• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Abundance and Distribution of Fatty Acids in Sediments of the South Mid-Atlantic Ridge

    2015-04-05 08:20:49HUANGXinZENGZhigangCHENShuaiYINXueboWANGXiaoyuanMAYaoYANGBaojuRONGKunboSHUYunchaoandJIANGTao
    Journal of Ocean University of China 2015年2期
    關(guān)鍵詞:榨油機(jī)膠輥東方紅

    HUANG Xin, ZENG Zhigang, CHEN Shuai YIN Xuebo WANG Xiaoyuan MA Yao, YANG Baoju, RONG Kunbo, SHU Yunchao, and JIANG Tao

    1)Key Laboratory of Marine Geology and Environment,Institute of Oceanology,Chinese Academy of Sciences,Qingdao266071,P.R.China

    2)University of Chinese Academy of Sciences,Beijing100049,P.R.China

    Abundance and Distribution of Fatty Acids in Sediments of the South Mid-Atlantic Ridge

    HUANG Xin1),2), ZENG Zhigang1),*, CHEN Shuai1), YIN Xuebo1), WANG Xiaoyuan1), MA Yao1),2), YANG Baoju1),2), RONG Kunbo1),2), SHU Yunchao1),2), and JIANG Tao1),2)

    1)Key Laboratory of Marine Geology and Environment,Institute of Oceanology,Chinese Academy of Sciences,Qingdao266071,P.R.China

    2)University of Chinese Academy of Sciences,Beijing100049,P.R.China

    Sediment samples obtained from the South Mid-Atlantic Ridge were studies by gas chromatography-mass spectrometer (GC-MS) for the abundance and distributions of total fatty acids (TFAs). Approximately 34 fatty acids were identified, with the chain-lengths ranging from C12to C30. The total concentrations of TFAs (∑TFA) ranged from 7.15 to 30.09 μg g-1dry sediment, and∑TFA was weakly correlated with bitumen content (R2= 0.69). The ∑TFA of samples around hydrothermal areas were significantly higher than that of samples away from hydrothermal areas, indicating intense primary production and large biomass in the hydrothermal areas, and suggesting a close relationship between hydrothermal activity and ∑TFA of samples. The characteristics of the TFA composition in the present study are rich in monounsaturated fatty acids and lacking in polyunsaturated fatty acids, and the ratios between the concentrations of monounsaturated fatty acids and ΣTFAs in samples close to the hydrothermal areas, are about 0.8, but for samples far from the hydrothermal areas, they are only about 0.5. Several fatty acids (e.g., a/iC15:0 and C16:1ω7), which are signature biomarkers for sulfur-metabolizing bacteria, show the same distribution trend as ∑TFA of samples, further highlighting the close relationship between fatty acid content and hydrothermal activity and/or hydrothermal communities. The metabolic activities of hydrothermal communities, especially those of microorganisms, are likely the main source of fatty acids in samples.

    South Mid-Atlantic Ridge; sediment; fatty acids; hydrothermal activity; microorganism

    1 Introduction

    Chemosynthetic bacteria are major players in seafloor hydrothermal ecosystem, and are also the dominant source of organic matter around the seafloor hydrothermal vents (Yamanaka and Sakata, 2004). As the major constituents of cell membranes, fatty acids are closely associated with biological activity. The distinct structures of fatty acids make them useful as biomarkers of bacteria and other microorganisms (Bobbie and White, 1980; van Vleet and Quinn, 1979). Fatty acid analysis provides information about the surrounding ecological and environmental conditions.

    Many researchers have investigated the fatty acids in sulfides (Leinet al., 2003; Simoneitet al., 2004; Liet al., 2011), rocks (Bassezet al., 2009), and sediments (Ohkouchi, 1995; Venkatesanet al., 2003; Yamanaka and Sakata, 2004; Morgunovaet al., 2012; Shulgaet al., 2012). Extensively investigated are also fatty acids of submarine hydrothermal organisms: tube worms (Pondet al., 2002), bivalves (Fouadet al., 1992; Pranalet al.,1997; Colacoet al., 2009), barnacles (Huanget al., 2013), gastropods (Saito and Hashimoto, 2010), shrimp (Pondet al., 1997, 2000; Saito, 2011), crabs (Saito, 2011), and fish (Guerreiroet al., 2004; Pondet al., 2008). Ohkouchi (1995) analyzed the concentration of fatty acids of sediments in the Central Pacific along 175°E from 48°N to 15°S, and discovered that the concentration of fatty acids of sediments was closely related to the latitude of sediments. The concentration of fatty acids of hydrothermal sediments and massive sulfide in Rainbow hydrothermal field were detected by Simoneitet al. (2004), and they affirmed the relationship between hydrothermal activity and TFAs. Liet al. (2011) detected the concentration of fatty acids of sulfide chimneys in the Main Endeavour segment of Juan de Fuca Ridge, and showed the distribution of fatty acid in the sulfide chimneys. However, there were few researches about organic matter in the South Mid-Atlantic Ridge, and we have not found the study of fatty acids in sediments affected by hydrothermal activity in this area.

