• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on the musculoskeletal body for quadruped robots with spinning gait①

    2015-04-17 06:26:58LeiJingtao雷靜桃
    High Technology Letters 2015年3期

    Lei Jingtao(雷靜桃)

    (School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, P.R.China)

    ?

    Study on the musculoskeletal body for quadruped robots with spinning gait①

    Lei Jingtao(雷靜桃)②

    (School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, P.R.China)

    The walking creatures’ athletic ability is related to their body’s musculoskeletal system. A kind of musculoskeletal body for quadruped robots is developed, which will be used to assist the leg mechanism to achieve spinning gait in order to improve the robot mobility in unstructured environment. A bionic-flexible-spine model driven by pneumatic artificial muscles (PAMs) is proposed. Because the body has the flexible property, the robot can achieve spinning gait quickly, which is similar to walking creatures by coordinated movement between body bending and legs side-swing. The kinematics of the bending of the musculoskeletal body and side-swing of leg mechanism of quadruped robot for spinning gait are studied. According to the stability analysis of spinning gait, the relationship between body bending angle and leg swing angle can be determined. The PID controller is designed to conduct the bending experiment, and the bending characteristic of the musculoskeletal body is studied. Experimental results show that the biggest bending angle of the musculoskeletal body can reach 30°.

    quadruped robot, musculoskeletal body, spinning gait, flexible spine, pneumatic artificial muscles (PAMs)

    0 Introduction

    A variety of quadruped robots have already been developed, and the gait planning has been mostly studied, such as crawl gait or trotting gait[1,2]and the control algorithm[3,4]. However, the structure and gaits of robots that have been developed are still quite different from walking creatures. Studying on the quadruped robot has focused on improving the mobility and dynamic stability in unstructured environments. It is difficult to achieve the biological terrain adaptation similar to the natural walking motion of creatures.

    Biological motion is the result of the nervous system, muscular system and skeletal system, where the nervous system controls the muscular system, the interaction of the muscular system makes the skeletal system produce a corresponding movement and accomplish a variety of mechanical action. The muscular can turn the chemical energy into mechanical energy. So this kind of distributed drive of biology will have more than one degree of freedom, which can provide possibility of diversify type[5]of animal movement.

    The terrain of the unstructured environment is complicated, such as obstacles, ditches or others. Four-legged animals usually adopt turning gait or spinning gait to avoid obstacle or change walking directions[6].

    When a quadruped robot walks in an unstructured environment, the walking gait should be effectively planned to adapt to various unstructured environments. The gait is related to walking velocity, direction and mobility. In addition to straight walking gait, the robot should have the ability to avoid obstacles or change the route[6]. The quadruped robot should have the ability of turning or spinning to achieve dynamically stable walking. When the robot walks with spinning gait, it rotates around the center of the gravity of body (COG) with no rotation radius. The robot can quickly avoid obstacles or change the route with spinning gait. Thus it needs a bionic flexible body for the robot.

    A motor is generally used as an actuator for walking robots. This kind of drive mode limits their mobility. The PAM as a new actuator has some advantages, such as light weight, high output power-diameter ratio, flexibility, safe and convenient, while PAM is very similar to biological muscles in shape and working principle, which can meet the flexibility special requirements, and PAM has been used in a wide variety of applications in robots[7]. Shadow Robot Co. presented the Shadow Robot-leg, a human size PAM-actuated robotic leg developed for investigation of myoelectric control of powered prosthetic legs[7]. A cocksroach walking robot was developed, and many PAMs were adopted as drivers to achieve the cockroach-like locomotion[8]. A robot with an artificial musculoskeletal system is presented. PAMs are used for the robot actuator, the robot can achieve vertical jumping, soft landing and postural control during standing[9]. A kind of quadruped robot driven by Festo PAM was designed[10].

    Generally, the walking robots were designed with a rigid body structure. If a quadruped robot has a flexible body structure, it is easy to achieve a variety of posture to improve its mobility and stability. The flexible body should be designed by imitating the trunk structure of creatures to improve the mobility of quadruped robots. The dynamic locomotion stability of walking robots depends on their body mechanism too[11]. A kind of bionic body with variable stiffness was designed by using the changeable elasticity of the pneumatic actuators. The gait stability of this musculoskeletal robot was analyzed[12,13]. A kind of robot with changeable body stiffness using pneumatic actuators was developed to adapt to the changing environment[14]. A kind of flexibility body containing one articulated spine joint was presented[15]. A spinal structure with variable viscoelasticity and multiple joints was presented and a quadruped robot with this kind of body was developed, and the relationship between the gait pattern of the legs and viscoelasticity spine was analyzed[16].

    A kind of quadruped robot with rigid body was developed[17,18]. Because the body was designed with stiffer, the turning radius is bigger and the turning speed is slower. Actually, trunks of quadruped animals are not rigid, such as tigers and lizards, whose trunk can bend at an angle. When they are in turning gait, they can coordinate the movements of their trunk and legs to achieve rapid turning.

    In this paper, a kind of musculoskeletal body for quadruped robots is proposed, which is composed of bionic flexible spine and PAMs. The musculoskeletal body is designed for robot walking in spinning gait. Kinematics of musculoskeletal body is analyzed, and the stability condition for spinning is derived. The dynamic bending experiment of musculoskeletal body driven by PAMs is conducted to analyze the bending characteristic. The experimental results show that the proposed musculoskeletal body with bionic flexible spine has the bending property. It is easy to achieve the spinning gait by musculoskeletal body coordinated with leg mechanism.

