• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Motion cue based pedestrian detection with two-frame-filtering①

    2015-04-17 06:27:06LvJingqin呂敬欽
    High Technology Letters 2015年3期

    Lv Jingqin (呂敬欽)

    (Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, P.R.China)

    ?

    Motion cue based pedestrian detection with two-frame-filtering①

    Lv Jingqin (呂敬欽)②

    (Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, P.R.China)

    This study proposes a motion cue based pedestrian detection method with two-frame-filtering (Tff) for video surveillance. The novel motion cue is exploited by the gray value variation between two frames. Then Tff processing filters the gradient magnitude image by the variation map. Summations of the Tff gradient magnitudes in cells are applied to train a pre-detector to exclude most of the background regions. Histogram of Tff oriented gradient (HTffOG) feature is proposed for pedestrian detection. Experimental results show that this method is effective and suitable for real-time surveillance applications.

    pedestrian detection, two-frame-filtering (TFF), Tff magnitude vector (TffMV), Histogram of Tff oriented gradient (HTffOG), SVM, video surveillance

    0 Introduction

    Pedestrian detection is an important precursor for many computer vision applications, such as intelligent video surveillance and image annotation. Though pedestrian detection is a challenging task due to variable appearance and pose, prominent progresses have been published[1,2]for pedestrian detection on image. Such works study detection on image by densely extracting powerful feature (such as HOG and LBP) and SVM training, and good results have been achieved. However these methods are time-consuming, furthermore their performance can be improved by adding motion information. Therefore such methods are still not suitable for video surveillance. In recent years, a few works exploit motion information for video pedestrian detection. In Ref.[3] the detection performance is improved significantly when optical flow based feature is combined, but the detection speed is decreased. In Ref.[4] the motion information is exploited by image differencing, and as an early work the detector is trained based on sums of absolute differences and gray value in rectangles. Methods combined with edge templates and foreground cues[5,6]can obtain good performance in video surveillance scenes with relatively rapid speed.

    In surveillance scenes most people are walking, and stand-up people will walk away later. By this observation, a motion cue based pedestrian detection method with two-frame-filtering is proposed to detect moving pedestrians in surveillance scenes. The novel motion cue is exploited by the variation of pixel’s gray value between two adjacent frames, instead of foreground cues which may obtain undesirable inaccurate foreground in crowded scenes. Then Tff processing filters the gradient magnitude image of the current frame through the variation map by constraining the magnitude less than the variation value for each pixel. Consequently, the Tff gradient magnitude of the background region is suppressed substantially, and contours of moving targets are highlighted relatively. Summations of the Tff magnitudes in cells are concatenated into Tff magnitude vector (TffMV) and utilized to train the pre-detector by SVM to exclude most of the background regions rapidly. To represent pedestrian’s appearance, histogram of Tff oriented gradient feature is proposed and utilized to train the pedestrian detector. Experimental results and analysis indicate that our detection method is effective and suitable for real-time surveillance applications.

    The structure of this paper is as follows. Section 1 introduces Tff processing, TffMV as well as HTffOG. In Section 2, the detection method is described. Experimental results are presented in Section 3. Finally, the method is concluded in Section 4.

    1 Tff processing and HTffOG

    1.1 Tff processing

    For surveillance scene, motion cue can be exploited from two frames. Firstly, Tff processing computes the variation map of the scene. Given two adjacent frames It+1and It, difference dIt+1(x) of pixel x is calculated

    (1)

    where g is a normalizing factor. The gray value variation map Vt+1(x) is computed as

    (2)

    The result map Vt+1(x) which simply captures pixel’s variation across frames contains the valuable motion cue of the scene. If dIt+1(x) is large enough, it is most likely produced by motion or illumination changing. The normalizing factor g is set to 25 in our experiments by obtaining better effects of variation maps for several randomly selected frames.

    For illustrative purpose, the results of Tff processing on two frames are shown in Fig.1. In the variation map Vt+1(x), the background is suppressed substantially, while moving targets are highlighted relatively, which indicates that the motion information is successfully extracted into the variation map.

    Fig.1 Original image, variation map, magnitude image and Tff magnitude image (from top to bottom)

    In some cases, motions of some local body parts are tiny. In the variation map, such parts are usually thin and weaker. To strengthen the variation of such parts, Vt+1(x) is improved as

    (3)

    Secondly, the gradient magnitude Gt+1(x) of the current frame It+1is calculated using [-1,1] derivative mask. Then magnitude Gt+1(x) is divided by coefficient g as in Eq.(1). Next it is cropped by the same way as Eq.(2).

