85114

    [17] Gao Z. Active disturbance rejection control: A paradigm shift in feedback control system design. In: Proceedings of the 2006 American Control Conference, Minneapolis, United States, 2006. 2399-2405

    [18] Han J Q. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906

    [19] Gao Z. Scaling and bandwidth parameterization based controller tuning. In: Proceedings of the 2003 American Control Conference, Denver, United States, 2003. 4989-4996

    [20] Sun B S, Gao Z Q. A DSP-based active disturbance rejection control design for a 1-kW H-bridge dc-dc power converter. IEEE Transactions on Industrial Electronics, 2005, 52(5): 1271-1277

    [21] Zheng Q, Dong L, Dae H L, et al. Active disturbance rejection control for MEMS gyroscopes. In: Proceedings of the 2008 American Control Conference, Seattle, United States, 2008. 4425-4430

    [22] Gao Z, Hu S, Jiang F. A novel motion control design approach based on active disturbance rejection. In: Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, United States, 2001. 4877-4882

    [23] Ljung L. System identification. City: Wiley Online Library, 1999

    Zheng Zhaoying, born in 1984, received his Ph.D. degree from the University of Chinese Academy of Sciences. Now he works in the Nanjing Institute of Astronomical Optics & Technology. His research focuses on high performance control in adaptive optics.

    10.3772/j.issn.1006-6748.2015.03.014

    ①Supported by the National Natural Science Foundation of China (No. 11373048).

    ②To whom correspondence should be addressed. E-mail: sjzhang@niaot.ac.cn Received on Feb. 27, 2014***