    1 The quadruped robot

    The quadruped robot with musculoskeletal body is presented, as shown in Fig.1. The robot is composed of one musculoskeletal body and four leg mechanisms.

    The musculoskeletal body is composed of fore body, hind body, one bionic spine and PAMs. The fore body and hind body are connected by the bionic spine and PAMs. PAM can imitate the behavior of biological muscle and achieves the relative motion of fore body and hind body. The quadruped robot is designed with three degrees of freedom in each leg. Three rotary joints are side swing hip joint, hip joint and knee joint.

    Fig.1 The quadruped robot

    2 The bionic spine of musculoskeletal body

    The creature spine consists of a number of spine units as shown in Fig.2. The spine unit is composed of vertebral body and intervertebral disc connected with each other as a series of cups and saucers lined up, and the disc is flexible and can provide cushioning.

    The bionic spine has 10 DoF passive joints, and itself has no actuator to actuate its motion directly, which is driven by PAMs to achieve creature-like motion.

    (a) The creature spine

    (b) The artificial spine

    3 Kinematics analysis

    3.1 Spinning gait and turning gait

    The stability of the quadruped robot depends on the gait. The quadruped robot needs to work in the rough terrain, so the spinning gait is as important as a straight gait. The spinning gait is different from the turning gait, as shown in Fig.3(a) and (b). The spinning gait is that the robot rotates around the center of the gravity of body (COG) with no rotation radius, which allows the robot to walk in narrow space. The quadruped robot with bionic flexible spine driven by the PAMs can carry out spinning gait.

    3.2 Kinematics of flexible body

    Kinematics of flexible body is to determine the pose of the hip joint during the body bending.

    The coordinate systems for kinematics of musculoskeletal body are shown in Fig.4. The thin lines indicate that the body is in initial posture. The thick lines indicate that the body is in the body bending posture.

    The body bending angle is θ, so the angle between the fore body and the hind body is 2θ. a and b are the position coordinates of side-swing hip joint in the body coordinate system {B}, and c is the mounting size of PAM in the fore body or hind body. a=280mm, b=80mm, c=88mm.

    (a) Spinning gait with body bending

    (b) Turning gait

    Fig.4 Coordinate frame of bionic body

    The kinematics of the quadruped robot can be represented in the world coordinate frame {W}. The body initial coordinate system is {B}, which is located at COG. The body moving coordinate system is {B1}. The coordinate systems of four-side-swing-hip joints are {Hi}(i=1,2,3,4).

    The pose of four-side-swing hip joints changes with the body bending. After that, the pose of side-swing hip joints with respect to body can be expressed by the homogeneous transformation matrix as follows:

    (1)

    After body bending the angle θ, the transformation matrix of {B1} with respect to {B} is:

    (2)

    Firstly, the PAM length should be controlled within a reasonable range in order to achieve the suitable bending angle of the bionic flexible body. Secondly, the body bending angle and leg side swing movement should meet the dynamic stability condition.

    When quadruped robot walks with spinning gait and the bionic flexible body bending, the relationship between PAM length and bending angle can be derived according to the geometric relationship.

    (3)

    where l0=200mm is the initial length of PAM, lh=90mm is the length of the pipe head for connecting the PAM. The PAM length is in inverse proportion to the bending angle.

    3.3 Kinematics of leg mechanism

    The spinning and the body bending of quadruped robot is shown in Fig.5. The dotted line shows the initial state of feet, and the solid line shows the state after body bending. The kinematics of the quadruped robot can be represented in the world coordinate system {W} or in the body coordinate system.

    Fig.5 Spinning gait

    Each leg has three joints, the joint variable of each leg is defined as:

    (4)

    where i is the ith leg.

    And the joint variable of the quadruped robot can be defined as:

    (5)

    When quadruped robot walks with spinning gait, after the leg side-swing, the homogeneous transformation matrix of the pose of foot-end {Fi}(i=1,2,3,4) with respect to {Hi}(i=1,2,3,4) can be derived as follows:

    (6)

    where θi1(i=1,2,3,4) is angular displacement of the side swing hip joint. si=sinθi,ci=cosθi

    3.4 Stability analysis of quadruped robot

    For the dynamic walking of the robot, the method of zero moment point (ZMP) is generally adopted to evaluate the stability. The dynamically stable walking condition is that the ZMP is always in the polygon formed by the supporting legs. When ZMP exists outside of supporting polygon, the robot will fall down.

    The quadruped robot with spinning gait has two legs in supporting phase, the ideal stability condition is that the projection point of COG in the ground plane lies in the diagonal line of the supporting legs. Actually, it does not need to control the projection point of COG in the diagonal line. As long as the projection point of COG is controlled within the stability margin[19], the robot can keep stable. As shown in Fig.6, the vertical distance d is from the projection point of COG to the line of supporting legs.

    Fig.6 Spinning gait with body bending and leg side-swing

    The position of COG can be calculated by Eq.(2), and the position of foot-end can be calculated by Eq.(6). Therefore, there is a relationship among the vertical distance d, body bending angle θ and the angle of leg side-swing θi1(i=1,2,3,4), which can be derived by the stable condition.