    The gradient cue characterizes the appearance of the scene, and the variation map exploits the variation parts around moving objects. In order to obtain good features for detection, to integrate the merits of both cues is an advisable way. As the variation map and the magnitude image are calculated in similar ways, Tff processing filters the gradient magnitude image of the current frame through the variation map

    (4)

    1.2 TffMV and HTffOG

    The notable HOG densely extracts histograms of oriented gradient in each cell on a grid of pedestrian window. It captures the appearance and shape information which enable detector to discriminate pedestrians from complex background. Given the Tff magnitude image, the proposed TffMV and HTffOG are extracted in a similar way as HOG. The pedestrian window (96×48 image window) is divided into a 16×8 grid and a 15×7 grid (with cell size of 6×6), as shown in Fig.2. The appearance of pedestrian window can be represented by extracting feature from each cell. Cells of one grid are located at the center of 2×2 neighboring cells of the other grid. Therefore this pair of grids can provide abundant information.

    Fig.2 Illustration of two grids for calculating HTffOG

    In the Tff magnitude image, magnitudes of moving people’s contour are high, while magnitudes of most of the background are close to zero. The summation of magnitudes in a cell represents the appearance of the cell. TffMV is extracted by concatenating the summation of pixels’ magnitudes in every cell. Before calculating the summation, the Tff magnitude image is filtered by a 5×5 averaging filter to reduce aliasing between cells. Consequently, the pedestrian windows can be discriminated from the background ones using TffMV.

    Local appearance and shape can be often characterized well by the distribution of local region’s gradients. To obtain better and sufficient representation, a histogram of oriented gradient is constructed for each cell. Firstly, each pixel’s magnitude is voted bilinearly to histograms of 2×2 neighboring cells according to the distances between the pixel and the cell centers. Next the histogram can be calculated by voting each magnitude to two adjacent orientation bins linearly according to its gradient orientation. HTffOG is the concatenation of all the 233 histograms of oriented gradient, resulting in a vector of 2097 dimensions. Due to the merits of Tff magnitude image, HTffOG can extract moving pedestrian’s appearance better than the traditional HOG for video surveillance.

    In order to alleviate lighting changing problem and imbalance of gradient magnitude among cells, histogram normalization is performed. The histogram of oriented gradient v is normalized for each cell

    (5)

    For general normalization, α is a constant whose value is 1. Consequently, histogram vnis irrelevant to ‖v‖1after normalization. In our method, α is set to 1/3 by experience, and M is set to the evaluated mean summation of Tff magnitude in every cell from the training data. Therefore the informative Tff magnitude cue ‖v‖1is partly preserved in vn.

    2 The detection method

    Linear SVM is adopted to train the pre-detector and the pedestrian detector with TffMV and HTffOG respectively. The detection process is based on scanning a 96×48 model window over the input image at discrete positions (with step size equal to cell size). Detectors are applied to classify each scanned window as a pedestrian candidate or background with TffMV or HTffOG. Background windows will be rejected by the detectors.

    The proposed method contains three steps. Firstly, for each scanned window, TffMV is extracted and runs the pre-detector to classify each window. As a result, most of background windows will be rejected, and only a few windows classified as pedestrian candidate pass the pre-detector. Secondly, the discriminative HTffOG is extracted for each remnant candidate window. HTffOG vectors are fed to the pedestrian detector to classify these windows as pedestrian or not. Some nearby windows corresponding to the same pedestrians usually pass the pedestrian detector. Finally, all the remnant windows are merged to obtain exact pedestrian positions by the mean shift algorithm[8].

    3 Experimental results

    3.1 Implementation details

    To evaluate the proposed detection method, the PETS 2009 dataset[9]is selected which includes many sequences recorded at 7 frames per second from a surveillance scene. The detectors are trained with cropped windows from sequence Time-14-03. 590 pedestrians’ windows (resized to 48×96) are cropped from Time-14-03 as positive training samples, and 5900 negative samples are cropped. The pre-detector and the pedestrian detector are trained by the public software LibSVM[10]. The method is tested after every tenth frame for Time-12-34, and after every fifth frame for Time-13-57. In Time-13-57, many people are in crowd and occlusion happens frequently. This sequence is challenging for the pedestrian detection task, while Time-12-34 is relatively easy. In surveillance scenes, people usually walk on a ground plane. A useful calibration technology[5]can be applied to determine the height of pedestrians at every image vertical coordinates. Then the method can run the detectors through a few scales instead of all scales.