    伦精品一区二区三区| 久久99精品国语久久久| 免费电影在线观看免费观看| 国产免费视频播放在线视频| 美女视频免费永久观看网站| 亚洲欧美日韩东京热| 日韩av不卡免费在线播放| 国产一区亚洲一区在线观看| 久久久久九九精品影院| 精品亚洲乱码少妇综合久久| 免费av不卡在线播放| 美女主播在线视频| 最近中文字幕高清免费大全6| 久久人人爽人人片av| 青春草视频在线免费观看| 插逼视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 久久国内精品自在自线图片| 天堂网av新在线| 国产成人精品福利久久| 欧美日韩精品成人综合77777| 中国三级夫妇交换| 久久影院123| 亚洲国产最新在线播放| 免费在线观看成人毛片| av在线亚洲专区| 日韩av在线免费看完整版不卡| 又粗又硬又长又爽又黄的视频| 18禁裸乳无遮挡免费网站照片| 晚上一个人看的免费电影| 国产精品不卡视频一区二区| 国产亚洲5aaaaa淫片| 欧美国产精品一级二级三级 | 最近最新中文字幕免费大全7| 嫩草影院入口| 免费黄频网站在线观看国产| 在线看a的网站| 丰满人妻一区二区三区视频av| 亚洲婷婷狠狠爱综合网| 亚洲av成人精品一区久久| 国产男女超爽视频在线观看| 久久久久久久久久久免费av| 国产亚洲5aaaaa淫片| 久久久精品94久久精品| 女人被狂操c到高潮| 91精品一卡2卡3卡4卡| 亚洲激情五月婷婷啪啪| 精品久久久久久久久av| 国产视频内射| 91狼人影院| 久久99蜜桃精品久久| 久久人人爽av亚洲精品天堂 | 91狼人影院| 国产精品福利在线免费观看| 久久97久久精品| 久热久热在线精品观看| 亚洲成色77777| 国产精品av视频在线免费观看| 欧美zozozo另类| 久久久久久久大尺度免费视频| 99re6热这里在线精品视频| 街头女战士在线观看网站| 激情 狠狠 欧美| 免费在线观看成人毛片| 大香蕉久久网| 免费不卡的大黄色大毛片视频在线观看| 午夜福利视频精品| 国产日韩欧美亚洲二区| 国产高潮美女av| 黑人高潮一二区| 久久久成人免费电影| 国产男人的电影天堂91| 色哟哟·www| 有码 亚洲区| 在线观看三级黄色| 丰满少妇做爰视频| 午夜精品一区二区三区免费看| 国产免费福利视频在线观看| 国产精品爽爽va在线观看网站| 秋霞在线观看毛片| 国产精品99久久久久久久久| 免费av毛片视频| 亚洲va在线va天堂va国产| 国产色爽女视频免费观看| 在线天堂最新版资源| 爱豆传媒免费全集在线观看| 最近的中文字幕免费完整| 免费看不卡的av| 国产黄频视频在线观看| 性插视频无遮挡在线免费观看| 高清毛片免费看| 欧美日韩综合久久久久久| 七月丁香在线播放| 狂野欧美激情性bbbbbb| 久久鲁丝午夜福利片| 日韩中字成人| 精品久久久精品久久久| 人妻 亚洲 视频| 亚洲一区二区三区欧美精品 | 99久久九九国产精品国产免费| 亚洲av成人精品一二三区| 97热精品久久久久久| 丝袜喷水一区| 神马国产精品三级电影在线观看| 在线观看免费高清a一片| av线在线观看网站| 久久久亚洲精品成人影院| 亚洲最大成人av| 欧美丝袜亚洲另类| 亚洲经典国产精华液单| 日韩三级伦理在线观看| 日本黄色片子视频| 国产精品.久久久| 免费av毛片视频| 热99国产精品久久久久久7| 久久精品熟女亚洲av麻豆精品| 日韩av在线免费看完整版不卡| a级毛片免费高清观看在线播放| 国产黄片视频在线免费观看| 好男人视频免费观看在线| 最近2019中文字幕mv第一页| 国产欧美日韩一区二区三区在线 | 国产精品久久久久久久久免| 乱码一卡2卡4卡精品| 国产欧美亚洲国产| 伦精品一区二区三区| 亚洲电影在线观看av| av播播在线观看一区| 美女国产视频在线观看| 一级毛片电影观看| 青青草视频在线视频观看| 欧美国产精品一级二级三级 | 日本猛色少妇xxxxx猛交久久| 狂野欧美激情性bbbbbb| 成年版毛片免费区| 日韩av免费高清视频| 韩国av在线不卡| 搞女人的毛片| 我的女老师完整版在线观看| 99热6这里只有精品| www.av在线官网国产| 我的女老师完整版在线观看| 建设人人有责人人尽责人人享有的 | 少妇 在线观看| 最近最新中文字幕大全电影3| 赤兔流量卡办理| 久久久久久久久久久免费av| 午夜日本视频在线| 一本色道久久久久久精品综合| 激情五月婷婷亚洲| 