邱 方,劉艷紅,米衛(wèi)東,李 泱
解放軍總醫(yī)院,北京 1008531麻醉手術(shù)中心;2老年心血管病研究所
基質(zhì)細胞源性因子及其受體在慢性疼痛中的作用
邱 方1,劉艷紅1,米衛(wèi)東1,李 泱2
解放軍總醫(yī)院,北京 1008531麻醉手術(shù)中心;2老年心血管病研究所
趨化因子配體12(CXC-chemokine ligand 12,CXCL12),也被稱為基質(zhì)細胞源性因子(stromal cell-derived factor 1,SDF-1),是在免疫系統(tǒng)中被發(fā)現(xiàn)的趨化因子,它的主要功能包括趨化淋巴細胞和巨噬細胞、負責造血細胞從肝向骨髓的遷移以及大血管的形成。越來越多的證據(jù)表明,外周神經(jīng)系統(tǒng)中神經(jīng)組織或非神經(jīng)組織上疾病相關(guān)或者損傷相關(guān)的SDF-1及其受體-趨化因子受體4(CXC-chemokine receptor 4,CXCR4)的功能性表達,在慢性疼痛的病理生理過程中發(fā)揮了重要的作用。生理狀態(tài)下,SDF-1可以作為中樞神經(jīng)系統(tǒng)中經(jīng)典的神經(jīng)調(diào)質(zhì),調(diào)節(jié)神經(jīng)內(nèi)分泌網(wǎng)絡(luò)的活動。病理狀態(tài)下(改變的免疫反應和炎癥狀態(tài)下),由于膠質(zhì)細胞、內(nèi)皮細胞的分泌以及循環(huán)系統(tǒng)的運輸,SDF-1濃度會增加或者在異常部位表達,從而影響神經(jīng)內(nèi)分泌活動,改變大腦的功能,導致病理性行為和神經(jīng)毒性。綜上所述,SDF-1/CXCR4是未來新藥開發(fā)的潛在靶點。
趨化因子;疼痛;受體;傷害感受
最近的研究表明,與損傷或炎癥相關(guān)的炎性趨化因子的增高,不僅只有趨化白細胞的作用,還具有興奮神經(jīng)元的作用。本文綜述了疾病相關(guān)或者損傷相關(guān)的慢性疼痛中炎性介質(zhì)的多種改變。一直以來,趨化因子的主要功能被定位在調(diào)節(jié)白細胞向炎性部位的遷移。但是最近研究發(fā)現(xiàn),傷害或疾病導致的神經(jīng)系統(tǒng)內(nèi)趨化因子及其受體的重新表達,與膠質(zhì)細胞的活化以及神經(jīng)元的過度興奮有關(guān),趨化因子及其受體還參與了神經(jīng)病理性痛的發(fā)展和維持[1]。神經(jīng)元上趨化因子受體的表達,經(jīng)常會通過G蛋白的分離引起下游信號瀑布級聯(lián)反應的發(fā)生,從而引起磷酸肌醇3激酶(PI3K)通路或者磷脂酶C的活化導致了鈣離子內(nèi)流以及蛋白激酶C的活化[2]?;蚯贸∈蟮膶嶒炞C實了PI3K在細胞對于趨化因子的反應中發(fā)揮了關(guān)鍵的作用[3],而一過性的鈣離子升高是趨化因子作用的最顯著特點[4]。
趨化因子是小分子量(8 ~ 14 kU)的蛋白質(zhì),是目前已知的最大的細胞因子家族。根據(jù)半胱氨酸殘基位置的不同,趨化因子可以分為4個亞家族:C、CC、CXC和CX3C。趨化因子配體12(CXC-chemokine ligand 12,CXCL12),也被稱為基質(zhì)細胞源性因子(stromal cell-derived factor 1α,SDF-1α),是G蛋白偶聯(lián)7次跨膜受體-趨化因子受體4(CXC-chemokine receptor 4,CXCR4)的唯一配體。CXCL12/CXCR4信號調(diào)節(jié)許多生理過程,包括細胞遷移、血管再生、胚胎發(fā)育以及造血干細胞向骨髓歸巢等過程。最近有研究表明,CXCL12/CXCR4在腫瘤細胞的侵襲和轉(zhuǎn)移中也發(fā)揮重要的作用。CXCR4在許多癌癥細胞中高表達,如肺癌、乳腺癌、惡性黑色素瘤、結(jié)腸癌細胞[5-6]。SDF-1有3個亞基,α、β和γ,在成年大鼠的大腦中SDF-1α及其受體CXCR4表達在星形膠質(zhì)細胞、小膠質(zhì)細胞和神經(jīng)元上[7]。