    3.2 The performance of the pre-detector

    Fig.3 shows the output of the pre-detector at a single scanning scale. The 6×6 green patches are the centers of the candidate windows passed the pre-detector. Obviously, most of the background windows are precluded by the pre-detector. To evaluate the performance of the pre-detector, the number of passed windows per person in a frame (NPWP) is defined as a metric. Lower NPWP value indicates that more windows are precluded by the pre-detector. The evaluated average NPWP for Time-12-34 is 21.83. As shown in Table 1 in section 3.3, 85% of the persons are detected in this sequence. Therefore the real average value of NPWP for all the detected persons may be no more than 26. The number of the candidate windows of each frame is 18870. Therefore more than 18000 windows of the background are precluded by the pre-detector with a few computations.

    Fig.3 Outputs of the pre-detector

    TffMV is of only 233 dimensions, and thus the pre-detector can be very efficient to scan the image. HTffOG is of 2097 dimensions, while HOG is of 3780 dimensions. 18000 windows are precluded by the TffMV based pre-detector, and only less than 870 windows are required to calculate the HTffOG and send to

    the person detector. As compared, our method can be nearly 15 times faster than HOG based detection method, which indicates that the method should be suitable for real-time detection.

    3.3 Pedestrian detection results

    Recently Bolme, et al. proposed the ASEF Filter based detection method[11], and Felzenszwalb, et al. proposed the part model detection method. Experimental results of both methods on PETS 2009 dataset were presented in Ref.[11]. For evaluation purposes, the results of our method are compared with results of these methods. Table 1 and Table 2 show the detection results of the proposed method and results extracted from Ref.[11]. Two detection results with different detection thresholds are given for each method.

    Table 1 Results of sequence Time-14-03

    Table 2 Results of sequence Time-13-57

    For Time-12-34, the proposed method achieves a high recall rate 85.65% and a higher precision rate 96.91%. Our method performs better than the compared methods as shown in Table 1. In this sequence some people stand statically. If such kind of cases is not considered in statistics, the recall rate should be higher than 93%. Fig.5 shows the final results of three frames. In Fig.5, most of the pedestrians are detected well, except the person who stands statically in the first image.

    For Time-13-57, our method results in a lower recall rate 62.85% and a high precision rate 89.43%, under difficulties that half-body occlusion and whole-body occlusion happen frequently. Compared with other methods with the same recall rates, our precision rate is higher. During the calculation of the recall rate, all the pedestrians including whole-body occluded pedestrians contribute to the recall rate; thus the recall rate should be higher actually.

    Fig.5 Results of three frames of Time-12-34

    Fig.6 shows the final results of three frames for Time-13-57. Obviously, most of the pedestrians not occluded are detected well, while a few false positives and miss detections also exist. In the first image, there are two false positives on the upper left. The left one is produced between two pedestrians. The other one is produced by the upper-body of three pedestrians, and one miss happens among the dense crowds. In the second image, the pedestrian occluded by the billboard is detected well, due to the role of the motion cue and the discriminative HTffOG. In the third image, the upper left dense crowds are detected with high recall performance. Those persons overlapped with nearby ones are detected precisely. The above experimental results indicate that the proposed method achieves good performance for these two sequences.

    Fig.6 Results of three frames of Time-13-57

    4 Conclusions

    This study has exploited the motion cue by effective Tff processing. Based on the Tff processing, discriminative TffMV and HTffOG are proposed. The pre-detector can preclude most background regions rapidly, and the pedestrian detector detects pedestrians from crowded scenes well. Experimental results indicate that our method is robust in complex scenes and suitable for real-time surveillance applications. Based on the proposed Tff processing, it’s meaningful to do research on more informative features, or develop methods to detect lower-body occluded pedestrians by combination with the body model[13]in the future.

    [ 1] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA,2005. 886-893

    [ 2] Wang X, Han T X, Yan S. An HOG-LBP human detector with partial occlusion handling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009. 32-39

    [ 3] Walk S, Majer N, Schindler K, et al. New Features and Insights for Pedestrian Detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010. 1030-1037

    [ 4] Viola P, Jones M J, Snow D. Detecting pedestrians using patterns of motion and appearance. In: Proceedings of the IEEE International Conference on Computer Vision, Nice, France, 2003. 734-741

    [ 5] Zhe L, Davis L S, Doermann D, et al. Hierarchical part-template matching for human detection and segmentation In: Proceedings of the IEEE International Conference on Computer Vision, Rio de Janeiro, Brazil, 2007. 1-8