老司机影院成人| 美女高潮的动态| 亚洲av在线观看美女高潮| 日韩在线高清观看一区二区三区| 国产白丝娇喘喷水9色精品| 亚洲av欧美aⅴ国产| 全区人妻精品视频| 免费高清在线观看视频在线观看| 最新中文字幕久久久久| 爱豆传媒免费全集在线观看| 一个人观看的视频www高清免费观看| 免费在线观看成人毛片| 精品人妻一区二区三区麻豆| 日韩欧美一区视频在线观看 | 亚洲在久久综合| 欧美精品一区二区大全| 高清日韩中文字幕在线| 偷拍熟女少妇极品色| 97精品久久久久久久久久精品| 久热这里只有精品99| 国产白丝娇喘喷水9色精品| 69人妻影院| 99久久精品国产国产毛片| 国产精品熟女久久久久浪| 成人二区视频| 午夜视频国产福利| 亚洲成色77777| 国产真实伦视频高清在线观看| 国产一区二区亚洲精品在线观看| 国模一区二区三区四区视频| 国产精品久久久久久精品古装| 欧美潮喷喷水| 亚洲av二区三区四区| av免费观看日本| 深爱激情五月婷婷| 国产精品一区www在线观看| 国产成人一区二区在线| 少妇的逼好多水| 极品教师在线视频| 91久久精品电影网| 亚洲高清免费不卡视频| 18+在线观看网站| 搡女人真爽免费视频火全软件| 男人和女人高潮做爰伦理| 高清视频免费观看一区二区| 国产男女内射视频| 欧美日韩亚洲高清精品| 日韩欧美 国产精品| 黄色怎么调成土黄色| 国产日韩欧美在线精品| 国产一区二区三区av在线| 99久久精品国产国产毛片| 91狼人影院| 免费不卡的大黄色大毛片视频在线观看| 国产视频内射| 在线天堂最新版资源| 欧美性猛交╳xxx乱大交人| 美女高潮的动态| 亚洲色图av天堂| 国产男女内射视频| 国产综合懂色| 日韩精品有码人妻一区| 建设人人有责人人尽责人人享有的 | 久久精品国产亚洲网站| 亚洲欧美一区二区三区黑人 | 噜噜噜噜噜久久久久久91| 国产91av在线免费观看| 街头女战士在线观看网站| 禁无遮挡网站| 天天一区二区日本电影三级| 夫妻午夜视频| 男女那种视频在线观看| 国产精品福利在线免费观看| 国内精品宾馆在线| 三级经典国产精品| 亚洲精品国产色婷婷电影| 亚洲国产精品国产精品| 国产真实伦视频高清在线观看| 一本一本综合久久| 久久鲁丝午夜福利片| 精品久久国产蜜桃| 日本一本二区三区精品| 精品久久久久久电影网| 亚洲精品456在线播放app| 三级国产精品欧美在线观看| 啦啦啦中文免费视频观看日本| 亚洲精品第二区| 中国三级夫妇交换| 久久99热这里只有精品18| 久久ye,这里只有精品| 一级黄片播放器| 青春草视频在线免费观看| 在线a可以看的网站| av国产免费在线观看| 久久精品久久精品一区二区三区| 精品久久久精品久久久| 性色av一级| 国产在线男女| 成年女人看的毛片在线观看| 国产精品国产三级国产av玫瑰| 日本av手机在线免费观看| 韩国av在线不卡| av专区在线播放| 国产极品天堂在线| 超碰av人人做人人爽久久| 蜜桃久久精品国产亚洲av| 人体艺术视频欧美日本| 黑人高潮一二区| 性色avwww在线观看| 在线观看人妻少妇| 久久久久久久久久人人人人人人| 午夜福利在线在线| 久久人人爽人人爽人人片va| 一级av片app| 大话2 男鬼变身卡| 99久久精品国产国产毛片| 大香蕉久久网| 日本爱情动作片www.在线观看| 美女被艹到高潮喷水动态| 搡女人真爽免费视频火全软件| 久久精品国产亚洲网站| 男女边摸边吃奶| 国产在视频线精品| 免费大片黄手机在线观看| 久久ye,这里只有精品| 国产成人精品一,二区| 99热国产这里只有精品6| 秋霞在线观看毛片| 国产爱豆传媒在线观看| 亚洲国产色片| 在线看a的网站| 美女内射精品一级片tv| 女人久久www免费人成看片| 青春草亚洲视频在线观看| 国产成人a区在线观看| 成人国产麻豆网| 干丝袜人妻中文字幕| 男的添女的下面高潮视频| 18禁在线无遮挡免费观看视频| 欧美+日韩+精品| 丰满乱子伦码专区| 国产在线男女| 一级片'在线观看视频| 尤物成人国产欧美一区二区三区| 亚洲欧洲国产日韩| 久久久久久久大尺度免费视频| 国产极品天堂在线| 久久精品国产亚洲网站| 91午夜精品亚洲一区二区三区| 毛片女人毛片| 天堂中文最新版在线下载 | 午夜福利视频精品| 久久久久国产网址| 久久97久久精品| 在线播放无遮挡| 一级a做视频免费观看| 国产色爽女视频免费观看| 日韩不卡一区二区三区视频在线| 