• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A 10Gb/s combined equalizer in 0.18μm CMOS technology for backplane communication①

    2015-04-17 05:33:42ZhangMingke張明科HuQingsheng
    High Technology Letters 2015年2期
    關(guān)鍵詞:注入式滿堂灌書本知識

    Zhang Mingke (張明科), Hu Qingsheng

    (Institute of RF- & OE-ICs, Southeast University, Nanjing 210096, P.R.China)

    ?

    A 10Gb/s combined equalizer in 0.18μm CMOS technology for backplane communication①

    Zhang Mingke (張明科), Hu Qingsheng②

    (Institute of RF- & OE-ICs, Southeast University, Nanjing 210096, P.R.China)

    This paper presents a 10Gb/s high-speed equalizer as the front-end of a receiver for backplane communication. The equalizer combines an analog equalizer and a two-tap decision-feedback equalizer in a half-rate structure to reduce the inter-symbol-interference (ISI) of the communication channel. By employing inductive peaking technique for the high-frequency boost circuit, the bandwidth and the boost of the analog equalizer are improved. The decision-feedback equalizer optimizes the size of the CML-based circuit such as D flip-flops (DFF) and multiplex (MUX), shortening the feedback path delay and speeding up the operation considerably. Designed in the 0.18μm CMOS technology, the equalizer delivers 10Gb/s data over 18-in FR4 trace with 28-dB loss while drawing 27-mW from a 1.8-V supply. The overall chip area including pads is 0.6×0.7mm2.

    analog equalizer, decision feedback equalizer (DFE), inductive peaking, current mode logic (CML)

    0 Introduction

    The rapid increase in transistor density and resulting routing complexity on serial links has made the data-rate per pin increased. However, bandwidth limited electrical channels, such as backplane or cable, introduce more losses as the data rate grows, these losses show that larger inter-symbol interference (ISI), which is the dominant factor for bit errors in high-speed links, challenges the communication quality. Therefore a more advanced signal processing circuit is required to overcome channels attenuation and improve sensitivity of the link[1].

    Equalization circuit can compensate channel loss and suppress ISI, thereby recover the transmitted data. Traditional equalization circuit includes pre-emphasis equalizer, linear equalizer (LE) and decision feedback equalizer (DFE). Among them, both pre-emphasis equalizer and linear equalizer can compensate the attenuation of the channels by enhancing high frequency components, but they also amplify high-frequency noises and lower SNR. The nonlinear DFE, however, can reduce ISI from received data without amplifying noise and crosstalk, yet it only eliminates post-cursor ISI, while both pre-cursors and post-cursors ISI exist in a channel[2,3].

    Based on the analysis above, this paper presents a 10GB/s combined equalizer for high speed backplane communication. By combing a linear analog equalizer with a nonlinear DFE, the proposed equalizer can well equalize the attenuation channel. This paper is organized as follows. Section 1 provides a review of backplane channel characteristics and a discussion of the equalizer architecture. Section 2 describes the circuit design in detail. The simulation and measured results are given in Section 3. Finally, Section 4 concludes the whole paper.

    1 Architecture design

    High speed signal transmission on FR4 backplanes is a challenge due to its heavy loss. Fig.1 shows the frequency response of an 18-inch trace on FR4 backplane with two advanced backplane connectors. Shown in Fig.1, the backplane channel exhibits a 28dB loss at 10GHz. To drive signals reliably through the backplane, normally an equalizer is needed to ensure the received signal not being distorted.

    Fig.2 shows the block diagram of a proposed equalizer, in which a typical DFE combined with a conventional LE is constructed. Generally a DFE includes a slicer and an IIR filter, where N delayed outputs are fed back to the input with corresponding coefficients a1, a2,…,aN. Its primary function is to remove post-cursor ISI, while LE is responsible for suppressing pre-cursor ISI, as well as improves the ability of DFE.

    Fig.1 Channel frequency response of 18-inch FR4 backplane

    Fig.2 Block diagram of a combined equalizer

    1.1 LE Architecture

    LE can be implemented in two ways. One is to employ an FIR filter which is an architecturally flexible approach. Theoretically, the FIR filter can be designed to have a frequency response precisely equal to the inverse of the channel response and completely eliminate ISI in principle. However, its implementation requires precise analog delay elements[4], making it less practical, especially at higher data rates. Although low-loss transmission lines maybe used instead of active analog delay circuits, they are less practical in 18-inch or longer FR4 backplane trace which has higher loss.

    Alternatives to FIR filter include conventional analog equalizer being composed of high-frequency boost circuits[5]. The locations of poles and zeros of the high-frequency boost circuits could be adjusted to fit a desired high-frequency boost in order to compensate channels loss. Because of its simplicity in implementation, such analog equalizer is used as a feed-forward linear equalizer in this work.

    1.2 DFE Architecture

    Many issues should be concerned to determine the architecture of DFE. Normally, there are two types of DFE: full-rate and half-rate architecture, shown as Fig.3. It can be seen that full-rate DFE only has one signal path, while the half-rate DFE contains two paths: the odd and even. Additionally, a MUX is needed to multiplex the two signals at the output. Therefor the full-rate DFE has smaller area and lower power consumption compared to the latter. However, the full-rate DFE has some drawbacks too. For example, D flip-flops (DFF) in it requires sampling bandwidth of full-rate (e.g.10Gb/s). Such a high speed DFF is a design challenge especially in 0.18μm CMOS technology because of the low characteristic frequency. Meanwhile, the Clk-to-Q delay of DFF must be considered accurately to ensure that the sampling point falls around the center of the input data eye. As a result, to achieve a more accurate full-rate clock, more clock buffers may be needed, increasing power consumption and area, especially for multi-tap DFE.