也有研究表明,SDF-1α及其受體CXCR4在正常的類膽堿能神經(jīng)元和多巴胺能神經(jīng)元上有表達[8]。盡管CXCR4廣泛表達在新皮層、海馬、基底節(jié)、丘腦、腦干、小腦等部位[9],但CXCR4表達最豐富的地區(qū)是皮層下區(qū)和大腦邊緣系統(tǒng)[10]。由于大腦邊緣系統(tǒng)具有記憶功能,因此CXCR4作為HIV糖蛋白120(glycopro-tein120,gp120)的受體,在HIV相關(guān)的癡呆發(fā)生中有重要作用[10]。CXCR7是SDF-1α的另一個受體,CXCR4和CXCR7的關(guān)系需要進一步的研究,以確定在SDF-1α依賴的神經(jīng)活動中,二者是協(xié)同關(guān)系還是獨立關(guān)系[11]。
組織損傷、炎癥、神經(jīng)損害可能導致慢性神經(jīng)性疼痛、痛覺過敏、痛覺超敏、自發(fā)性疼痛等。與損傷相關(guān)的炎性和非炎性細胞釋放一系列前炎性調(diào)節(jié)因子從而敏化初級傳入神經(jīng),導致痛覺過敏。像其他炎性因子一樣,趨化因子也可以導致傷害性感受器過敏。鞘內(nèi)注射CXCR4抑制劑AMD3100可以劑量依賴性地延緩機械性痛覺過敏的形成和發(fā)展,說明CXCR4參與部分坐骨神經(jīng)結(jié)扎引起的外周神經(jīng)病理性痛的形成和維持。CXCR4可能是慢性神經(jīng)病理性痛潛在的作用靶點[12]。SDF-1/CXCR4信號調(diào)節(jié)糖尿病神經(jīng)病變中的鈣內(nèi)流的增加和背根神經(jīng)節(jié)(dorsal root ganglia,DRG)神經(jīng)元興奮性的增加。因此,CXCR4可能成為治療糖尿病相關(guān)疼痛的新的靶點[13]。脊髓損傷后,SDF-1和CXCR4的表達增加,且增加的程度和脊髓損傷的程度相關(guān)。趨化因子的增加還與嚴重脊髓損傷后延遲性疼痛的發(fā)展有關(guān),并且和一些疼痛相關(guān)的肽類和受體共表達,這說明趨化因子在脊髓損傷后的慢性中樞痛中發(fā)揮重要作用[14]。在神經(jīng)病理性痛模型,如慢性壓縮性損傷模型中,SDF-1/ CXCR4不僅在受損神經(jīng)相關(guān)的DRG中發(fā)生改變,這種改變也蔓延到鄰近未受損的DRG神經(jīng)元中[15]。
核酸逆轉(zhuǎn)錄酶抑制劑通過上調(diào)SDF-1/CXCR4信號通路來產(chǎn)生痛覺過敏。全身給予核酸逆轉(zhuǎn)錄酶抑制劑可以上調(diào)大鼠L4/L5背根神經(jīng)節(jié)和腰段脊髓的TNF-α、SDF-1和CXCR4的表達水平,TNF-α通過SDF1/CXCR4信號通路參與逆轉(zhuǎn)錄酶抑制劑相關(guān)的神經(jīng)病理性痛,阻斷這些前炎性因子的信號通路有助于減輕逆轉(zhuǎn)錄酶抑制劑相關(guān)的神經(jīng)病理性疼痛[16]。SDF-1/CXCR4信號通路也同樣在HIV gp120蛋白引起的大鼠神經(jīng)病理性痛中發(fā)揮作用[8]。CXCR4抑制劑AMD3100可以有效逆轉(zhuǎn)大鼠神經(jīng)病理痛模型中g(shù)p120、核酸逆轉(zhuǎn)錄酶抑制劑引起的痛覺過敏,這說明SDF-1/ CXCR4軸在大鼠HIV相關(guān)的神經(jīng)病理性疼痛中發(fā)揮重要的作用,因此它可能成為潛在的治療靶點[17]。
SDF-1/CXCR4在炎癥過程中也同樣發(fā)揮作用。SDF-1/ CXCR4信號可能是改善膀胱炎癥繼而減少大鼠膀胱疼痛的有效的藥物靶點[18]。SDF-1/CXCR4信號通過敏化神經(jīng)元激活星形膠質(zhì)和小膠質(zhì)細胞來參與大鼠骨癌痛的維持和發(fā)展,此信號通路可能會成為大鼠骨癌痛的潛在的治療靶點[19]。