    4 Experimental analysis

    4.1 The controll system

    The experiment is conducted to analyze the control algorithm and the bending characteristic of the musculoskeletal body. The control system of the body bending is shown in Fig.7.

    Fig.7 The control system

    PAMs are highly non-linear pneumatic actuators and their elongation is proportional to the interval pressure[20]. The PAM length should be controlled within the reasonable value according to the need of the body bending angle. The PID controller is designed to control the PAM length, and the error of which is:

    e(k)=le-l(k)

    (7)

    where leis the expected value of the PAM length. l(k) is the real-time length measured by the displacement sensor.

    The PAM length error is inputted into PID controller, and voltage output signal is inputted into the proportional valve to adjust the opening size.

    4.2 Experiment results and discussion

    4.2.1 PAM controlled results

    When the expected length of PAM is 160mm, the control results are shown in Fig.8. When the expected length of PAM is 175mm, the control results are shown in Fig.9. Fig.8(a) and Fig.8(b) are PAM length and length error curve, respectively. During 0~2.5s, because of the gas compressibility and nonlinearity, the PAM length changes from 200 to 160mm, then gradually stabilized at 160mm.

    The proportional gain kp, integral gain kiand differential gain kdcan be determined. kp=1.5, ki=6, kd=3, and the sampling period is 1.0ms.

    (a) The PAM length

    (b) The length error

    Fig.9(a) and Fig.9(b) are PAM length and length error curve, respectively. During 0~2.5s, because of the gas compressibility and nonlinearity, the PAM length changes from 200 to 175mm, then gradually stabilized at 175mm. kp=1.5, ki=7, kd=2, and the sampling period is 1.0ms.

    (a) The PAM length

    (b) The length error

    4.2.2 Body bending

    The experiment system is composed of fore body, hind body, bionic spine, two PAMs, two springs, pressure regulating valve, proportional valve, pressure sensor, displacement sensor and other components. The compressed air is inputted into the components through a φ6mm tube.

    The computer Intel Core i5 is used, and the software environment is Labview. PAM model is PAM MAS-20-200N-AA-MC-O, whose initial length l0is 200mm and the initial diameter d0is 20mm. The maximum amount of shrinkage of the PAM is 20% of the initial length.

    The proportional valve from Festo company is VPPM-6L-L-1-G18-0L6H-V1P-C1. NI data acquisition card is USB-6212 Bus-Powered M Series Multifunction

    DAQ Device. The measuring accuracy of the displacement sensor is ±0.1mm. The pressure sensor is DE1-D10-G2-W18-L-PU-M8, and the measuring accuracy is 2%.

    The experiment of the body bending is shown in Fig.10, the PAM length is controlled at 160mm, and the body bending angle reaches 30°.

    Fig.10 Experiment result of the body bending

    4.2.3 Body bending characteristic

    After verifying the PID control algorithm, the bending characteristic of the musculoskeletal body can be tested. The experiment is constructed to determine the relationship between the PAM length lPAMand body bending angle θ, and the relationship between PAM length lPAMand gas pressure p.

    The experiment is repeatedly done for several levels of pressures in the range from 0 to 7bar. The experimental data of PAM length, internal gas pressure and body bending angle are measured several times.

    The experimental results show the body bending characteristic. The relationship between PAM real-time length and body bending angle is shown in Fig.11(a), which shows the comparison of theoretical and experimental results. The relationship between PAM real-time length and gas pressure is shown in Fig.11(b). The relationship between body bending angle and gas pressure is shown in Fig.11(c).

    The experimental results show that:

    (1) The biggest bending angle of the musculoskeletal body can reach 30°, which can meet the need of the quadruped robot with spinning gait.

    (2) Because the PAM is made of rubber tube and carbon fiber, which has nonlinear characteristic. The PAM length is in approximately inverse proportion to the bending angle.

    (3) The PAM length changes with the gas pressure. The PAM length should be precisely controlled in order to achieve the desired bending angle of the musculoskeletal body.

    (a) PAM length versus body bending angle

    (b) PAM length versus gas pressure

    (c) Body bending angle versus gas pressure

    5 Conclusions

    The quadruped robot should have the mobility and dynamic stability walking in the unstructured environments. A kind of musculoskeletal body driven by PAM for quadruped robot is proposed based on the movement principle of four-legged creature with spinning gait. The coordinated movement between body bending and leg side-swing is analyzed for quadruped robot spinning gait. The bending experiment of musculoskeletal body is conducted to verify the PID control algorithm and the bending characteristic. Studying on the bending characteristic of musculoskeletal body will provide basis for the quadruped robot walking with spinning gait in the unstructured environments.

    In the future, there are many problems needing to be studied. PAMs’ highly nonlinear nature causes difficulties in modeling their behavior and designing controller for high-performance positioning systems. The control algorithm should be improved to obtain much quickly response speed and much better control accuracy.