    [ 6] Beleznai C, Bischof H. Fast Human Detection in Crowded Scenes by Contour Integration and Local Shape Estimation In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009. 2246-2253

    [ 7] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Kauai, USA, 2001. 511-518

    [ 8] Comaniciu D, Ramesh V, Meer P. The variable bandwidth mean shift and data-driven scale selection. In: Proceedings of the IEEE International Conference on Computer Vision, Vancouver, British Columbia, Canada, 2001.438-445

    [ 9] Ferryman J, Shahrokni A. An overview of the pets2009 challenge. In: Proceedings of the IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Miami, USA, 2009. 25-30

    [10] Chang C C, Lin C J. LIBSVM: a library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001

    [11] Bolme D S, Lui M Y, Draper B A, et al. Simple real-time human detection using a single correlation filter. In: Proceedings of the IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Miami, USA, 2009. 1-8

    [12] Felzenszwalb P, McAllester D, Ramanan D. A discriminatively trained, multiscale, deformable part model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008. 1-8

    [13] Ramanan D. Learning to parse images of articulated bodies. In: Proceedings of the Conference on Neural Information Processing Systems, Vancouver, Canada, 2006. 1129-1136

    Lv Jingqin, born in 1984. He is currently a PhD candidate at the Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, China. He received his BS and MS in instrument science and technology from Harbin Institute of Technology, China, in 2005 and 2007, respectively. His research interests include visual surveillance, object detection, and pattern analysis.

    10.3772/j.issn.1006-6748.2015.03.013

    ①Supported by the National High Technology Research and Development Program of China (No.2007AA01Z164), and the National Natural Science Foundation of China (No.61273258).

    ②To whom correspondence should be addressed. E-mail: lvjingqin@sjtu.edu.cn Received on Jan. 7, 2014, Zhang Miaohui, Yang Jie