    In 2010-2012, hydrothermal sediments were obtained during the DY115-22 and DY115-26 cruises organized by the China Ocean Mineral Resources R&D Association (COMRA) in the South Mid-Atlantic Ridge. We meas-ured the abundance and distribution of total fatty acids of 10 sediment samples to understand the ecological and environmental conditions of this hydrothermal system, and obtain the influence of seafloor hydrothermal activities on the fatty acid in sediments.

    2 Methods

    2.1 Geologic Setting

    The slow-spreading Atlantic Ridge, which accounts for about 40% of the total length of global mid-ocean ridge, stretches from 87°N (only about 330 km from the North Pole) to 54°S. By the Romanche trench near the equator, the Mid-Atlantic Ridge is divided into the North Mid-Atlantic Ridge and the South Mid-Atlantic Ridge. The South Mid-Atlantic Ridge turns to the Atlantic-Indian Ridge near 54°S, crosses the Crozet plateau, and continues eastwards to the Southwest Indian Ridge and the west to the Scotia Ridge.

    In recent years, scientists have discovered several hydrothermal areas in the South Mid-Atlantic Ridge. In 2009, the DY115-21 cruise found two new hydrothermal areas between the 13°-14°S segments of the South Mid-Atlantic Ridge, and obtained hydrothermal sulfide chimney samples (Taoet al., 2011). In 2010-2012, DY115-22 and DY115-26 cruises continued to investigate the South Mid-Atlantic Ridge, and collected a variety of hydrothermal sulfides, sediment, and rocks. In this study, the sampling location (except 22V-TVG14) are centered in the mid-ocean ridge between 12° to 15°S of the South Mid-Atlantic Ridge (Fig.1), where the spreading rate is about 3.4 cm year-1(DeMetset al., 1994).

    Fig.1 Sample collection site in the South Mid-Atlantic Ridge.

    2.2 Sampling and Analyses

    In 2010-2012, samples were collected by a TV-grab on the DY115-22 and DY115-26 cruises of R/VDa Yang Yi Haoconducted by COMRA in the South Mid-Atlantic Ridge. Sites, water depths and descriptions of samples are summarized in Table 1.

    After collection, the samples were placed in bags and stored at -20℃ until analysis. About 200 g of sediment from each sample was placed into dry acid-clean glass beakers, and dried at for 48 h. The dried sediment was powdered in an agate mortar to 100 meshes and dried for 24 h.

    The extraction and analysis of fatty acids was performed at the Lanzhou Center for Oil and Gas Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences. The extraction process was as follows: bitumen were extracted by soxhlet extractor with chloroformfor 72 h. N-hexane was used to remove asphaltene and solubilize organic matter. Soluble organic matter was separated by column chromatography (silica-gel 60; i.d.:15 mm; length: 35 mm), and the acid fraction was eluted by methanol. After methyl esterification by BF3-MeOH, the acid fraction was analyzed by GC-MS.

    Table 1 Sample locations and principal characteristics

    The gas chromatograph was a 6890N gas chromatography analyzer with a 30-m DB-5MS fused silica capillary column (i.d.: 0.2 mm; film thickness: 0.2 μm). The carrier gas was He. The GC temperature program used was as follows: injection at 80℃, 2 min isothermal; from 80 to 290℃ at 4℃ min-1; 20 min isothermal. The mass spectrometer (5973N) was operated in EI model at 70 eV.

    3 Results

    3.1 Total Concentrations of TFAs

    Total concentrations of total fatty acids are given in Table 2. The value of ΣTFAs ranged from 7.15 to 30.09 μg g-1dry weight; sample 22V-TVG10 contained the highest fatty acid concentrations. The value of ΣTFAs in samples was in accord with that in the surface sediments in the Central Pacific along 175°E from 48°N to 15°S (1.82-23.8 μg g-1) (Ohkouchi, 1995). The concentration of bitumen and ΣTFA in samples were weakly correlated (R2= 0.69) (Fig.2).