通過對大鼠鞘內(nèi)注射SDF-1會削弱皮下嗎啡注射產(chǎn)生的鎮(zhèn)痛作用,用CXCR4抑制劑預處理則會增加嗎啡的鎮(zhèn)痛作用。Src家族激酶特異的抑制劑PP2可以逆轉(zhuǎn)SDF-1引起的嗎啡鎮(zhèn)痛效果的下降,因此,SDF-1引起的嗎啡鎮(zhèn)痛作用的消失與Src家族激酶的活化有關(guān)系[20]。10 μmol/L的嗎啡可以使大鼠導水管周圍灰質(zhì)神經(jīng)元發(fā)生去極化并降低神經(jīng)元的輸入阻抗,但是在SDF-1存在的情況下,嗎啡對于神經(jīng)元的電生理作用被阻斷了,這些電生理證據(jù)表明了阿片類鎮(zhèn)痛藥在炎性疼痛治療中的局限性。但是,SDF-1/ CXCR4信號并不會影響丁丙諾啡的鎮(zhèn)痛作用[21]。通過對大鼠大腦的研究發(fā)現(xiàn),和SDF-1一樣,gp120也可以與CXCR4結(jié)合,導水管周圍灰質(zhì)的gp120會削弱嗎啡的鎮(zhèn)痛作用,而CXCR4抑制劑AMD3100同樣可以逆轉(zhuǎn)gp120對于嗎啡鎮(zhèn)痛的抑制作用[22]。
雖然SDF-1和gp120會影響嗎啡的鎮(zhèn)痛作用,但是,長期使用嗎啡反過來也會使神經(jīng)元中的SDF-1 mRNA的表達增加。同時,膠質(zhì)細胞和感覺神經(jīng)元中的CXCR4的表達也會增加?;A(chǔ)實驗的研究表明,大鼠腹腔注射CXCR4的抑制劑AMD3100,可以完全逆轉(zhuǎn)嗎啡使用相關(guān)的痛覺過敏??偟膩碚f,嗎啡引起的SDF-1/CXCR4信號增加對于嗎啡使用相關(guān)痛覺過敏的形成非常重要,CXCR4受體阻斷劑可能是治療嗎啡使用相關(guān)不良反應的有效靶點[23]。
除了在免疫系統(tǒng)中發(fā)揮作用,SDF-1/CXCR4似乎也參與中樞神經(jīng)系統(tǒng)的活動。在CNS中,它們首先在小膠質(zhì)細胞和星形膠質(zhì)細胞中被發(fā)現(xiàn),然后又在神經(jīng)元中被發(fā)現(xiàn)。SDF-1負責控制軸突和突觸的生長[24]。局部趨化因子的釋放常和神經(jīng)變性疾病和神經(jīng)炎性病變相關(guān),例如多發(fā)性硬化、阿爾茨海默病、帕金森病、HIV相關(guān)的癡呆。
正常情況下,SDF-1是經(jīng)典的神經(jīng)調(diào)節(jié)因子,可以調(diào)節(jié)大腦中幾個神經(jīng)內(nèi)分泌網(wǎng)絡(luò)的活動。但是,在病理情況下,趨化因子的濃度和表達部位會發(fā)生異常改變,這些改變都是由于膠質(zhì)細胞、內(nèi)皮細胞的分泌以及循環(huán)系統(tǒng)的擴散和轉(zhuǎn)移作用引起的。增加的趨化因子會影響神經(jīng)和神經(jīng)內(nèi)分泌的活動,從而調(diào)節(jié)大腦的功能,導致病理性行為和神經(jīng)毒性。炎性狀態(tài)下,細胞因子釋放入血并進入大腦中,因為炎癥狀態(tài)下血腦屏障的通透性增加了。在細胞因子的刺激下,膠質(zhì)細胞和內(nèi)皮細胞被活化,從而釋放出更多的SDF-1[25]。SDF-1與CXCR4結(jié)合,可以改變相關(guān)神經(jīng)元的興奮性,從而引起抑郁、焦慮、和疲倦等疾病癥狀[26]。當炎性消失的時候,這些疾病癥狀就會消失。但是,長期的炎癥導致持續(xù)的SDF-1水平升高會引起神經(jīng)毒性和神經(jīng)退行性病變。
在炎性和疾病中,趨化因子負責吸引特定的白細胞。SDF-1/CXCR4除了在免疫系統(tǒng)發(fā)揮作用,還會直接或間接參與成熟神經(jīng)細胞以及膠質(zhì)細胞的活動,并在這些細胞的信息傳遞中發(fā)揮作用。在神經(jīng)系統(tǒng)疾病和損傷后,SDF-1/ CXCR4的重新表達可能在慢性疼痛中發(fā)揮了明顯的作用。由于SDF-1/CXCR4對于神經(jīng)細胞既有直接作用又有間接作用,因此,對于SDF-1/CXCR4在疼痛狀態(tài)中的準確機制還需要進一步研究??偟膩碚f,限制趨化因子SDF-1及其受體CXCR4的活動可以作為疼痛治療中一個重要的新的研究方向。
1 White FA, Jung H, Miller RJ. Chemokines and the pathophysiology of neuropathic pain[J]. Proc Natl Acad Sci U S A, 2007, 104(51):20151-20158.