    22中文网久久字幕| 亚洲精品视频女| 一本大道久久a久久精品| 日韩伦理黄色片| 中文字幕人妻熟女乱码| 成人漫画全彩无遮挡| 大香蕉97超碰在线| 国产在线一区二区三区精| 99re6热这里在线精品视频| 国产永久视频网站| 色婷婷av一区二区三区视频| 亚洲,一卡二卡三卡| 午夜激情av网站| 国产又爽黄色视频| 永久免费av网站大全| 欧美bdsm另类| 中文字幕av电影在线播放| 国产乱来视频区| 成年动漫av网址| 久久亚洲国产成人精品v| 97超碰精品成人国产| 国产亚洲av片在线观看秒播厂| 亚洲成人一二三区av| 亚洲高清免费不卡视频| 成人国产av品久久久| 欧美最新免费一区二区三区| 男人操女人黄网站| 两个人看的免费小视频| 18禁在线无遮挡免费观看视频| 成年人午夜在线观看视频| 我要看黄色一级片免费的| 免费观看a级毛片全部| 母亲3免费完整高清在线观看 | a级毛色黄片| 九色亚洲精品在线播放| 中文乱码字字幕精品一区二区三区| 亚洲国产欧美日韩在线播放| 免费看光身美女| av在线观看视频网站免费| 男女高潮啪啪啪动态图| 国产日韩欧美视频二区| 欧美变态另类bdsm刘玥| 人人妻人人澡人人爽人人夜夜| 永久免费av网站大全| 大香蕉久久成人网| 日本午夜av视频| 观看av在线不卡| 肉色欧美久久久久久久蜜桃| 国产日韩欧美在线精品| 精品99又大又爽又粗少妇毛片| 日韩一区二区三区影片| 麻豆精品久久久久久蜜桃| 黄色 视频免费看| 国产乱人偷精品视频| 欧美激情 高清一区二区三区| 日韩一本色道免费dvd| 国产激情久久老熟女| 热99国产精品久久久久久7| 老女人水多毛片| 精品国产一区二区三区久久久樱花| 日韩精品有码人妻一区| 校园人妻丝袜中文字幕| 日韩制服丝袜自拍偷拍| 在线天堂最新版资源| 国产精品无大码| 22中文网久久字幕| 免费少妇av软件| 两个人免费观看高清视频| 人妻 亚洲 视频| 飞空精品影院首页| 亚洲高清免费不卡视频| videossex国产| 91精品伊人久久大香线蕉| 多毛熟女@视频| 久久人人爽人人爽人人片va| 啦啦啦在线观看免费高清www| 欧美国产精品一级二级三级| 亚洲国产欧美在线一区| 中国国产av一级| 欧美日韩国产mv在线观看视频| 午夜福利影视在线免费观看| 青春草国产在线视频| 热99久久久久精品小说推荐| 最黄视频免费看| 国产精品一区二区在线不卡| 久久久久久人妻| 免费高清在线观看日韩| 国产一区亚洲一区在线观看| 9191精品国产免费久久| 精品亚洲乱码少妇综合久久| 日本免费在线观看一区| 伦理电影免费视频| 人妻系列 视频| 热99久久久久精品小说推荐| 成人国语在线视频| 亚洲精品久久午夜乱码| 国产片特级美女逼逼视频| 亚洲欧美清纯卡通| 欧美日韩国产mv在线观看视频| 天美传媒精品一区二区| 国产日韩一区二区三区精品不卡| 夫妻午夜视频| 亚洲欧美日韩卡通动漫| 国产 精品1| 在线亚洲精品国产二区图片欧美| 国产爽快片一区二区三区| 一个人免费看片子| 精品少妇黑人巨大在线播放| 日韩一本色道免费dvd| 中国国产av一级| 18禁动态无遮挡网站| 国产成人精品在线电影| 少妇人妻久久综合中文| 美女福利国产在线| 建设人人有责人人尽责人人享有的| 国产高清三级在线| 亚洲美女搞黄在线观看| 男女无遮挡免费网站观看| 男女午夜视频在线观看 | 亚洲第一av免费看| tube8黄色片| 日韩欧美一区视频在线观看| 久久久欧美国产精品| 成人亚洲精品一区在线观看| 日本与韩国留学比较| 97在线视频观看| 国产69精品久久久久777片| 考比视频在线观看| av福利片在线| 2021少妇久久久久久久久久久| 国产亚洲av片在线观看秒播厂| 国产女主播在线喷水免费视频网站| 狂野欧美激情性xxxx在线观看| 国产一级毛片在线| 另类亚洲欧美激情| 国产一区二区在线观看av| 精品少妇久久久久久888优播| 99热这里只有是精品在线观看| 乱码一卡2卡4卡精品| 蜜桃在线观看..