    Fig.3 Full-rate and half-rate DFE

    On the other hand, half-rate DFE has some advantages compared to full-rate DFE. First, this architecture can mitigate the speed limitations of the process by cutting the clock frequency in half[6], only at the cost of small increases in area and power consumption. Second, the clock buffer with small area can be designed easily, alleviating the total increase in area.

    Another issue is to determine the number of DFE taps in order to make a tradeoff between area and gain. See Fig.2, for a current mode logic(CML) summer, a constant tail current in the output driver is required so as to keep a fixed common-mode level, this means the sum of all coefficients (the absolute values) is a constant[7]. Since the output is a feedback combination of all the (delayed) data inputs, the transfer function can be achieved from Vin to Vout as following:

    (1)

    Converting the discrete analysis above to continuous domain. It can be got:

    (2)

    where Tbis the bit period.

    (3)

    Eq.(3) holds when a1>0, a3>0, and a2=a4=…=0. In other words, if the total amount of all feedback coefficients is a constant (say K), the maximum boost at Nyquist frequency is also a constant regardless of the number of taps[7]. Fig.4 gives the comparisons of DFE responses using different taps with desired response. We can see that using three or more taps only improves the equalization quality, but not the amount of boosting, while increasing the area and power consumption.

    Fig.4 DFE responses with different taps

    On the other hand, more taps may cause excessive parasitic capacitance at the output node of the CML summer. Thus the maximum data rate may roll off as the number of taps increases. Based on the analysis mentioned above, a 2 taps half-rate architecture is adopted in this paper to get a good trade-off between speed, area and power consumption.

    Fig.5 shows the proposed equalizer architecture. Before DFE, an analog equalizer intersperses a high-frequency boosting filter with a gain buffer to provide a certain amount of boost, being used to remove the pre-cursor ISI and avoid amplifying the higher frequency noise or crosstalk. In the 2-tap half-rate DFE, the 10Gb/s input data is demultiplexed into two 5Gb/s signals odd and even by sampling a half-rate clock at both rising and falling edges. Then two half-rate data are delayed with DFFs, and the delayed versions are multiplied with the corresponding tap coefficients a1, a2. After that, the productions are fed back and summed at odd and even adders located in the input port. Actually, the multiplied results are subtracted from the input data at the adders to remove the post-cursor ISI. At the output, two half-rate outputs are picked up again alternatively into a 10Gb/s full-rate data by a 2:1 multiplexer (MUX).

    Fig.5 Block diagram of the proposed equalizer

    2 Circuits design

    2.1 High-frequency boosting filter

    A conventional analog equalizer high-frequency boost circuit is RC-degenerated differential pair as shown in Fig.6. The parallel resistor-capacitor network RSCSyields a zero at ωz=1/RSCS, a dominant pole at ωp1=1/RDCLand a non-dominant pole at ωp2=(1+gmRS/2)/RSCS, where CSis the degeneration capacitance, RSis the degeneration resistance, RDis the load resistance and CLis the load capacitance, respectively. A zero introduces a +20dB/Decade rise in the frequency response, while a pole introduces a -20dB/Decade fall. Because of the limited gain-bandwidth product of the process, the dominant pole should not be much larger than the zero. As a result, for a high speed analog equalizer, only one zero can’t cancel pre-cursor ISI in the backplane channels with large loss.

    To expand the overall bandwidth, the inductive shunt peaking techniques are utilized for improving the speed and gain without sacrificing the voltage headroom, shown as Fig.6. In Fig.6, nMOS transistors M3 and M4 act as degeneration capacitance, and M5 acts as a variable degeneration resistance along with M3 and M4, where the boost range and the gain of the analog equalizer can be adjusted by changing the control voltage. As the control voltage rises, the on-resistance M5 falls and so do the capacitances of M3 and M4, raising the magnitude of the zero[8]. Fig.7 compares the frequency responses of the boost circuits with and without inductive peaking. Obviously, by using the inductive peaking technique the bandwidth and the boost of the circuit are improved greatly compared to that of conventional one.

    Fig.6 High-frequency boost circuit with and without inductive peaking

    Fig.7 Frequency responses of high-frequency boost circuit

    2.2 Multiplier and summer

    The CML multiplier & summer at the DFE input is realized as series-gated differential pairs with common load resistors as shown in Fig.8. The Multiplication converts the input voltage of each differential pair into current, then the currents of each tap are added, where the tap coefficients a1add a2are dependent on the tail currents a1Issand a2Iss, which can be set based on the channel's pulse response off-chip.

    Fig.8 Summer

    2.3 D flip-flop

    D flip-flop (DFF) in DFE serves as both storage element and slicer. As depicted in Fig.9, each DFF can be made with 2 cascaded latches running at opposite edges of half-rate clocks, of which the master latches the sampling input data at clock falling edge, and the salve one holds the data for one clock cycle.