国产91av在线免费观看| eeuss影院久久| 18禁裸乳无遮挡免费网站照片| 久久久久久久国产电影| 最近中文字幕高清免费大全6| 久久久久国产精品人妻一区二区| 夜夜爽夜夜爽视频| 亚洲av二区三区四区| 久久久久久久久大av| 久久久久精品性色| 午夜免费男女啪啪视频观看| 亚洲一区二区三区欧美精品 | 免费看日本二区| 国产精品一区二区三区四区免费观看| 日韩中字成人| 欧美一区二区亚洲| 老师上课跳d突然被开到最大视频| 午夜日本视频在线| 欧美日韩视频高清一区二区三区二| 熟妇人妻不卡中文字幕| 国产午夜福利久久久久久| 视频中文字幕在线观看| 成年女人在线观看亚洲视频 | 亚洲精品一区蜜桃| 老司机影院毛片| av免费在线看不卡| 大片免费播放器 马上看| 秋霞伦理黄片| 日本午夜av视频| 少妇裸体淫交视频免费看高清| 亚洲av成人精品一区久久| 欧美亚洲 丝袜 人妻 在线| 国产av国产精品国产| 亚洲不卡免费看| 日产精品乱码卡一卡2卡三| 丰满乱子伦码专区| 精品亚洲乱码少妇综合久久| 亚洲精品,欧美精品| 国产老妇伦熟女老妇高清| 亚洲成色77777| 成人漫画全彩无遮挡| 亚洲不卡免费看| 边亲边吃奶的免费视频| 女人十人毛片免费观看3o分钟| 人妻 亚洲 视频| 精品一区二区免费观看| 一级av片app| 亚洲成人av在线免费| 91久久精品国产一区二区三区| 嘟嘟电影网在线观看| 国产午夜福利久久久久久| 一级毛片久久久久久久久女| 欧美潮喷喷水| 高清日韩中文字幕在线| 少妇 在线观看| 伦理电影大哥的女人| av在线天堂中文字幕| 夜夜爽夜夜爽视频| 国产黄频视频在线观看| 日本欧美国产在线视频| 欧美激情久久久久久爽电影| 欧美另类一区| 天堂网av新在线| 少妇人妻久久综合中文| 在线亚洲精品国产二区图片欧美 | 日本爱情动作片www.在线观看| 天堂网av新在线| 久久久久久久久大av| 午夜精品国产一区二区电影 | 免费大片18禁| 精品一区二区三卡| 男女下面进入的视频免费午夜| 国产精品国产三级国产专区5o| 国产永久视频网站| 亚洲av免费高清在线观看| 黄色配什么色好看| 美女xxoo啪啪120秒动态图| 欧美 日韩 精品 国产| 成人免费观看视频高清| 久久97久久精品| 欧美高清成人免费视频www| 亚洲国产欧美在线一区| 亚洲天堂国产精品一区在线| 少妇被粗大猛烈的视频| 男人狂女人下面高潮的视频| 22中文网久久字幕| 成人无遮挡网站| 国产一区二区三区综合在线观看 | 国产极品天堂在线| 亚洲欧美日韩卡通动漫| 国产成人a区在线观看| 我的女老师完整版在线观看| 国产精品蜜桃在线观看| 老司机影院毛片| 夫妻午夜视频| 久久人人爽人人片av| 亚洲成色77777| 欧美性猛交╳xxx乱大交人| 在线观看一区二区三区激情| 美女主播在线视频| 久久精品夜色国产| 在线天堂最新版资源| 啦啦啦中文免费视频观看日本| 午夜免费观看性视频| 18禁裸乳无遮挡动漫免费视频 | av国产免费在线观看| 新久久久久国产一级毛片| 高清午夜精品一区二区三区| 麻豆成人午夜福利视频| 国产亚洲5aaaaa淫片| 男人狂女人下面高潮的视频| 亚洲美女视频黄频| 亚洲人成网站高清观看| 欧美少妇被猛烈插入视频| 亚洲精品一二三| 午夜亚洲福利在线播放| 国产精品一区二区在线观看99| 国语对白做爰xxxⅹ性视频网站| 欧美xxⅹ黑人| 免费黄色在线免费观看| 精华霜和精华液先用哪个| 蜜桃久久精品国产亚洲av| 99久久中文字幕三级久久日本| 国产色婷婷99| 国产精品爽爽va在线观看网站| 欧美人与善性xxx| 亚洲色图综合在线观看| 在线天堂最新版资源| 亚洲国产色片| 国产午夜精品久久久久久一区二区三区| 免费看日本二区| 亚洲怡红院男人天堂| 一级爰片在线观看| 国产高清国产精品国产三级 | 97人妻精品一区二区三区麻豆| 亚洲久久久久久中文字幕| 免费电影在线观看免费观看| 精品久久久久久久人妻蜜臀av| 超碰av人人做人人爽久久| 色综合色国产| 男人和女人高潮做爰伦理| 男人舔奶头视频| 久热久热在线精品观看| 最近最新中文字幕免费大全7| 成人一区二区视频在线观看| 少妇裸体淫交视频免费看高清| 亚洲av二区三区四区| 亚洲人成网站在线播| 少妇被粗大猛烈的视频| 一级爰片在线观看| 国产片特级美女逼逼视频| 全区人妻精品视频| 亚洲精品第二区| av在线观看视频网站免费| 蜜桃亚洲精品一区二区三区| 少妇丰满av| 