| 亚洲欧美成人精品一区二区| tube8黄色片| 激情视频va一区二区三区| 九九爱精品视频在线观看| 香蕉精品网在线| 国产一区有黄有色的免费视频| 国产白丝娇喘喷水9色精品| a级毛片在线看网站| 国产男人的电影天堂91| 丰满少妇做爰视频| 国产在线一区二区三区精| 寂寞人妻少妇视频99o| 日本猛色少妇xxxxx猛交久久| 少妇的逼好多水| 国产综合精华液| 精品少妇内射三级| 五月天丁香电影| 欧美 亚洲 国产 日韩一| 最后的刺客免费高清国语| 久久久国产一区二区| 一边亲一边摸免费视频| 久久久精品94久久精品| 亚洲婷婷狠狠爱综合网| 国产黄色视频一区二区在线观看| 中文字幕制服av| 亚洲精品一二三| 久久99一区二区三区| 777米奇影视久久| www日本在线高清视频| 国产淫语在线视频| 永久网站在线| 一区二区三区精品91| 日日撸夜夜添| 色哟哟·www| 精品一区在线观看国产| 啦啦啦中文免费视频观看日本| a级毛色黄片| 国产免费又黄又爽又色| 九草在线视频观看| 2022亚洲国产成人精品| 欧美人与性动交α欧美精品济南到 | 免费av不卡在线播放| 国产永久视频网站| 国产精品成人在线| 蜜桃在线观看..| 欧美日韩一区二区视频在线观看视频在线| 在线看a的网站| 在线观看免费日韩欧美大片| 日本vs欧美在线观看视频| 成人国产av品久久久| 日韩av在线免费看完整版不卡| 亚洲综合色惰| 毛片一级片免费看久久久久| 熟女av电影| 国产成人91sexporn| 亚洲国产精品成人久久小说| 免费在线观看完整版高清| 亚洲精品自拍成人| 丰满乱子伦码专区| 精品少妇久久久久久888优播| 国产精品久久久久久av不卡| 热99国产精品久久久久久7| 中文字幕精品免费在线观看视频 | 香蕉丝袜av| 日本-黄色视频高清免费观看| 草草在线视频免费看| av国产精品久久久久影院| 国产高清三级在线| 视频区图区小说| 在线 av 中文字幕| 女人久久www免费人成看片| 日韩中字成人| 精品第一国产精品| 我要看黄色一级片免费的| 建设人人有责人人尽责人人享有的| 欧美成人午夜免费资源| 国产xxxxx性猛交| 亚洲成色77777| 亚洲欧洲国产日韩| 精品第一国产精品| 亚洲人与动物交配视频| 亚洲精品久久成人aⅴ小说| 大香蕉久久成人网| 亚洲四区av| 欧美激情 高清一区二区三区| 女人精品久久久久毛片| 久久久精品区二区三区| 伊人亚洲综合成人网| 国产精品女同一区二区软件| 婷婷色av中文字幕| 久久狼人影院| 九九在线视频观看精品| 天天躁夜夜躁狠狠久久av| 亚洲熟女精品中文字幕| 精品午夜福利在线看| 午夜福利影视在线免费观看| 97在线人人人人妻| 高清视频免费观看一区二区| 欧美精品人与动牲交sv欧美| av天堂久久9| 国产乱人偷精品视频| 大香蕉久久成人网| 一二三四在线观看免费中文在 | 亚洲内射少妇av| 久久久久久久大尺度免费视频| 亚洲国产精品一区二区三区在线| 国产1区2区3区精品| 国产亚洲精品第一综合不卡 | 午夜福利视频在线观看免费| 一级片免费观看大全| 男女高潮啪啪啪动态图| 中文乱码字字幕精品一区二区三区| 国产精品麻豆人妻色哟哟久久| 成年动漫av网址| 国产成人精品福利久久| 免费观看a级毛片全部| 有码 亚洲区| 欧美国产精品va在线观看不卡| 丝瓜视频免费看黄片| 99国产综合亚洲精品| 各种免费的搞黄视频| 国产精品蜜桃在线观看| 亚洲激情五月婷婷啪啪| 人妻少妇偷人精品九色| 在线看a的网站| 午夜免费鲁丝| 日日啪夜夜爽| 天堂中文最新版在线下载| 一级毛片 在线播放| 久久97久久精品| 久久久久国产精品人妻一区二区| 十八禁高潮呻吟视频| 97超碰精品成人国产| 大香蕉久久成人网| 一级毛片电影观看| 曰老女人黄片| 亚洲丝袜综合中文字幕| 午夜福利网站1000一区二区三区| 欧美人与性动交α欧美软件 | 国产精品免费大片| 男人添女人高潮全过程视频| 精品久久久久久电影网| 狂野欧美激情性bbbbbb| 久久久久久久久久成人| 成人手机av| 国产精品三级大全| 热99国产精品久久久久久7| 狠狠精品人妻久久久久久综合| 少妇被粗大的猛进出69影院 | 亚洲精品,欧美精品| 日本猛色少妇xxxxx猛交久久| 美女国产高潮福利片在线看| 午夜福利乱码中文字幕| 国产男人的电影天堂91| 午夜影院在线不卡| www.