    Fig.9 Schematic of CML-based DFF

    It is well known that the speed of DFF is one of the key factors in improving the working frequency of circuit. For example, in the feedback path of the first tap, two main components are summer and DFF. Thus, to make the decision value be fed back and settled within one working period, following timing equation should be met[9]:

    Tsummer+TDFF+Tprop≤UI

    (4)

    where Tsummerand TDFFare the delay of the summer and DFF, respectively. Tpropis the propagation delay of signal. From Eq.(4), it is known that when the input data rate is 10Gb/s, the total delay should be less than 100ps. Moreover, the DFF works as a slicing element too, necessitating a certain eye opening at its input for a desired BER. Hence, the DFF must exhibit a lower delay and high sensitivity.

    Normally, DFF can be optimized by employing inductive peaking, as well as by reducing the sizes of transistors. The former method can effectively increase the bandwidth and reduce delay, but cause increase in chip area. Although small size is benefit to high speed, however, the transistor can not be too small. For example, when the sizes of cross-coupled pair M3, M4 are reduced below a certain critical value, they will not latch in the worst case. The sizes of tracking transistors M1, M2 and clock transistors M5, M6 should not be too small too, since these differential pairs need to be large enough to switch the current correctly[8]. Therefore, the choice of device dimensions is weigh designed to maximize the speed. A simulated eye diagram at one of the outputs of DFF is shown in Fig.10, showing a better eye opening. The simulated delay of DFF is only 50ps, which makes the overall delay of the feedback path equal to 77ps well below the UI of 100ps.

    Fig.10 Simulated eye diagram at one of the DFF outputs

    2.4 Multiplexer

    The CML based 2:1 multiplexer (MUX) is shown in Fig.11. It is triggered by the same half-rate clock as DFF and works on both high and low levels of the clock. When the clock is enabled, clock transistors M5 and M6 work, selecting the odd and even data alternatively as the output. Although the MUX doesn’t participate in the feedback path, its speed is still crucial for DFE. This is because if the operating speed of the MUX is too slow, the two data paths can not be selected correctly, affecting the integrity of the output data.

    樂學(xué)情境的創(chuàng)設(shè),要求教師提供最佳的教學(xué)環(huán)境和活動(dòng)場所;精心設(shè)計(jì)課堂教學(xué)的結(jié)構(gòu);有目的、有意識地制造教學(xué)高潮:把書本知識化為血肉豐滿、生動(dòng)活潑的形象;在教法上改變過去單一的”滿堂灌”的注入式教法,將討論式、對話式、辯論式、演講式等教法引人課堂教 學(xué),把學(xué)生帶入探求新知的樂學(xué)情境,激發(fā)學(xué)生的學(xué)習(xí)興趣。

    Fig.11 CML based MUX

    Similar to DFF, the performance of MUX is also improved by reducing the sizes of transistors. The pole associated with differential pairs M1, M2 and M3, M4 is

    (5)

    where RS, CS, CGDand gmare the total resistance, capacitance, miller capacitance, and transconductance of the select pair, respectively. From Eq.(5), we learn that when gmbecomes small resulting from the size decrease of M1, M2 (M3, M4), the pole of the circuit will move to the right, thereby increasing the bandwidth. Different from that in DFF, however, in MUX the circuit losing latch which may appear when size of transistor is reduced too small, doesn’t need to be considered since there is no latch transistors at all. Of course, the minimum sizes of selected transistors are also needed to be ensured so that the circuit can switch the current correctly. Fig.12 shows the frequency response of MUX, it is seen that the 3dB bandwidth is improved by more than 2GHz from the original 7.6Hz to 10.1Hz.

    Fig.12 Improved bandwidth of MUX

    3 Measurement and results analysis

    The proposed equalizer has been designed and fabricated in 0.18μm CMOS technology. Fig.13 shows the photograph of the equalizer. The overall chip area including a band-gap reference circuit, output buffer and pads is about 600μm×700μm.

    Fig.13 Photomicrograph of the proposed equalizer

    Fig.14 gives the block diagram of on-chip measurement for the equalizer. All measurements are performed on-wafer using high-speed GGB probes. Full-rate PRBS(pseudorandom bit sequence)15 data is generated using an Advantest D3186 pulse generator and pass through an 18-inch FR4 backplane channels, then send to the test chip, the outputs of the chip connect to an Tsktronix MSO 71254 oscilloscope to observe the signal eye diagram. A ballon is employed after the R&S SMP04 clock source to produce the half-rate differential clock required for the chip. Fig.15(a), (b) and (c) show 10Gb/s eye diagrams of original PRBS 15, the signal passing through 18-inch FR4 trace and the output of equalizer, respectively. We can see that the eye is almost closed after FR4 trace. After equalization, the majority of ISI is removed and the horizontal eye opening reaches 0.62UI, being almost the same as that of original eye diagram. This illustrates that the proposed equalizer works well at 10Gb/s.

    Fig.14 Block diagram of the on-chip measurement

    Table 1 summarizes performance comparison of equalizers running at data rates around 10Gb/s. It can be seen that the proposed equalizer implemented in 0.18μm CMOS technology has higher data rate, lower power and smaller area compared with the 6.4Gb/s equalizer in Ref.[2]. While compared with Ref.[5] which uses the similar technology of 0.18μm, the proposed equalizer has higher speed of 10Gb/s. Although the rate of the equalizer in Refs[9] and [10] is not less than this work, they only eliminate post-cursor ISI and equalize the channels with up to 12dB at the 5.875GHz and 8.8dB loss at the 5GHz Nyquist frequency respectively, while the equalizer in this paper can cancel both pre-cursor and post-cursor and compensate 18dB channel’s loss.