    [ 1] Wei J M, Shi Z G, Zhang Q, et al. Gait and stability analysis of a quadruped robot. In: Proceedings of the International Conference on CSIE, Zhengzhou, China, 2011.347-354

    [ 2] Cho C H, Min B C, Kim D H. A gait generation for an unlocked joint failure of the quadruped robot with balance weight. In: Proceedings of Advances in Robotics-FIRA Robo World Congress, Incheon, Korea, 2009. 251-261

    [ 3] Pouya S, Eckert P, Sproewitz A. Motor control adaptation to changes in robot body dynamics for a complaint quadruped robot. In: Proceedings of the 2nd International Conference on Biomimetic and Biohybrid System, London, UK, 2013. 434-437

    [ 4] Sooyeong Yi. Impedance control for body motion of quadruped robot. In: Proceedings of the International Conference on Computer Applications for Security, Control and System Engineering, Jeju Island, Korea, 2012. 190-197

    [ 5] Dai Z D. Biomimetics of legged locomotion on unstructured mulit-bar compound:present situation, key technology and future divelopment. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(5):621-628 (In Chinese)

    [ 6] Park S H, Kim D S, Lee Y J. Discontinuous spinning gait of a quadruped walking robot with waist-joint. In: Proceedings of the International Conference on Intelligent Robots and Systems, 2005. 2744-2749. doi: 10.1109/IROS.2005.1544956

    [ 7] Andrikopoulos G, Nikolakopoulos G, Manesis S. A survey on applications of pneumatic artificial muscles. In: Proceedings of the 19th Mediterranean Conference on Control and Automation, Corfu, Greece, 2011. 1439-1446

    [ 8] Kingsley D A, Quinn R D, Ritzmann R E. A cocksroach inspired robot with artificial muscles. In: Proceedings of the IEEE/RSJ on the Intelligent Robots and Systems, Beijing, China, 2006. 1837-1842

    [ 9] Niiyama R, Kuniyoshi Y. Pneumatic biped with an artificial musculoskeletal system. In: Proceedings of the 4th International Symposium on Adaptive Motion of Animals and Machines, Cleveland, USA, 2008. 80-81

    [10] Hosoda K, Takuma T, Nakamoto A. Biped robot design powered by antagonistic pneumatic actuators for multi-modal locomotion. Robotics and Autonomous Systems, 2008. 56: 46-53

    [11] Aschenbeck K S, Kern N I, Bachmann R J, et al. Design of a quadruped robot driven by air muscles. Biomedical Robotics and Biomechatronics. In: Proceedins of the 1st IEEE/RAS-EMBS International Conference on BioRob, Pisa, Italy, 2006. 875-880

    [12] Miki K, Tsujita K. A study of the effect of structural damping on gait stability in quadrupedal locomotion using a musculoskeletal robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 2012. 1976-1981

    [13] Tsujita K, Miki K. Stability analysis on quadrupedal gaits according to body’s flexibility using musculoskeletal robot. In: Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, Phuket, Thailand, 2011. 1609-1614

    [14] Tsujita K, Kobayashi T, Masuda T. Feasibility study on stability of gait patterns with changable body stiffness using pneumatic actuators in quadruped robot. Advanced robotics, 2009, 23: 503-520

    [15] Deng Q , Wang S G , Xu W, et al. Quasi passive bounding of a quadruped model with articulated spine. Mechanism and Machine Theory, 2012, 52: 232-242

    [16] Takuma T, Ikeda M, Masuda T. Facilitating multi-modal locomotion in a quadruped robot utilizing passive oscillation of the spine structure. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots ans Systems, Taipei, China, 2010. 4940-4945

    [17] Mahmoud A, Okada T, Botelho W T. Estimation and verification of the trajectory forms generated by a legged sliding robot. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics, Guilin, China, 2009. 227-232

    [18] Okada T, Hirokawa Y, Sakai T, Shibuya K. Synchronous landing control of a rotating 4-legged robot, PEOPLER, for stable direction change. Climbing and Walking Robots, Part II, 2005. 85-96

    [19] Zhang S, Gao J Y, Duan X G, et al. Trot pattern ganeration for quadruped robot based on the ZMP stability margin. In: Proceedings of International Conference on Complex Medical Engineering, Beijing, China, 2013. 608-613

    [20] Ganguly S, Garg A, Pasricha A, et al. Control of pneumatic artificial muscle system through experimental modelling. Mechatronics, 2012, 22:1135-1147

    Lei Jingtao, born in 1970. She received her Ph.D degree from Beihang University in 2007. She also received her B.S. and M.S. degrees from Henan University of Science and Technology in 1991 and 1996 respectively. Her research interests include the robot mechanisms and robot modular technology.

    10.3772/j.issn.1006-6748.2015.03.001

    ①Supported by the National Natural Science Foundation of China (No. 51375289), Shanghai Municipal National Natural Science Foundation of China (No.13ZR1415500) and Innovation Fund of Shanghai Education Commission (No.13YZ020).