色视频.com| 18禁动态无遮挡网站| 欧美日韩成人在线一区二区| 久久精品夜色国产| 插逼视频在线观看| 青春草亚洲视频在线观看| a级毛片黄视频| 亚洲欧洲精品一区二区精品久久久 | 亚洲一级一片aⅴ在线观看| 99久久中文字幕三级久久日本| 免费大片18禁| 国产69精品久久久久777片| 午夜福利,免费看| 91国产中文字幕| 中文字幕av电影在线播放| 欧美丝袜亚洲另类| 久久久久国产网址| 国产一区二区在线观看日韩| 美女福利国产在线| 中文字幕免费在线视频6| 捣出白浆h1v1| 18禁裸乳无遮挡动漫免费视频| 最近的中文字幕免费完整| 免费观看在线日韩| 咕卡用的链子| 成人免费观看视频高清| 亚洲欧洲日产国产| 天天躁夜夜躁狠狠躁躁| 一级,二级,三级黄色视频| 男女边吃奶边做爰视频| 在线 av 中文字幕| 在线观看免费视频网站a站| 欧美xxⅹ黑人| 午夜久久久在线观看| 亚洲欧美日韩另类电影网站| 新久久久久国产一级毛片| 交换朋友夫妻互换小说| 丰满乱子伦码专区| 国产男女内射视频| 少妇 在线观看| 免费av不卡在线播放| 国国产精品蜜臀av免费| 久久婷婷青草| 啦啦啦在线观看免费高清www| 亚洲精品一区蜜桃| 1024视频免费在线观看| 欧美另类一区| 亚洲精品一区蜜桃| 黄片无遮挡物在线观看| 春色校园在线视频观看| a级片在线免费高清观看视频| 欧美日韩成人在线一区二区| 亚洲精品国产色婷婷电影| 超碰97精品在线观看| 99精国产麻豆久久婷婷| 日日撸夜夜添| 亚洲情色 制服丝袜| 又黄又爽又刺激的免费视频.| 超色免费av| 欧美性感艳星| 妹子高潮喷水视频| 制服丝袜香蕉在线| 久久 成人 亚洲| 欧美激情 高清一区二区三区| 狂野欧美激情性xxxx在线观看| 赤兔流量卡办理| 各种免费的搞黄视频| 一个人免费看片子| 高清av免费在线| 青春草视频在线免费观看| 99久久中文字幕三级久久日本| 精品人妻一区二区三区麻豆| 久久久久视频综合| 国产又爽黄色视频| 免费av中文字幕在线| 精品一区二区三卡| 激情五月婷婷亚洲| 久久久精品免费免费高清| √禁漫天堂资源中文www| 高清在线视频一区二区三区| 精品人妻偷拍中文字幕| 国内精品宾馆在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品女同一区二区软件| 欧美xxxx性猛交bbbb| 色5月婷婷丁香| 日韩一本色道免费dvd| 人人澡人人妻人| 国产又爽黄色视频| 在线观看免费日韩欧美大片| 午夜91福利影院| 人人妻人人爽人人添夜夜欢视频| 亚洲精品乱久久久久久| 欧美97在线视频| xxx大片免费视频| 亚洲av在线观看美女高潮| 亚洲精品日韩在线中文字幕| 亚洲内射少妇av| 99热这里只有是精品在线观看| 久热这里只有精品99| 日本免费在线观看一区| 男女高潮啪啪啪动态图| 亚洲成人一二三区av| 日本黄大片高清| 国产成人av激情在线播放| 99久久人妻综合| 如日韩欧美国产精品一区二区三区| 最近2019中文字幕mv第一页| 国产av精品麻豆| 校园人妻丝袜中文字幕| 色94色欧美一区二区| 性色avwww在线观看| 天堂中文最新版在线下载| 免费观看a级毛片全部| 狠狠精品人妻久久久久久综合| 国产精品秋霞免费鲁丝片| 丁香六月天网| 精品久久国产蜜桃| 国产av一区二区精品久久| 久久这里只有精品19| 另类精品久久| 亚洲精品,欧美精品| 精品久久久精品久久久| 久久精品国产亚洲av天美| 久久久久久久久久久久大奶| 日本爱情动作片www.在线观看| 久久精品国产亚洲av天美| 老司机影院毛片| 亚洲内射少妇av| 国产精品一二三区在线看| 国产精品久久久久久久电影| 国产亚洲午夜精品一区二区久久| 国产爽快片一区二区三区| 婷婷色麻豆天堂久久| 一级毛片我不卡| 成人午夜精彩视频在线观看| 亚洲国产精品一区二区三区在线| 久久97久久精品| 亚洲精品一二三| 综合色丁香网| 老司机影院毛片| 国内精品宾馆在线| 国产极品天堂在线| 精品99又大又爽又粗少妇毛片| 久久久久久伊人网av| 欧美97在线视频| 中文字幕最新亚洲高清| 国产成人精品福利久久| 亚洲四区av| 男女免费视频国产| 韩国高清视频一区二区三区| 亚洲美女视频黄频| 久久精品国产亚洲av天美| 国产精品无大码| 性色av一级| 欧美精品一区二区免费开放| 美女国产高潮福利片在线看| av.