    Fig.2 Relationship between the total concentrations of TFA (∑TFA) and bitumen concentration.

    Table 2 Content of the total fatty acids in the sediments

    3.2 Individual TFA Compositions

    The composition and abundance of TFAs are given in Table 2. Approximately 34 fatty acids were identified, with chain-lengths ranging from C12to C30. The composition of TFAs are in accord with that of hydrothermal sediments of the western Pacific Ocean (Yamanaka and Sakata, 2004). The ratios between the sum of saturated high-molecular-weight fatty acids and the sum of saturated low-molecular-weight fatty acids [∑(〈C20)/ ∑(≥C20)] ranged from 0.34 to 0.54.

    3.2.1 Saturated fatty acid

    Saturated fatty acids were the most plentiful among fatty acids detected in the samples. Unbranched saturated fatty acids were the major component of saturated fatty acids in the samples, with the chain-lengths ranging from C12to C30. The dominant acid was hexadecanoic acid (C16:0), which constituted about 10%-30% of ΣTFA, followed by octadecanoic acid (C18:0). The majority of the saturated fatty acids were even in carbon chain length.

    12-Methyl-tertadecanoic acid (aC15:0), 13-methyltetradecanoic acid (iC15:0) and iso-hexadecanoic acid (iC16:0) were all detected. 8,10-Dimethoxyl-octadecanoic acid and 12,14-dimethoxyl-docosanoic acid were also discovered in the samples with concentrations ranging from 1% to 10% of ΣTFA. Other branched fatty acid and cyclic fatty acid were not detected.

    3.2.2 Unsaturated fatty acid

    Unsaturated fatty acids detected in the samples were all even-carbon (16, 18, 20, 22 and 24) fatty acids without branched chains. Except 9,12-octadecadinoic acid (C18:2), unsaturated fatty acids were all monounsaturated fatty acids. The concentration of trans-13-docosenoic acid (C22:1ω13t), which was the highest among unsaturated fatty acids, was between 3.25 and 15.29 μg g-1dry weight, and about 50% of ΣTFA. The concentration of trans-octadecenoic acid (C18:1ω9t) was also high, and about 20-30% of ΣTFA. In addition, hexadecenoic acid (C16:1ω7), cis-octadecenoic acid (C18:1ω9c) and 9,12-octadecadinoic acid (C18:2) were all discovered in samples.

    4 Discussion

    ΣTFA is related to ecosystem productivity, and may be used as an indicator of biomass (Morris and Culkin, 1976). Samples 22V-TVG10, 26V-TVG05, 22V-TVG13 and 22II-TVG04 all contained high ΣTFA and high bitumen, indicating high biomass (Fig.3). The remaining samples (e.g. 22V-TVG14) were lower in ΣTFA and bitumen content, indicating lower biomass. Samples 22V-TVG10, 26V-TVG05 and 22II-TVG04 were located near the hydrothermal areas, suggesting a close relationship between high ΣTFA and hydrothermal activity (Fig.1). Moreover, high ΣTFA in 22V-TVG13 indicates that there may be an unknown hydrothermal source near this sampling location. However, several samples (e.g. 22IVTVG04) near the hydrothermal area have low ΣTFA, which may be related to the sedimentation rate, hydrothermal community size, hydrothermal plume altitude and sea water current direction (Braultet al., 1984). Braultet al. (1984) detected similar sample content in hydrothermal settings in EPR13°N.

    Fig.3 The abundance of ΣTFA in samples.

    We did not detect polyunsaturated fatty acids, suggesting that the fatty acids in our samples were not derived from marine invertebrates or algae (Farringtonet al., 1973; Joseph, 1982; Simoneit, 1977). The characteristics of the TFAs composition in the present study, rich in monounsaturated fatty acids and lacking in polyunsaturated fatty acids, are common in the vent sediments and animal samples (Yamanaka and Sakata, 2004). The concentrations of monounsaturated fatty acids are high in samples, and the ratios between the concentrations of monounsaturated fatty acids and ΣTFAs in samples 22VTVG10, 26V-TVG05 and 22II-TVG04 collected near the hydrothermal areas, are about 0.8 (Table 2), which is in accord with the characteristics of the TFAs composition in the vent sediments and animal samples, indicating more influence of hydrothermal activity on these samples. However, the ratio from sample 22V-TVG14, which is far from the hydrothermal areas, is only about 0.5 (Table 2), indicating less influence of hydrothermal activity and being in accordance with above conclusion about ΣTFA.