    ②To whom correspondence should be addressed. E-mail: jtlei2000@163.com Received on June 18, 2014, Yu Huangying

    日本av手机在线免费观看| 中文字幕制服av| 五月天丁香电影| 亚洲欧美日韩另类电影网站| 黄色视频在线播放观看不卡| 亚洲精品成人av观看孕妇| 悠悠久久av| 中文字幕制服av| 在线观看一区二区三区激情| 国产又爽黄色视频| 久久精品aⅴ一区二区三区四区| 日本黄色日本黄色录像| 午夜福利一区二区在线看| 午夜福利,免费看| 99国产精品免费福利视频| 成年美女黄网站色视频大全免费| 亚洲人成电影观看| av福利片在线| 久久久久久亚洲精品国产蜜桃av| 高清av免费在线| 久久综合国产亚洲精品| 国产精品久久久久成人av| 黄色视频在线播放观看不卡| 悠悠久久av| 国产xxxxx性猛交| 另类亚洲欧美激情| 在线精品无人区一区二区三| 国产亚洲精品久久久久5区| videos熟女内射| 波多野结衣av一区二区av| 亚洲第一av免费看| 午夜福利视频在线观看免费| 日本欧美视频一区| 午夜福利乱码中文字幕| 日韩欧美一区二区三区在线观看 | 成人三级做爰电影| 成人手机av| 亚洲精品久久久久久婷婷小说| 国产色视频综合| 亚洲一卡2卡3卡4卡5卡精品中文| 久久国产精品大桥未久av| 欧美日韩亚洲综合一区二区三区_| 日本精品一区二区三区蜜桃| 国产精品香港三级国产av潘金莲| 国产不卡av网站在线观看| 欧美黑人精品巨大| www.av在线官网国产| 99re6热这里在线精品视频| 国产精品国产av在线观看| 十八禁网站网址无遮挡| a级片在线免费高清观看视频| 久久国产精品男人的天堂亚洲| 久久狼人影院| a级片在线免费高清观看视频| 亚洲男人天堂网一区| 久久久久精品人妻al黑| 大陆偷拍与自拍| 在线看a的网站| 国产成人免费观看mmmm| 午夜福利影视在线免费观看| 日韩欧美国产一区二区入口| 精品国产一区二区三区久久久樱花| 69精品国产乱码久久久| 国产1区2区3区精品| 建设人人有责人人尽责人人享有的| 亚洲精品久久成人aⅴ小说| 欧美xxⅹ黑人| 国产激情久久老熟女| 99久久99久久久精品蜜桃| 久久久久久人人人人人| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久久精品精品| 纯流量卡能插随身wifi吗| 国产91精品成人一区二区三区 | 在线观看免费午夜福利视频| 99久久综合免费| 丝瓜视频免费看黄片| 亚洲av日韩精品久久久久久密| 国产熟女午夜一区二区三区| 精品少妇内射三级| 免费黄频网站在线观看国产| 欧美精品一区二区大全| 午夜成年电影在线免费观看| 丰满饥渴人妻一区二区三| 精品乱码久久久久久99久播| 99精品久久久久人妻精品| 日日夜夜操网爽| 国产日韩欧美视频二区| kizo精华| 如日韩欧美国产精品一区二区三区| av天堂久久9| 侵犯人妻中文字幕一二三四区| 国产精品香港三级国产av潘金莲| 又大又爽又粗| 精品国产乱子伦一区二区三区 | 女人精品久久久久毛片| 成年人午夜在线观看视频| 国产淫语在线视频| 最新的欧美精品一区二区| 多毛熟女@视频| 777久久人妻少妇嫩草av网站| h视频一区二区三区| 人成视频在线观看免费观看| 国产男女内射视频| 激情视频va一区二区三区| 99精品欧美一区二区三区四区| 成人手机av| 看免费av毛片| 日本91视频免费播放| 免费观看人在逋| av网站在线播放免费| 欧美激情久久久久久爽电影 | 国产精品九九99| 别揉我奶头~嗯~啊~动态视频 | 啪啪无遮挡十八禁网站| √禁漫天堂资源中文www| 国产精品99久久99久久久不卡| 两个人免费观看高清视频| 日韩熟女老妇一区二区性免费视频| 如日韩欧美国产精品一区二区三区| 午夜免费鲁丝| 自线自在国产av| 久久久国产精品麻豆| 欧美日韩一级在线毛片| 色视频在线一区二区三区| 老司机靠b影院| 国产欧美日韩精品亚洲av| 最黄视频免费看| 少妇猛男粗大的猛烈进出视频| 三上悠亚av全集在线观看| www.999成人在线观看| 欧美激情极品国产一区二区三区| 久久久久久亚洲精品国产蜜桃av| 国产成人精品久久二区二区免费| 日韩电影二区| 91国产中文字幕| 黄色怎么调成土黄色| 在线亚洲精品国产二区图片欧美| 无限看片的www在线观看| 狂野欧美激情性bbbbbb| 亚洲第一青青草原| 国产97色在线日韩免费| 