    (a) 10Gb/s PRBS signal

    (b) After 8-inch trace

    (c) Output of equalizer

    ItemRef.[2]Ref.[5]Ref.[9]Ref.[10]ThisworkTechnology0.13μmCMOS0.18μmCMOS0.18μmCMOS90nmCMOS0.18μmCMOSDatarate6.4Gb/s3.3Gb/s11.75Gb/s10Gb/s10Gb/sArchitectureFFE+2-tapSpeculativeDFEanalogequalizer3-tapDFE+CDR2-tapSpeculativeDFEanalogequalizer+2-tapDFEArea0.79mm20.342mm21.33mm20.01mm20.42mm2Targetchannelloss32dB@3.2GHz25dB@3.3GHz12dB@5.875GHz8.8dB@5GHz18dB@5GHzPower290mW23.4mW101mW11mW27mWVDD1.2V1.8V1.8V1.2V1.8V

    4 Conclusion

    In this work, a 10Gb/s combined equalizer is realized in TSMC 0.18μm CMOS technology. The equalizer composed of an analog equalizer and 2-tap DFE can cancel both pre-cursors and post-cursors with less noise enhancement and lower bit error rate. Measured results show that the equalizer chip can operate at data rates up to 10Gb/s with an improved horizontal eye opening of 0.62 UI through an 18-inch FR4 backplane channel. The equalizer including pads occupies 0.6×0.7mm2and consumes 27mW from 1.8V supply voltage.

    [ 1] Sanquan Song, Vladimir Stojanovic. A 6.25 Gb/s Voltage-Time Conversion Based Fractionally Spaced Linear Receive Equalizer for Mesochronous High-Speed Links. IEEE J. Solid-State Circuits, 2011, 46(5):1183-1197

    [ 2] T. Beukema, M. Sorna, K. Selander. A 6.4-Gb/s CMOS SerDes Core with feed-forward and decision-feedback equalization. IEEE J. Solid-State Circuits, 2005, 40(12):2633-2645

    [ 3] T. O. Dickson, J. F. Bulzacchelli, and D. J. Friedman. A 12 Gb/s 11 mW half-rate sampled 5-tap decision feedback equalizer with current integrating summers in 45 nm SOI CMOS technology. IEEE J. Solid-State Circuits, 2009, 44(4):1298-1305

    [ 4] MoonkyunMaeng, Franklin Bien, YoungsikHur. 0.18μm CMOS Equalization Techniques for 10-Gb/s Fiber Optical Communication Link. IEEE Transactions on microwave theory and techniques, 2005, 53(11):3509-3519

    [ 5] Ju Hao, Zhou Yumei, and Zhao Jianzhong. A low power CMOS 3.3 Gbps continuous-time adaptive equalizer for serial link. Chinese Journal of Semiconductors, 2011, 32(9)

    [ 6] Bret C. Rothenberg, Stephen H. Lewis. A 20-M samples Switched-Capacitor Finite-Impulse-Response Filter Using a Transposed Structure. IEEE J. Solid-State Circuits, 1995, 30(12):1350-1356

    [ 7] Huaide Wang, Jri Lee. A 21-Gbs 87-mW Transceiver With FFE/DFE Analog Equalizer in 65-nm CMOS Technology. IEEE J. Solid-State Circuits, 2010, 45(4):909-920

    [ 8] Srikanth Gondi, Behzad Razavi. Equalization and Clock and Data Recovery Techniques for 10-Gb/s CMOS Serial-Link Receivers. IEEE J. Solid-State Circuits, 2007, 42(9):1999-2011

    [ 9] Lijun Li. Power Optimization of an 11.75-Gb/s Combined Decision Feedback Equalizer and Clock Data Recovery Circuit in 0.18-μm CMOS. IEEE transactions on circults and systems, 2011, 58(3):441-450

    [10] Chang-Kyung Seong, Jinsoo Rhim. A 10-Gb/s Adaptive Look-Ahead Decision Feedback Equalizer with an Eye-Opening Monitor. IEEE transactions on circults and systems, 2012, 59(4):209-213

    Zhang Mingke, born in 1985. He received his M.S. degrees in Integrated Circuits School of Southeast University in 2011. He also received his B.S. degrees from East China JiaoTong University in 2008. His research interests include the design of analog circuit, digital circuit and adaptive algorithms for equalizer.

    10.3772/j.issn.1006-6748.2015.02.013

    ①Supported by the National High Technology Research and Development Programme of China (No. 2011AA10305)

    ②To whom correspondence should be addressed. E-mail: qshu@seu.edu.cn Received on Feb. 12, 2014