2 Lv B, Yang X, Lv S, et al. CXCR4 Signaling Induced Epithelial-Mesenchymal Transition by PI3K/AKT and ERK Pathways in Glioblastoma[J/OL]. http://link.springer.com/ article/10.1007%2Fs12035-014-8935-y.
3 Xue L, Wang JK, Wang WM, et al. The effect of stromal Cell-Derived factor 1 in the migration of neural stem cells[J]. Cell Biochem Biophys, 2014, 70(3): 1609-1616.
4 Li Q, Zhang A, Tao C, et al. The role of SDF-1-CXCR4/CXCR7 axis in biological behaviors of adipose tissue-derived mesenchymal stem cells in vitro[J]. Biochem Biophys Res Commun, 2013, 441(3):675-680.
5 Gangadhar T, Nandi S, Salgia R. The role of chemokine receptor CXCR4 in lung cancer[J]. Cancer Biol Ther, 2010, 9(6):409-416.
6 Scala S, Giuliano P, Ascierto PA, et al. Human melanoma metastases express functional CXCR4[J]. Clin Cancer Res, 2006, 12(8):2427-2433.
7 Janowski M. Functional diversity of SDF-1 splicing variants[J]. Cell Adh Migr, 2009, 3(3): 243-249.
8 Huang W, Zheng W, Liu S, et al. HSV-mediated p55TNFSR reduces neuropathic pain induced by HIV gp120 in rats through CXCR4 activity[J]. Gene Ther, 2014, 21(3): 328-336.
9 Westmoreland SV, Alvarez X, Debakker C, et al. Developmental expression patterns of CCR5 and CXCR4 in the rhesus macaque brain[J]. J Neuroimmunol, 2002, 122(1/2): 146-158.
10 Van der Meer P, Ulrich AM, Gon?alez-Scarano F, et al. Immunohistochemical analysis of CCR2, CCR3, CCR5, and CXCR4 in the human brain: potential mechanisms for HIV dementia[J]. Exp Mol Pathol, 2000, 69(3):192-201.
11 Schoenemeier B, Kolodziej A, Schulz SA, et al. Regional and cellular localization of the CXC112/SDF-1 chemokine receptor CXCR7 in the developing and adult rat brain[J]. J Comp Neurol, 2008, 510(2):207-220.
12 Luo X, Tai WL, Sun L, et al. Central administration of C-X-C chemokine receptor type 4 antagonist alleviates the development and maintenance of peripheral neuropathic pain in mice[J]. PLoS One, 2014, 9(8):e104860.
13 Menichella DM, Abdelhak B, Ren DA, et al. CXCR4 chemokine receptor signaling mediates pain in diabetic neuropathy[J]. Mol Pain, 2014, 10: 42.
14 Knerlich-Lukoschus F, Von der Ropp-Brenner B, Lucius R, et al. Spatiotemporal CCR1, CCL3(MIP-1α), CXCR4, CXCL12(SDF-1α) expression patterns in a rat spinal cord injury model of posttraumatic neuropathic pain[J]. J Neurosurg Spine, 2011, 14(5):583-597.
15 Dubovy P, Klusakova I, Svizenska I, et al. Spatio-temporal changes of SDF1 and its CXCR4 receptor in the dorsal root ganglia following unilateral sciatic nerve injury as a model of neuropathic pain[J]. Histochem Cell Biol, 2010, 133(3): 323-337.