精品少妇一区二区三区视频日本电影| 国产一区二区激情短视频 | 乱人伦中国视频| 肉色欧美久久久久久久蜜桃| 中文字幕最新亚洲高清| av天堂在线播放| 51午夜福利影视在线观看| 2018国产大陆天天弄谢| 妹子高潮喷水视频| 99国产综合亚洲精品| 久久久国产一区二区| 日韩 亚洲 欧美在线| 日本91视频免费播放| 啪啪无遮挡十八禁网站| 午夜日韩欧美国产| 考比视频在线观看| 视频区图区小说| 天天躁日日躁夜夜躁夜夜| h视频一区二区三区| 91国产中文字幕| 91精品伊人久久大香线蕉| 国产在线一区二区三区精| 久久99一区二区三区| 男女高潮啪啪啪动态图| 欧美 日韩 精品 国产| 成在线人永久免费视频| 男女高潮啪啪啪动态图| 国产野战对白在线观看| 中文字幕另类日韩欧美亚洲嫩草| 午夜免费鲁丝| 青春草视频在线免费观看| 欧美日韩成人在线一区二区| 午夜福利影视在线免费观看| 91精品三级在线观看| tocl精华| 午夜成年电影在线免费观看| 精品高清国产在线一区| 少妇人妻久久综合中文| 日本av手机在线免费观看| 激情视频va一区二区三区| 日韩欧美一区视频在线观看| 最近最新中文字幕大全免费视频| 后天国语完整版免费观看| 久久精品久久久久久噜噜老黄| 色94色欧美一区二区| 亚洲性夜色夜夜综合| 99热网站在线观看| 国产av国产精品国产| 黄色视频在线播放观看不卡| 日韩 欧美 亚洲 中文字幕| 一二三四社区在线视频社区8| 亚洲精品久久久久久婷婷小说| 久久午夜综合久久蜜桃| 国产亚洲一区二区精品| 日本黄色日本黄色录像| 精品国产一区二区久久| 丰满少妇做爰视频| avwww免费| 大香蕉久久成人网| av天堂久久9| 欧美亚洲日本最大视频资源| 岛国毛片在线播放| 一区二区av电影网| 不卡av一区二区三区| 亚洲精品久久成人aⅴ小说| 亚洲五月婷婷丁香| 中文字幕高清在线视频| 欧美av亚洲av综合av国产av| 亚洲国产精品一区二区三区在线| 丰满人妻熟妇乱又伦精品不卡| 又紧又爽又黄一区二区| 亚洲,欧美精品.| 人人妻人人澡人人看| 亚洲色图综合在线观看| 乱人伦中国视频| 亚洲国产精品一区二区三区在线| 精品第一国产精品| 在线观看www视频免费| 国产av一区二区精品久久| 国产亚洲精品久久久久5区| 老司机午夜福利在线观看视频 | 国产精品av久久久久免费| 999久久久国产精品视频| 在线亚洲精品国产二区图片欧美| 国产精品久久久久久精品古装| 天堂俺去俺来也www色官网| 亚洲成av片中文字幕在线观看| 国产欧美日韩综合在线一区二区| 午夜福利影视在线免费观看| 男女无遮挡免费网站观看| 69av精品久久久久久 | 色婷婷av一区二区三区视频| 亚洲国产精品成人久久小说| 日本精品一区二区三区蜜桃| 国产一区二区在线观看av| 午夜福利影视在线免费观看| 亚洲伊人色综图| 国产av精品麻豆| 十分钟在线观看高清视频www| 搡老熟女国产l中国老女人| 国产欧美日韩一区二区三区在线| 黄色视频不卡| 亚洲精品自拍成人| 欧美一级毛片孕妇| 免费日韩欧美在线观看| 国产亚洲精品第一综合不卡| 亚洲精品国产精品久久久不卡| 欧美精品一区二区免费开放| 久久影院123| 欧美激情久久久久久爽电影 | 一级a爱视频在线免费观看| 男女无遮挡免费网站观看| 满18在线观看网站| 国产精品亚洲av一区麻豆| 亚洲成人手机| 精品人妻一区二区三区麻豆| 香蕉丝袜av| 91麻豆av在线| 亚洲国产精品成人久久小说| 国产精品.久久久| www.熟女人妻精品国产| 波多野结衣av一区二区av| 亚洲天堂av无毛| a级毛片黄视频| 亚洲av电影在线进入| 欧美一级毛片孕妇| 18禁观看日本| av福利片在线| 悠悠久久av| 18在线观看网站| 午夜91福利影院| 高清视频免费观看一区二区| 午夜久久久在线观看| 亚洲专区中文字幕在线| 久久九九热精品免费| 国产成人a∨麻豆精品| 久久毛片免费看一区二区三区| 桃花免费在线播放| 亚洲 国产 在线| 最新的欧美精品一区二区| 中文字幕高清在线视频| 欧美黑人精品巨大| 男女边摸边吃奶| 欧美另类一区| 亚洲自偷自拍图片 自拍| 亚洲第一av免费看| 久久国产精品大桥未久av| 亚洲免费av在线视频| 人妻人人澡人人爽人人| 亚洲欧美色中文字幕在线| 91av网站免费观看| 亚洲综合色网址| 日韩 亚洲 欧美在线| 久久天堂一区二区三区四区| 中文欧美无线码| 久久国产亚洲av麻豆专区| 妹子高潮喷水视频| 性高湖久久久久久久久免费观看| 99久久精品国产亚洲精品| 成年人午夜在线观看视频| 午夜福利一区二区在线看| 一区在线观看完整版| 国产亚洲精品一区二区www | 少妇的丰满在线观看| 精品第一国产精品| 精品少妇一区二区三区视频日本电影| 国产精品av久久久久免费| 99香蕉大伊视频| 国产免费视频播放在线视频| 亚洲国产看品久久| 久久天躁狠狠躁夜夜2o2o| 久久这里只有精品19| 99国产精品一区二区三区| 男女无遮挡免费网站观看| 视频在线观看一区二区三区| 亚洲情色 制服丝袜| 蜜桃国产av成人99| 久久久国产精品麻豆| 日韩中文字幕视频在线看片| 一二三四在线观看免费中文在| 日韩欧美一区二区三区在线观看 | 五月天丁香电影| 蜜桃在线观看..