    猜你喜歡
    注入式滿堂灌書本知識
    高中化學(xué)教學(xué)模式的探討與學(xué)習(xí)
    創(chuàng)造物理情境打破知識和應(yīng)用的瓶頸
    優(yōu)化課堂教學(xué)結(jié)構(gòu) 向40分鐘要質(zhì)量
    速讀·中旬(2016年9期)2017-05-09 15:27:48
    淺析農(nóng)村中學(xué)語文課堂教學(xué)現(xiàn)狀
    淺析農(nóng)村中學(xué)語文課堂教學(xué)現(xiàn)狀
    數(shù)學(xué)在經(jīng)濟(jì)生活中的應(yīng)用
    紅外導(dǎo)引頭注入式閉環(huán)試驗(yàn)的邊界能力及一致性
    旁河注入式水庫在黃土高原山區(qū)型河道調(diào)蓄工程中的應(yīng)用
    針灸學(xué)書本知識與實(shí)踐運(yùn)用中的不對稱問題與思考
    改進(jìn)注入式混合有源濾波器的研究與仿真分析
    国产精品 欧美亚洲| 国产精品一区二区三区四区久久| 国产伦一二天堂av在线观看| 日本a在线网址| 日本与韩国留学比较| 两个人看的免费小视频| 日日干狠狠操夜夜爽| 日韩欧美国产一区二区入口| 天堂av国产一区二区熟女人妻| 久久性视频一级片| 亚洲精品国产精品久久久不卡| 日韩欧美国产一区二区入口| 日韩欧美精品v在线| 男女下面进入的视频免费午夜| av欧美777| 国产黄a三级三级三级人| 超碰av人人做人人爽久久 | 不卡一级毛片| 久久久久久久亚洲中文字幕 | 国产精品 国内视频| 在线天堂最新版资源| 99久久精品国产亚洲精品| 欧美在线黄色| 日本熟妇午夜| 内地一区二区视频在线| 超碰av人人做人人爽久久 | 成人无遮挡网站| 香蕉丝袜av| 亚洲激情在线av| 亚洲精品成人久久久久久| 天天一区二区日本电影三级| 看片在线看免费视频| 欧洲精品卡2卡3卡4卡5卡区| 首页视频小说图片口味搜索| x7x7x7水蜜桃| bbb黄色大片| 国产精品美女特级片免费视频播放器| 一级a爱片免费观看的视频| 丁香欧美五月| 国产91精品成人一区二区三区| 国产精品一区二区三区四区久久| 亚洲中文字幕日韩| 亚洲av五月六月丁香网| 免费看日本二区| 亚洲成av人片免费观看| 18禁在线播放成人免费| 久久久国产精品麻豆| 国产精品久久久久久亚洲av鲁大| 窝窝影院91人妻| 麻豆国产av国片精品| 久久中文看片网| 亚洲精品成人久久久久久| 长腿黑丝高跟| 18禁国产床啪视频网站| 久久精品影院6| 国产一区二区亚洲精品在线观看| 琪琪午夜伦伦电影理论片6080| 免费看美女性在线毛片视频| 男女之事视频高清在线观看| 免费人成视频x8x8入口观看| www.www免费av| 欧美乱妇无乱码| 成人性生交大片免费视频hd| 亚洲人与动物交配视频| 男人和女人高潮做爰伦理| 操出白浆在线播放| 一级作爱视频免费观看| 亚洲人成伊人成综合网2020| 狂野欧美激情性xxxx| 久久久久精品国产欧美久久久| 亚洲成av人片在线播放无| 成人av一区二区三区在线看| 变态另类丝袜制服| 99热6这里只有精品| 可以在线观看毛片的网站| 欧美日韩黄片免| 精品乱码久久久久久99久播| av女优亚洲男人天堂| 中文字幕久久专区| 嫩草影视91久久| 欧美日韩中文字幕国产精品一区二区三区| 亚洲人与动物交配视频| 少妇的逼水好多| 国产爱豆传媒在线观看| 俄罗斯特黄特色一大片| 熟女少妇亚洲综合色aaa.| 亚洲最大成人中文| 他把我摸到了高潮在线观看| 亚洲成av人片免费观看| 真人做人爱边吃奶动态| 久久人人精品亚洲av| 亚洲狠狠婷婷综合久久图片| 色综合欧美亚洲国产小说| 亚洲国产精品合色在线| 一级a爱片免费观看的视频| 日日干狠狠操夜夜爽| 婷婷丁香在线五月| 熟女电影av网| 哪里可以看免费的av片| 国产日本99.免费观看| 亚洲国产欧美网| 亚洲av成人不卡在线观看播放网| 性色av乱码一区二区三区2| 免费看日本二区| 色老头精品视频在线观看| 色噜噜av男人的天堂激情| 亚洲av熟女| 内地一区二区视频在线| 身体一侧抽搐| 国产av不卡久久| 久99久视频精品免费| 国产伦精品一区二区三区四那| 精品电影一区二区在线| 日本免费a在线| 成年女人毛片免费观看观看9| 又黄又粗又硬又大视频| 免费av毛片视频| 免费观看的影片在线观看| xxx96com| 久久久久亚洲av毛片大全| 免费看美女性在线毛片视频| 尤物成人国产欧美一区二区三区| 欧美日韩黄片免| 国产精品三级大全| 国产97色在线日韩免费| 久久久久国产精品人妻aⅴ院| 美女大奶头视频| 欧美成人性av电影在线观看| www.