在线天堂| 男男h啪啪无遮挡| 亚洲成av片中文字幕在线观看 | 中国美白少妇内射xxxbb| 哪个播放器可以免费观看大片| 97人妻天天添夜夜摸| 精品酒店卫生间| 在线观看美女被高潮喷水网站| 日韩在线高清观看一区二区三区| 一边亲一边摸免费视频| 亚洲美女搞黄在线观看| 黄片无遮挡物在线观看| 国产 精品1| 飞空精品影院首页| 国产精品.久久久| 天堂8中文在线网| 99热6这里只有精品| 亚洲综合色惰| 免费人成在线观看视频色| 啦啦啦中文免费视频观看日本| 秋霞伦理黄片| 欧美精品国产亚洲| 99热这里只有是精品在线观看| 在线看a的网站| 精品少妇内射三级| 精品一区二区三卡| 交换朋友夫妻互换小说| www日本在线高清视频| 欧美最新免费一区二区三区| 国精品久久久久久国模美| 日韩成人伦理影院| 亚洲av福利一区| 免费少妇av软件| 一级毛片 在线播放| 99热这里只有是精品在线观看| 国产女主播在线喷水免费视频网站| 中文字幕精品免费在线观看视频 | 亚洲欧美日韩卡通动漫| 寂寞人妻少妇视频99o| 一边摸一边做爽爽视频免费| 国产精品秋霞免费鲁丝片| 天天影视国产精品| 国产男人的电影天堂91| 男人添女人高潮全过程视频| 午夜激情久久久久久久| 日本欧美视频一区| 大片电影免费在线观看免费| 又黄又爽又刺激的免费视频.| 成人国产av品久久久| 精品人妻偷拍中文字幕| 国产黄色视频一区二区在线观看| 日韩av不卡免费在线播放| 国产精品一区www在线观看| 满18在线观看网站| 五月天丁香电影| 高清黄色对白视频在线免费看| 国产老妇伦熟女老妇高清| 国产女主播在线喷水免费视频网站| 9热在线视频观看99| 国产免费一级a男人的天堂| 一本大道久久a久久精品| 亚洲欧美一区二区三区黑人 | 老司机亚洲免费影院| 日本黄大片高清| 下体分泌物呈黄色| a级毛片在线看网站| 曰老女人黄片| 90打野战视频偷拍视频| av一本久久久久| 国产成人精品一,二区| 精品一区二区免费观看| 亚洲精品456在线播放app| 国产黄色免费在线视频| 久久精品夜色国产| 国产永久视频网站| 51国产日韩欧美| 久久免费观看电影| 亚洲国产色片| 天堂中文最新版在线下载| 王馨瑶露胸无遮挡在线观看| 色网站视频免费| av在线播放精品| 亚洲精品一二三| 亚洲国产精品一区三区| 亚洲国产日韩一区二区| 亚洲熟女精品中文字幕| 嫩草影院入口| 欧美日韩综合久久久久久| 黄片播放在线免费| 久久久久久久久久久免费av| 99久久综合免费| 99视频精品全部免费 在线| 国产精品久久久久成人av| av有码第一页| 日韩欧美精品免费久久| 免费女性裸体啪啪无遮挡网站| 热99国产精品久久久久久7| 男的添女的下面高潮视频| 久久久久网色| 亚洲精品视频女| 妹子高潮喷水视频| 欧美老熟妇乱子伦牲交| 看非洲黑人一级黄片| 韩国av在线不卡| 久久免费观看电影| 一级黄片播放器| 91aial.com中文字幕在线观看| 秋霞在线观看毛片| 日本av免费视频播放| 另类精品久久| 国产精品无大码| 国产乱来视频区| 如日韩欧美国产精品一区二区三区| 熟女人妻精品中文字幕| 欧美xxⅹ黑人| 熟女人妻精品中文字幕| 高清黄色对白视频在线免费看| 国产精品嫩草影院av在线观看| 亚洲欧美一区二区三区黑人 | 亚洲国产欧美在线一区| 精品国产一区二区三区四区第35| 有码 亚洲区| 伦精品一区二区三区| 老司机影院成人| 最新中文字幕久久久久| 国产成人午夜福利电影在线观看| 好男人视频免费观看在线| 91国产中文字幕| 亚洲国产看品久久| 日日爽夜夜爽网站| 亚洲精品日韩在线中文字幕| av在线老鸭窝| 日日爽夜夜爽网站| 男女免费视频国产| a级毛色黄片| 久久久久精品久久久久真实原创| 亚洲美女搞黄在线观看| 日韩三级伦理在线观看| 九九爱精品视频在线观看| 18禁裸乳无遮挡动漫免费视频| 青春草视频在线免费观看| 在线观看三级黄色| 日本欧美视频一区| 高清av免费在线| 久热这里只有精品99| 久久久精品94久久精品| 赤兔流量卡办理| 制服人妻中文乱码| 伦精品一区二区三区| 亚洲,一卡二卡三卡| 亚洲欧美精品自产自拍| 亚洲精品第二区| 国产一区二区在线观看日韩| 国产精品国产av在线观看| 欧美 亚洲 国产 日韩一| 国产国语露脸激情在线看| 免费在线观看完整版高清| 曰老女人黄片| 亚洲av男天堂| 久久久久国产网址| 少妇熟女欧美另类| 久久久国产一区二区| 日韩熟女老妇一区二区性免费视频|