閆立梅,劉艷芹
德州學(xué)院 數(shù)學(xué)科學(xué)學(xué)院,山東 德州 253023
目前,分?jǐn)?shù)階微分方程已經(jīng)廣泛地應(yīng)用到流體力學(xué)、生物醫(yī)藥、固態(tài)物理等工程領(lǐng)域[1-4]。尋找分?jǐn)?shù)階非線性發(fā)展方程的解析解或者精確解一直以來(lái)是數(shù)學(xué)工作者的重要研究課題,得到了一些求解分?jǐn)?shù)階非線性方程的解析和數(shù)值方法,其中包括分?jǐn)?shù)階微分變換法[5-6],分?jǐn)?shù)階Adomian分解方法[7],分?jǐn)?shù)階同倫擾動(dòng)法[8-10],迭代Laplace變換方法[11-12],分?jǐn)?shù)階子方程方法[13-14]等。但這些方法大多是求解分?jǐn)?shù)階非線性方程的近似解,而且存在著各自的缺點(diǎn)。本文將分?jǐn)?shù)階復(fù)變換方法[15]與(G′/G)方法[16]相結(jié)合,得到了求解分?jǐn)?shù)階非線性方程精確解的一種輔助方程新方法,該方法簡(jiǎn)單有效。文中的分?jǐn)?shù)階微分算子是Jumarie的修正Riemann-Liouville導(dǎo)數(shù)[17]。
其中,Γ(·)為Gamma函數(shù),定義為:
Jumarie的修正Riemann-Liouville導(dǎo)數(shù)具有如下性質(zhì):
考慮如下時(shí)空分?jǐn)?shù)階微分方程
作分?jǐn)?shù)階復(fù)變換:
其中c為常數(shù),當(dāng)α=β=1時(shí)式(5)就是通常的行波變換。在式(5)的作用下,式(4)變?yōu)椋?/p>
假設(shè)式(6)的解u可以表示為G′/G的形式:
其中G=G(ξ)滿足方程
am,…,a0是待定的常數(shù),am≠0。正整數(shù)m通過(guò)式(6)中的最高階導(dǎo)數(shù)項(xiàng)和非線性項(xiàng)來(lái)確定。
將式(7)及式(8)帶入式(6),比較G′/G的系數(shù),得到一組關(guān)于am,…,a0的代數(shù)方程,借助于軟件Mathematica的符號(hào)計(jì)算功能及式(8)的解,得到原方程式(4)的解。
式(8)的解如下[16]:
情形1 若λ2-4μ>0,則
情形2 若λ2-4μ<0,則
情形3 若λ2-4μ=0,則
考慮如下時(shí)空分?jǐn)?shù)階Calogero KDV方程:
對(duì)式(12)作復(fù)變換式(5),得到
平衡式(13)中的最高階導(dǎo)數(shù)項(xiàng)和非線性項(xiàng),假設(shè)式(13)的解為:
將式(14)及式(8)帶入式(13),比較G′/G的系數(shù),得到一組關(guān)于a0,a1,a2的方程,借助于 Mathematica的計(jì)算功能,得到a0,a1,a2的兩組解:
這樣,得到時(shí)空分?jǐn)?shù)階Calogero KDV方程各種情形下的解:
(I)
情形1 當(dāng)λ2-4μ>0時(shí)
情形2 當(dāng)λ2-4μ<0時(shí)
情形3 當(dāng)λ2-4μ=0時(shí)
類(lèi)似地,可以得到(II)時(shí)方程(12)的各種解,為簡(jiǎn)單起見(jiàn),不再贅述。
將分?jǐn)?shù)階復(fù)變換方法和G′/G方法相結(jié)合,得到了求解分?jǐn)?shù)階非線性方程精確解的一種新方法。當(dāng)分?jǐn)?shù)階導(dǎo)數(shù)α=β=1時(shí),所得到的精確解就是通常的行波解。數(shù)值例子表明,該方法簡(jiǎn)單有效,能夠用來(lái)求解一般的分?jǐn)?shù)階非線性方程。
[1]Sabatier J,Agrawal O P,Tenreiro Machado J A.Advances in fractional calculus:theoretical developments and applications in physics and engineering[M].[S.l.]:Springer,2007.
[2]Baleanu D,Diethelm K,Scalas E,et al.Fractional calculus models and numerical methods in series on complexity,nonlinearity and chaos[C].World Scientific,Singapore,2012.
[3]Liu Y Q,Xin B G.Numerical solutions of a fractional predator-prey system[J].Advances in Difference Equations,2011,190475.
[4]Ma J H,Liu Y Q.Exact solutions for a generalized nonlinear fractional Fokker-Planck equation[J].Nonlinear Analysis:Real World Applications,2010,11(1):515-521.
[5]Liu J C,Hou G L.Numerical solutions of the space-and time-fractional coupled Burgers equations by generalized differential transform method[J].Applied Mathematics and Computation,2011,217(16):7001-7008.
[6]Erturk V S,Yildirim A,Momanic S.The differential transform method and Pade approximants for a fractional population growth model[J].International Journal of Numerical Methods for Heat&Fluid Flow,2012,22(6/7):791-802.
[7]劉艷芹.一類(lèi)分?jǐn)?shù)階非線性振子方程的特性研究[J].計(jì)算機(jī)工程與應(yīng)用,2012,48(16):30-32.
[8]He J H.Homotopy perturbation method:a new nonlinear analytical technique[J].Applied Mathematics and Computation,2003,135(1):73-79.
[9]Yildirim A.Application of the homotopy perturbation method for the Fokker-Planck equation[J].International Journal for Numerical Methods in Biomedical Engineering,2010,26(9):1144-1154.
[10]劉艷芹.同倫擾動(dòng)法求解分?jǐn)?shù)階非線性擴(kuò)散方程近似解[J].計(jì)算機(jī)工程與應(yīng)用,2012,48(6):28-29.
[11]Jafari H,Nazari M,Baleanu D,et al.A new approach for solving a system of fractional partial differential equations[J].Computers and Mathematics with Applications,2013,66(5):838-843.
[12]Yan L M.Numerical solutions of fractional Fokker-Planck equations using iterative Laplace transform method[J].Abstract and Applied Analysis,2013,465160.
[13]Liu Y Q,Yan L M.Solutions of fractional Konopelchenko-Dubrovsky and Nizhnik-Novikov-Veselov equations using a generalized fractional sub-equation method[J].Abstract and Applied Analysis,2013,839613.
[14]EI-Sayed A M,Rida S I,Arafa A A.Exact solutions of fractional-order biological population model[J].Communications in Theoretical Physics,2009,52(6):992-996.
[15]Li Z B,He J H.Fractional complex transform for fractional differential equations[J].Mathematical and Computational Applications,2010,15(5):970-973.
[16]Wang M L,Li X Z,Zhang J L.TheG′/G-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics[J].Physics Letters A,2008,37(4):417-423.
[17]Jumarie G.Modified riemann—liouville derivative and fractional Taylor series of non-differentiable functions further results[J].Computers and Mathematics with Applications,2006,51(9/10):1367-1376.