熟女人妻精品国产| 日本黄色视频三级网站网址| 丰满乱子伦码专区| 中出人妻视频一区二区| 在线天堂最新版资源| 19禁男女啪啪无遮挡网站| 日韩有码中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 久久这里只有精品中国| 1024手机看黄色片| 国产精品99久久久久久久久| 他把我摸到了高潮在线观看| bbb黄色大片| 国产熟女xx| 啦啦啦免费观看视频1| 久久亚洲真实| 欧美大码av| 波野结衣二区三区在线 | 久久久久久久久大av| 亚洲内射少妇av| 两个人视频免费观看高清| 国产成人影院久久av| 女人被狂操c到高潮| 国产成人a区在线观看| 757午夜福利合集在线观看| 国内精品美女久久久久久| 亚洲精品日韩av片在线观看 | 狂野欧美激情性xxxx| 99热这里只有是精品50| 老司机深夜福利视频在线观看| 男女午夜视频在线观看| 两个人视频免费观看高清| 亚洲久久久久久中文字幕| 夜夜看夜夜爽夜夜摸| www.999成人在线观看| 可以在线观看的亚洲视频| 欧美高清成人免费视频www| 国产成人系列免费观看| 青草久久国产| 少妇的逼水好多| 精品人妻1区二区| 偷拍熟女少妇极品色| 亚洲欧美精品综合久久99| 亚洲精品一卡2卡三卡4卡5卡| 岛国视频午夜一区免费看| 欧美日韩福利视频一区二区| 亚洲最大成人中文| 有码 亚洲区| 99久久精品国产亚洲精品| 成人国产综合亚洲| 亚洲精品粉嫩美女一区| 亚洲av不卡在线观看| 免费av不卡在线播放| 国产精品一区二区三区四区久久| 国产真实乱freesex| 国产高清videossex| 一个人看的www免费观看视频| 3wmmmm亚洲av在线观看| 午夜亚洲福利在线播放| 免费观看的影片在线观看| 日本黄色片子视频| 99久久精品一区二区三区| 日韩中文字幕欧美一区二区| 国产私拍福利视频在线观看| 成年免费大片在线观看| 国产99白浆流出| 少妇裸体淫交视频免费看高清| 内地一区二区视频在线| 久久欧美精品欧美久久欧美| av视频在线观看入口| 国产又黄又爽又无遮挡在线| 亚洲国产精品sss在线观看| 老鸭窝网址在线观看| 国产在线精品亚洲第一网站| 日韩欧美精品v在线| 美女cb高潮喷水在线观看| 99久久99久久久精品蜜桃| 久久精品国产自在天天线| 国产亚洲精品久久久com| 国产亚洲精品综合一区在线观看| 一进一出好大好爽视频| 精品无人区乱码1区二区| 又黄又爽又免费观看的视频| 丰满乱子伦码专区| 最近最新中文字幕大全电影3| 日本免费一区二区三区高清不卡| 一个人观看的视频www高清免费观看| 国产色爽女视频免费观看| 亚洲精品一区av在线观看| 亚洲五月天丁香| 国产伦精品一区二区三区四那| av中文乱码字幕在线| 啪啪无遮挡十八禁网站| 午夜免费男女啪啪视频观看 | 亚洲国产精品久久男人天堂| 午夜免费成人在线视频| 久9热在线精品视频| 久久久久免费精品人妻一区二区| 无遮挡黄片免费观看| 制服丝袜大香蕉在线| 欧美黄色淫秽网站| 国产黄片美女视频| 国产精品,欧美在线| 欧美成人一区二区免费高清观看| 精品99又大又爽又粗少妇毛片 | 国产精品久久视频播放| 欧美另类亚洲清纯唯美| 国产伦一二天堂av在线观看| 精品电影一区二区在线| 他把我摸到了高潮在线观看| 搡老妇女老女人老熟妇| 国产69精品久久久久777片| 国产高清三级在线| 国内精品一区二区在线观看| 一a级毛片在线观看| 天天躁日日操中文字幕| 内地一区二区视频在线| 亚洲专区国产一区二区| 黄色视频,在线免费观看| 国产在视频线在精品| 国产精品影院久久| 日韩亚洲欧美综合| 一级黄色大片毛片| 日本a在线网址| 99热精品在线国产| avwww免费| 免费在线观看亚洲国产| 日本成人三级电影网站| 天美传媒精品一区二区| 看黄色毛片网站| 午夜a级毛片| 欧美日韩福利视频一区二区| 国产精品99久久99久久久不卡| 久久久久久大精品| 真实男女啪啪啪动态图| 最新中文字幕久久久久| 99在线视频只有这里精品首页| 中文字幕高清在线视频| 成人av一区二区三区在线看| 色综合亚洲欧美另类图片| 亚洲aⅴ乱码一区二区在线播放| av片东京热男人的天堂| 久久久久免费精品人妻一区二区| 亚洲欧美日韩无卡精品| 国产精品精品国产色婷婷| bbb黄色大片| 午夜免费男女啪啪视频观看 | 99精品欧美一区二区三区四区| 亚洲av熟女| 色尼玛亚洲综合影院| 老熟妇乱子伦视频在线观看| 午夜福利18| 深爱激情五月婷婷| 国产日本99.