| 亚洲人成电影观看| 国产1区2区3区精品| 波多野结衣av一区二区av| 三上悠亚av全集在线观看| 亚洲一码二码三码区别大吗| 精品久久久精品久久久| 久久女婷五月综合色啪小说| 精品少妇内射三级| 五月开心婷婷网| 亚洲 欧美一区二区三区| 午夜福利,免费看| 黑人猛操日本美女一级片| 搡老岳熟女国产| 午夜精品久久久久久毛片777| 国产精品国产三级国产专区5o| 狠狠狠狠99中文字幕| av电影中文网址| 亚洲性夜色夜夜综合| 久久久久久久精品精品| 久久中文看片网| 欧美中文综合在线视频| 日韩欧美一区视频在线观看| 一本色道久久久久久精品综合| 午夜精品国产一区二区电影| 欧美人与性动交α欧美精品济南到| 日韩中文字幕欧美一区二区| 丝袜人妻中文字幕| 日韩一区二区三区影片| 亚洲精品自拍成人| 一边摸一边做爽爽视频免费| 久久久久国内视频| 久久久精品区二区三区| 国产精品成人在线| 亚洲精品国产区一区二| 久9热在线精品视频| 韩国高清视频一区二区三区| 欧美日韩成人在线一区二区| 一边摸一边做爽爽视频免费| 这个男人来自地球电影免费观看| 国产视频一区二区在线看| 久久天躁狠狠躁夜夜2o2o| 下体分泌物呈黄色| 午夜福利在线观看吧| 老熟妇乱子伦视频在线观看 | 久久青草综合色| 中文字幕人妻丝袜一区二区| 亚洲色图综合在线观看| 亚洲国产日韩一区二区| 亚洲精品av麻豆狂野| 中文字幕人妻丝袜一区二区| 国产精品一区二区在线不卡| 国产淫语在线视频| 黑人猛操日本美女一级片| 女人被躁到高潮嗷嗷叫费观| 国产欧美日韩综合在线一区二区| av天堂在线播放| 亚洲国产av新网站| 精品亚洲成a人片在线观看| 午夜老司机福利片| 国产野战对白在线观看| 欧美黄色淫秽网站| 日韩 欧美 亚洲 中文字幕| 亚洲国产欧美在线一区| 日本91视频免费播放| 亚洲第一欧美日韩一区二区三区 | 一个人免费看片子| 日韩制服骚丝袜av| 亚洲精品一区蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 人人妻,人人澡人人爽秒播| 18禁黄网站禁片午夜丰满| 亚洲专区中文字幕在线| 欧美日韩福利视频一区二区| 好男人电影高清在线观看| 国产成人av教育| 嫩草影视91久久| 三级毛片av免费| 男人舔女人的私密视频| 国产区一区二久久| 免费少妇av软件| 成年女人毛片免费观看观看9 | 在线观看舔阴道视频| 久久久国产精品麻豆| 在线观看免费高清a一片| 亚洲,欧美精品.| 人人妻人人添人人爽欧美一区卜| 91精品三级在线观看| 亚洲色图综合在线观看| 一个人免费在线观看的高清视频 | 在线永久观看黄色视频| 久久影院123| 日本精品一区二区三区蜜桃| 国产成人免费无遮挡视频| 91成年电影在线观看| 亚洲av片天天在线观看| 成年美女黄网站色视频大全免费| 久久久久国产精品人妻一区二区| 嫁个100分男人电影在线观看| 亚洲专区国产一区二区| 久久久国产成人免费| 好男人电影高清在线观看| 久热爱精品视频在线9| 欧美亚洲 丝袜 人妻 在线| 国产无遮挡羞羞视频在线观看| 男人操女人黄网站| 久久精品国产a三级三级三级| 国产成人免费观看mmmm| 在线观看免费视频网站a站| 久久久精品94久久精品| 在线精品无人区一区二区三| netflix在线观看网站| 少妇裸体淫交视频免费看高清 | 天堂中文最新版在线下载| 欧美激情久久久久久爽电影 | 亚洲国产精品一区三区| 欧美激情极品国产一区二区三区| 亚洲专区字幕在线| 91精品三级在线观看| 国产精品一区二区在线不卡| 啦啦啦 在线观看视频| 丰满少妇做爰视频| 欧美在线一区亚洲| 日韩中文字幕欧美一区二区| 精品国产一区二区久久| 久久国产精品男人的天堂亚洲| 亚洲欧洲日产国产| 亚洲精品美女久久久久99蜜臀| 日日夜夜操网爽| 五月开心婷婷网| 人妻人人澡人人爽人人| 一级片免费观看大全| 天堂俺去俺来也www色官网| 美女主播在线视频| 国产成人系列免费观看| 精品一区在线观看国产| 在线天堂中文资源库| 91九色精品人成在线观看| 久久人妻福利社区极品人妻图片| 午夜激情av网站| 国产av又大| 亚洲专区中文字幕在线| 欧美黄色淫秽网站| 蜜桃在线观看..