日本一本二区三区精品| 我要看日韩黄色一级片| 亚洲av二区三区四区| 国产精品嫩草影院av在线观看| 2022亚洲国产成人精品| 亚洲不卡免费看| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲色图综合在线观看| 国产有黄有色有爽视频| 少妇人妻精品综合一区二区| 精品久久久久久久久亚洲| 国产大屁股一区二区在线视频| 夫妻午夜视频| 国产毛片a区久久久久| 国产亚洲av嫩草精品影院| 你懂的网址亚洲精品在线观看| 色视频在线一区二区三区| 久久韩国三级中文字幕| 国产毛片在线视频| 午夜激情久久久久久久| 精品一区二区三卡| 我的女老师完整版在线观看| 亚洲精品乱码久久久v下载方式| 哪个播放器可以免费观看大片| 韩国高清视频一区二区三区| 婷婷色麻豆天堂久久| 国产精品一区www在线观看| 国产永久视频网站| 精品人妻熟女av久视频| 全区人妻精品视频| 嫩草影院新地址| 另类亚洲欧美激情| 亚洲自偷自拍三级| 特大巨黑吊av在线直播| 男的添女的下面高潮视频| 大片免费播放器 马上看| 在线播放无遮挡| av一本久久久久| 少妇的逼水好多| 国产精品精品国产色婷婷| 欧美老熟妇乱子伦牲交| 久久久精品欧美日韩精品| 日日摸夜夜添夜夜添av毛片| 深爱激情五月婷婷| 亚洲av中文字字幕乱码综合| 少妇人妻久久综合中文| 亚洲成人一二三区av| 亚洲av欧美aⅴ国产| 一个人观看的视频www高清免费观看| 亚洲av中文字字幕乱码综合| 七月丁香在线播放| 18禁动态无遮挡网站| 精品久久久久久久久亚洲| 国产精品伦人一区二区| 亚洲精品日韩av片在线观看| 日本欧美国产在线视频| 欧美日本视频| 99热国产这里只有精品6| 亚洲最大成人手机在线| 80岁老熟妇乱子伦牲交| 精品久久久久久久久亚洲| 日本一二三区视频观看| 国产精品国产av在线观看| 亚洲天堂av无毛| 最近手机中文字幕大全| 国产精品国产av在线观看| 少妇丰满av| 国产片特级美女逼逼视频| 91狼人影院| 国产精品一及| 麻豆乱淫一区二区| 人人妻人人澡人人爽人人夜夜| 大片电影免费在线观看免费| 欧美3d第一页| 日本免费在线观看一区| 嫩草影院精品99| 亚洲精品一区蜜桃| 男女啪啪激烈高潮av片| 69av精品久久久久久| 联通29元200g的流量卡| 免费看a级黄色片| 欧美xxxx黑人xx丫x性爽| 国产精品国产av在线观看| 国产精品秋霞免费鲁丝片| 精品人妻熟女av久视频| 国产白丝娇喘喷水9色精品| 精品久久久久久久久av| 久久久久久久大尺度免费视频| 国产免费福利视频在线观看| 午夜亚洲福利在线播放| 国产一区有黄有色的免费视频| 神马国产精品三级电影在线观看| av卡一久久| 欧美高清成人免费视频www| 国内揄拍国产精品人妻在线| 麻豆成人午夜福利视频| 欧美激情久久久久久爽电影| 午夜激情久久久久久久| 成人亚洲精品av一区二区| 欧美精品一区二区大全| 色播亚洲综合网| 国产午夜精品一二区理论片| 一区二区av电影网| 99热这里只有是精品在线观看| 精品国产一区二区三区久久久樱花 | 日韩av免费高清视频| 成年av动漫网址| 男人舔奶头视频| 婷婷色综合www| 亚洲最大成人中文| 国产一区二区亚洲精品在线观看| 亚洲精品乱码久久久v下载方式| 亚洲精品乱码久久久久久按摩| 亚洲高清免费不卡视频| 日日摸夜夜添夜夜添av毛片| 在线观看三级黄色| 亚洲美女搞黄在线观看| 免费看a级黄色片| 中文乱码字字幕精品一区二区三区| 国产精品一区二区三区四区免费观看| 97在线视频观看| 在线观看人妻少妇| 久久精品国产自在天天线| 少妇熟女欧美另类| 国产午夜福利久久久久久| 一二三四中文在线观看免费高清| 午夜免费男女啪啪视频观看| 五月玫瑰六月丁香| 欧美高清性xxxxhd video| 日本与韩国留学比较| 国产人妻一区二区三区在| 欧美日韩综合久久久久久| av在线播放精品| 国产伦理片在线播放av一区| 麻豆国产97在线/欧美| 国产色爽女视频免费观看| 视频区图区小说| 久久精品久久久久久久性| 国产永久视频网站| 热99国产精品久久久久久7| av福利片在线观看| 免费观看无遮挡的男女| 中国美白少妇内射xxxbb| 亚洲最大成人av| 亚洲国产欧美人成| 黄色欧美视频在线观看| 一级毛片 在线播放| av线在线观看网站| 最新中文字幕久久久久| 嘟嘟电影网在线观看| 日产精品乱码卡一卡2卡三|