免费观看| 老司机深夜福利视频在线观看| 成人三级黄色视频| 天美传媒精品一区二区| 中出人妻视频一区二区| 国产精品98久久久久久宅男小说| 国产蜜桃级精品一区二区三区| www.www免费av| 免费人成在线观看视频色| 老汉色∧v一级毛片| 国产成人福利小说| 99久久九九国产精品国产免费| 国产成人系列免费观看| 69av精品久久久久久| 亚洲第一电影网av| 国产亚洲精品久久久久久毛片| 丁香欧美五月| 久久精品91无色码中文字幕| 精品一区二区三区av网在线观看| 悠悠久久av| 亚洲内射少妇av| 美女cb高潮喷水在线观看| 一级毛片女人18水好多| 欧美三级亚洲精品| 国产成人福利小说| x7x7x7水蜜桃| 国内精品一区二区在线观看| 一区福利在线观看| 天天躁日日操中文字幕| 久久久久久久久中文| 深夜精品福利| 国产久久久一区二区三区| 亚洲自拍偷在线| 精品熟女少妇八av免费久了| 欧美日韩综合久久久久久 | 欧美日本视频| 美女黄网站色视频| 成年人黄色毛片网站| 免费av观看视频| 久久国产乱子伦精品免费另类| 午夜亚洲福利在线播放| 国产97色在线日韩免费| 免费一级毛片在线播放高清视频| 午夜福利在线观看免费完整高清在 | 最后的刺客免费高清国语| 天堂影院成人在线观看| 欧美日本视频| 一区二区三区高清视频在线| 嫩草影视91久久| 黄色成人免费大全| 亚洲乱码一区二区免费版| 99在线人妻在线中文字幕| 18禁美女被吸乳视频| 亚洲欧美精品综合久久99| 黄色成人免费大全| 国产精品免费一区二区三区在线| 亚洲人成电影免费在线| 国产精品乱码一区二三区的特点| 99久久精品热视频| 精品熟女少妇八av免费久了| 欧美+日韩+精品| 男人舔女人下体高潮全视频| 久久性视频一级片| 在线观看舔阴道视频| avwww免费| 99riav亚洲国产免费| 亚洲欧美日韩高清在线视频| 亚洲精品亚洲一区二区| 欧美最黄视频在线播放免费| 精品人妻偷拍中文字幕| 黄色视频,在线免费观看| 国产在视频线在精品| 欧美+亚洲+日韩+国产| 叶爱在线成人免费视频播放| 亚洲男人的天堂狠狠| 小说图片视频综合网站| 精品国产三级普通话版| 亚洲欧美日韩高清专用| 亚洲avbb在线观看| 日韩国内少妇激情av| 2021天堂中文幕一二区在线观| 91久久精品国产一区二区成人 | 尤物成人国产欧美一区二区三区| 小说图片视频综合网站| 亚洲激情在线av| 久久久色成人| 国产综合懂色| 欧美区成人在线视频| 久久久成人免费电影| 国产欧美日韩一区二区精品| 欧美绝顶高潮抽搐喷水| 国产精品av视频在线免费观看| 我要搜黄色片| 久久久精品大字幕| 国产精品亚洲一级av第二区| 床上黄色一级片| 最后的刺客免费高清国语| 色尼玛亚洲综合影院| 九九在线视频观看精品| 国产亚洲欧美在线一区二区| 99久久精品国产亚洲精品| 欧美+日韩+精品| 搡女人真爽免费视频火全软件 | 国产高清视频在线播放一区| 成人性生交大片免费视频hd| 日韩人妻高清精品专区| 很黄的视频免费| 欧美+亚洲+日韩+国产| 国产精品美女特级片免费视频播放器| 亚洲 国产 在线| 高清毛片免费观看视频网站| 99视频精品全部免费 在线| 在线观看午夜福利视频| 中文亚洲av片在线观看爽| 日韩高清综合在线| 免费av不卡在线播放| 国产精品 国内视频| 免费无遮挡裸体视频| 99国产精品一区二区蜜桃av| 欧美日韩精品网址| 久久久久国内视频| 999久久久精品免费观看国产| 桃红色精品国产亚洲av| 精品国产亚洲在线| 亚洲成av人片免费观看| 精品国产超薄肉色丝袜足j| 久久久久九九精品影院| 亚洲 欧美 日韩 在线 免费| 国产精品女同一区二区软件 | 非洲黑人性xxxx精品又粗又长| 久久久久久九九精品二区国产| 高清毛片免费观看视频网站| 亚洲电影在线观看av| 免费观看的影片在线观看| 亚洲精品在线美女| 久久久久国内视频| 亚洲 欧美 日韩 在线 免费| 好男人在线观看高清免费视频| 1000部很黄的大片| 亚洲人成电影免费在线| 97碰自拍视频| 免费人成视频x8x8入口观看| 国产精品电影一区二区三区| 午夜免费观看网址| 最新美女视频免费是黄的| 美女高潮喷水抽搐中文字幕| 啦啦啦观看免费观看视频高清| 亚洲av免费在线观看| 中文字幕人妻熟人妻熟丝袜美 | 在线播放无遮挡| 露出奶头的视频| 成人精品一区二区免费| 欧美性猛交黑人性爽| 69av精品久久久久久| 老司机深夜福利视频在线观看| 69av精品久久久久久| 波多野结衣巨乳人妻| 在线免费观看的www视频| 成人鲁丝片一二三区免费| 久久精品91蜜桃| 亚洲av一区综合| 国产综合懂色| 国产真人三级小视频在线观看| 免费在线观看亚洲国产| 亚洲国产高清在线一区二区三| 狠狠狠狠99中文字幕| 99热精品在线国产| 国产91精品成人一区二区三区| 99久国产av精品| 男女午夜视频在线观看| 51国产日韩欧美| 精品一区二区三区视频在线观看免费| 国产黄色小视频在线观看| 