| 国产99久久九九免费精品| 国产一区二区三区在线臀色熟女 | 一区二区三区精品91| 韩国高清视频一区二区三区| 中文字幕人妻熟女乱码| 精品亚洲成国产av| 一级毛片电影观看| 国产欧美亚洲国产| 9191精品国产免费久久| 永久免费av网站大全| 久久久精品区二区三区| 人人妻人人澡人人看| 久久久久久久国产电影| 日本vs欧美在线观看视频| av欧美777| 人人澡人人妻人| 亚洲av日韩精品久久久久久密| 欧美人与性动交α欧美软件| 大香蕉久久成人网| 亚洲伊人色综图| 2018国产大陆天天弄谢| 日韩,欧美,国产一区二区三区| 丰满少妇做爰视频| 久久天躁狠狠躁夜夜2o2o| 中文字幕制服av| 成人国语在线视频| 欧美老熟妇乱子伦牲交| 亚洲中文日韩欧美视频| 纵有疾风起免费观看全集完整版| 欧美亚洲日本最大视频资源| 日韩大片免费观看网站| 国产伦理片在线播放av一区| 亚洲av片天天在线观看| 1024视频免费在线观看| 欧美+亚洲+日韩+国产| 老司机福利观看| 两个人免费观看高清视频| 啦啦啦视频在线资源免费观看| 狠狠狠狠99中文字幕| 另类精品久久| 两人在一起打扑克的视频| 国产欧美日韩一区二区三 | avwww免费| 国产亚洲午夜精品一区二区久久| 男女无遮挡免费网站观看| 老司机福利观看| 午夜福利乱码中文字幕| av又黄又爽大尺度在线免费看| videos熟女内射| 国产成人免费观看mmmm| 亚洲精品一区蜜桃| 18禁黄网站禁片午夜丰满| 亚洲精品一区蜜桃| 热99re8久久精品国产| 飞空精品影院首页| 欧美人与性动交α欧美精品济南到| 黄网站色视频无遮挡免费观看| 男女边摸边吃奶| 亚洲熟女毛片儿| 亚洲五月婷婷丁香| 麻豆乱淫一区二区| 国产精品偷伦视频观看了| 亚洲欧美激情在线| 国产精品偷伦视频观看了| 麻豆乱淫一区二区| 免费人妻精品一区二区三区视频| 国产精品1区2区在线观看. | 欧美国产精品va在线观看不卡| 亚洲人成77777在线视频| 国产亚洲精品一区二区www | 天天躁夜夜躁狠狠躁躁| 国产成人一区二区三区免费视频网站| 男女无遮挡免费网站观看| 高潮久久久久久久久久久不卡| 久久人妻熟女aⅴ| 丰满饥渴人妻一区二区三| 操美女的视频在线观看| 亚洲第一青青草原| av电影中文网址| 国产色视频综合| 一个人免费看片子| 黄色a级毛片大全视频| 国产免费福利视频在线观看| 激情视频va一区二区三区| 国产成人免费观看mmmm| 久久亚洲国产成人精品v| 搡老熟女国产l中国老女人| 在线观看免费日韩欧美大片| 国产日韩欧美亚洲二区| 青春草亚洲视频在线观看| 99国产综合亚洲精品| 亚洲熟女毛片儿| 各种免费的搞黄视频| 亚洲成av片中文字幕在线观看| 亚洲专区字幕在线| 成年人黄色毛片网站| 日本91视频免费播放| 黄色怎么调成土黄色| 亚洲av日韩在线播放| 久久久久久免费高清国产稀缺| 日韩大片免费观看网站| 精品人妻熟女毛片av久久网站| 亚洲欧美清纯卡通| 国产黄频视频在线观看| 97在线人人人人妻| 国产片内射在线| 99精国产麻豆久久婷婷| 不卡一级毛片| 最新在线观看一区二区三区| 久久久欧美国产精品| 咕卡用的链子| 青草久久国产| 日本欧美视频一区| 亚洲精品久久午夜乱码| 性色av乱码一区二区三区2| 不卡一级毛片| 亚洲欧洲日产国产| 久久精品人人爽人人爽视色| 亚洲午夜精品一区,二区,三区| 99精品久久久久人妻精品| 久久亚洲精品不卡| 9191精品国产免费久久| 国产黄频视频在线观看| 免费黄频网站在线观看国产| 亚洲欧美日韩高清在线视频 | 夫妻午夜视频| 国产男女超爽视频在线观看| 韩国高清视频一区二区三区| 大码成人一级视频| 亚洲精品粉嫩美女一区| 水蜜桃什么品种好| 欧美黄色淫秽网站| 欧美日本中文国产一区发布| 97精品久久久久久久久久精品| e午夜精品久久久久久久| 亚洲成av片中文字幕在线观看| a 毛片基地| 日本vs欧美在线观看视频| 亚洲久久久国产精品| 下体分泌物呈黄色| 精品一区二区三区四区五区乱码| 国产精品二区激情视频| 国产精品久久久久久精品电影小说| 老司机午夜十八禁免费视频| 人人妻人人爽人人添夜夜欢视频| 国产精品久久久久久精品电影小说| 99久久精品国产亚洲精品|