16 Huang W, Zheng W, Ouyang H, et al. Mechanical allodynia induced by nucleoside reverse transcriptase inhibitor is suppressed by p55TNFSR mediated by herpes simplex virus vector through the SDF1α/CXCR4 system in rats[J]. Anesth Analg, 2014, 118(3):671-680.
17 Bhangoo SK, Ripsch MS, Buchanan DJ, et al. Increased chemokine signaling in a model of HIV1-associated peripheral neuropathy[J]. Mol Pain, 2009, 5:48.
18 Gonzalez EJ, Arms L, Vizzard MA. The role(s) of cytokines/ chemokines in urinary bladder inflammation and dysfunction[J/ OL]. http://www.hindawi.com/journals/bmri/2014/120525.
19 Shen W, Hu XM, Liu YN, et al. CXCL12 in astrocytes contributes to bone cancer pain through CXCR4-mediated neuronal sensitization and glial activation in rat spinal cord[J]. J Neuroinflammation,2014, 11:75.
20 Rivat C, Sebaihi S, Van Steenwinckel J, et al. Src family kinases involved in CXCL12-induced loss of acute morphine analgesia[J]. Brain Behav Immun, 2014, 38:38-52.
21 Benamar K, Palma J, Cowan A, et al. Analgesic efficacy of buprenorphine in the presence of high levels of SDF-1 alpha/CXCL12 in the brain[J]. Drug Alcohol Depend, 2011, 114(2/3): 246-248.
22 Chen X, Kirby LG, Palma J, et al. The effect of gp120 on morphine's antinociceptive and neurophysiological actions[J]. Brain Behav Immun, 2011, 25(7):1434-1443.
23 Wilson NM, Jung H, Ripsch MS, et al. CXCR4 signaling mediates morphine-induced tactile hyperalgesia[J]. Brain Behav Immun,2011, 25(3): 565-573.
24 Ma J, Li X, Yi B, et al. Transplanted iNSCs migrate through SDF-1/ CXCR4 signaling to promote neural recovery in a rat model of spinal cord injury: retraction[J]. Neuroreport, 2014, 25(10):806.
25 Zgraggen S, Huggenberger R, Kerl K, et al. An important role of the SDF-1/CXCR4 axis in chronic skin inflammation[J]. PLoS One,2014, 9(4): e93665.
26 Dantzer R, Kelley KW. Twenty years of research on cytokine-induced sickness behavior[J]. Brain Behav Immun, 2007, 21(2): 153-160.
Function of SDF-1/CXCR4 signaling in chronic pain
QIU Fang1, LIU Yanhong1, MI Weidong1, LI Yang2
Anesthesia and Operation Center;2Institute of Geriatric Cardiology Chinese PLA General Hospital, Beijing 100853, China
LIU Yanhong. Email: yliu919@gmail.com
The chemokine CXCL12/stromal cell-derived factor 1 (SDF-1) is one of the chemokines that have been described in immune system. Its main functions include chemotaxis for lymphocytes and macrophages, migration of hematopoietic cells from fetal liver to bone marrow and the formation of large blood vessels. Accumulating evidences indicate that disease associated or injury-induced functional expression of CXCL12/CXCR4 signaling in both neural and non-neural elements of peripheral nervous system play important roles in the pathophysiology of chronic pain. Under normal conditions, CXCL12 can also act in central nerve system (CNS) as a classical neuromediator and can modulate the activity of several neuroendocrine networks. However, during pathological state (altered immune response or inflammation), due to its local production by glial and/or endothelial cells and/or its diffusion and transportation through the vascular circulation, enhanced concentrations of CXCL12 and/or its presence at unusual sites can affect neuronal and neuroendocrine activities and modify the functioning of the brain, leading to pathological behaviors and/or neurotoxicity. In conclusion, CXCL12/CXCR4 signaling is a potential target for the development of novel therapeutics.
chemokines; pain; receptors; nociception
R 745
A
2095-5227(2015)04-0396-03
10.3969/j.issn.2095-5227.2015.04.025
時間:2015-03-12 09:46
http://www.cnki.net/kcms/detail/11.3275.R.20150312.0946.004.html
2014-10-27
國家自然科學基金項目(30901398)
Supported by the National Natural Science Foundation of China (30901398)
邱方,女,博士。研究方向:疼痛的分子機理。
Email: qiufang080808@163.com
劉艷紅,女,博士,主治醫(yī)師。Email: yliu919@gmail. com