国产高清三级在线| 国产高清激情床上av| 97超级碰碰碰精品色视频在线观看| 不卡一级毛片| 欧美在线一区亚洲| 国产熟女xx| 久久久精品欧美日韩精品| 欧美午夜高清在线| 尤物成人国产欧美一区二区三区| 中文字幕人妻丝袜一区二区| netflix在线观看网站| 性色av乱码一区二区三区2| 国产精品一区二区三区四区免费观看 | 日本一本二区三区精品| 有码 亚洲区| 亚洲国产日韩欧美精品在线观看 | 国产午夜福利久久久久久| 国产淫片久久久久久久久 | 亚洲精品日韩av片在线观看 | 亚洲真实伦在线观看| 国产69精品久久久久777片| 久久精品国产自在天天线| 欧美一级毛片孕妇| 亚洲精品亚洲一区二区| 国产成人欧美在线观看| 色综合婷婷激情| 欧美又色又爽又黄视频| 91麻豆av在线| 免费电影在线观看免费观看| 精品久久久久久久久久久久久| 免费高清视频大片| 人妻丰满熟妇av一区二区三区| 黄色视频,在线免费观看| 中文字幕av在线有码专区| 搡老妇女老女人老熟妇| 亚洲国产日韩欧美精品在线观看 | 男女那种视频在线观看| 男女做爰动态图高潮gif福利片| 国产精品一区二区免费欧美| 久久精品国产清高在天天线| 日韩欧美在线乱码| 国产三级黄色录像| 亚洲最大成人中文| 两个人视频免费观看高清| 国产精品亚洲一级av第二区| 日本 欧美在线| 三级国产精品欧美在线观看| 毛片女人毛片| 女人高潮潮喷娇喘18禁视频| 听说在线观看完整版免费高清| 色尼玛亚洲综合影院| 人人妻人人澡欧美一区二区| 国内久久婷婷六月综合欲色啪| 热99在线观看视频| 国产精品一区二区免费欧美| 亚洲av免费在线观看| 亚洲国产日韩欧美精品在线观看 | 窝窝影院91人妻| 久久精品夜夜夜夜夜久久蜜豆| 精品一区二区三区av网在线观看| 中文字幕人妻丝袜一区二区| 香蕉久久夜色| 九色成人免费人妻av| 91在线观看av| 亚洲av日韩精品久久久久久密| www日本在线高清视频| 免费观看人在逋| 在线观看免费视频日本深夜| 亚洲精华国产精华精| 亚洲成人久久性| 成年人黄色毛片网站| 久久欧美精品欧美久久欧美| 亚洲国产欧洲综合997久久,| 高潮久久久久久久久久久不卡| 国产一区二区三区在线臀色熟女| 中文资源天堂在线| 免费人成视频x8x8入口观看| 亚洲一区二区三区不卡视频| 国产精品久久视频播放| 网址你懂的国产日韩在线| 欧美性猛交黑人性爽| 久久人妻av系列| 欧美日本亚洲视频在线播放| 欧美性猛交╳xxx乱大交人| 精品久久久久久久久久免费视频| 午夜免费成人在线视频| 九九热线精品视视频播放| 亚洲av成人精品一区久久| 在线视频色国产色| 最近在线观看免费完整版| 黄色成人免费大全| 国产一区二区三区在线臀色熟女| 国产精品久久电影中文字幕| 国产精品av视频在线免费观看| 亚洲人成网站在线播| 精华霜和精华液先用哪个| 日本三级黄在线观看| 热99在线观看视频| 欧美最黄视频在线播放免费| 久久久国产精品麻豆| 亚洲色图av天堂| 欧美zozozo另类| 精品国产亚洲在线| 欧美乱妇无乱码| 此物有八面人人有两片| 日本撒尿小便嘘嘘汇集6| 久久久成人免费电影| 制服人妻中文乱码| 99国产综合亚洲精品| 欧美日韩国产亚洲二区| 欧美成人一区二区免费高清观看| 日本黄色视频三级网站网址| 欧美3d第一页| 亚洲成人中文字幕在线播放| 看免费av毛片| 国产私拍福利视频在线观看| 久久国产精品人妻蜜桃| 乱人视频在线观看| 国产成+人综合+亚洲专区| 午夜福利视频1000在线观看| 精品国产亚洲在线| 亚洲欧美精品综合久久99| 久久这里只有精品中国| 中文字幕av在线有码专区| 国产一区二区亚洲精品在线观看| 精品福利观看| 十八禁人妻一区二区| 亚洲 国产 在线| 午夜久久久久精精品| 久久久久久久久久黄片| 搡老熟女国产l中国老女人| 一夜夜www| 少妇熟女aⅴ在线视频| 亚洲av成人av| 亚洲欧美精品综合久久99| 色综合亚洲欧美另类图片| 国产淫片久久久久久久久 | 国产精品久久久久久亚洲av鲁大| 亚洲欧美日韩高清专用| 国产精品久久久久久久电影 | 午夜福利在线观看免费完整高清在 | 在线天堂最新版资源| 国内毛片毛片毛片毛片毛片| 免费看光身美女| 亚洲精品久久国产高清桃花| 亚洲中文字幕一区二区三区有码在线看| 男人的好看免费观看在线视频| 国内少妇人妻偷人精品xxx网站| 色精品久久人妻99蜜桃| 黄色日韩在线| 久久精品国产清高在天天线| 国产精品电影一区二区三区| 久久99热这里只有精品18| 中文字幕高清在线视频| 久久精品综合一区二区三区| 日本一本二区三区精品| 十八禁网站免费在线| 成人亚洲精品av一区二区| 国产私拍福利视频在线观看| 久久久久精品国产欧美久久久| 国产亚洲欧美在线一区二区|