    Sulfur-based metabolic processes are important in the hydrothermal environment (Simoneit, 1977; Correet al., 2001; Brazeltonet al., 2006). High-temperature hydrothermal fluids contain hydrogen sulfide in concentrations several orders of magnitude higher than that of surrounding ambient seawater (Dinget al., 2001) and supply a critical substrate for chemosynthesis bacteria (McCollom and Shock, 1997; Van Dover, 2002). Sulfur metabolism supplies electron donors and acceptors for energy metabolism to the dense chemosynthetic-based vent ecosystems (McCollom and Shock, 1997). Some previous studies have shown a predominance of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) in thehydrothermal systems (McCaffreyet al., 1989; Guezennec and Fiala-Medioni, 1996; Zhanget al., 2005).

    Some individual fatty acids including iC16:0, a/iC15:0, and C18:1ω9c/t (Liet al., 2011; Edlundet al., 1985; Doωlinget al., 1986; Kohringet al., 1994) are summed as the biomarker of SRB in the present study (Table 2). From Fig.4, the concentrations of these fatty acids in samples 22V-TVG10, 26V-TVG05, 22II-TVG04 and 22V-TVG13 are higher than those in other samples, indicating more influence of SRB on fatty acids, and also suggesting more influence of hydrothermal activity on these samples.

    Fig.4 The abundance of several selected fatty acids.

    Many previous studies have considered C16:1ω7 as the signature biomarker for SOB (Yamanaka and Sakata, 2004; Liet al., 2011; McCaffreyet al., 1989; Guezennec and Fiala-Medioni, 1996; Zhanget al., 2005; Liet al., 2007). The fatty acid C16:1ω7 was detected in all samples, indicating some contribution of SOB to fatty acids in samples. Yamanaka and Sakata (2004) reported the ratio of 16:1n-7/16:0 could be used to indicate the relative contribution of bacterial input and hydrothermal influence. The ratios of 16:1n-7/16:0 were larger in the samples of 22II-TVG04, 22V-TVG10, 22V-TVG13 and 26V-TVG05 than in other samples (Table 2), indicating a higher contribution of bacteria and more influence of hydrothermal activity, which is also in accord with the above conclusion.

    In samples, we did not detect C18:1ω7, a common biomarker for SOB (Yamanaka and Sakata, 2004; Liet al., 2011; McCaffreyet al., 1989; Guezennec and Fiala-Medioni, 1996; Zhanget al., 2005; Liet al., 2007), and iC17:0, a common biomarker for SRB (Liet al., 2011; Edlundet al., 1985; Doωlinget al., 1986; Kohringet al., 1994) may be related to the species of microorganisms, and long time mixture of sediment and seawater. However, other biomarkers and their distribution make it difficult for us to ignore the contribution of microorganisms associated with sulfur metabolism (e.g., SRB and SOB) to the fatty acids in the samples.

    5 Conclusion

    The distribution of ΣTFA in these samples reflects intense biomass and biological activity. The TFAs composition in the present study, rich in monounsaturated fatty acids and lacking in polyunsaturated fatty acids, are in accord with most of the hydrothermal sediment in previous researches, indicating that the metabolic activities of hydrothermal communities (especially microbial metabolic activities) are likely to be the main source of fatty acids in samples. Microorganisms associated with sulfur metabolism play an important role in the abundance and distribution of fatty acids in these samples, which is not only reflected in the high concentration of biomarkers for microorganisms associated with the sulfur metabolism, but also reflected in the ratio of 16:1n-7/16:0 in samples. In conclusion, the influence of the hydrothermal activity and the microbial community are clear from the abundance and distribution of fatty acids in the sediment samples.

    Acknowledgements

    The authors would like to thank the crew of the COMRA cruises (DY115-22 and DY115-26) for their help with sampling operations, and thank Professor MENG Qianxiang for his help with sampling analysis. This work was supported by the National Key Basic Research Program of China (Grant No. 2013CB429700), National Special Fund for the 12th Five Year Plan of COMRA (Grant Nos. DY125-12-R-02, DY125-12-R-05, DY125- 11-R-05), National Natural Science Foundation of China (Grant Nos. 41325021, 40830849, 40976027), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11030302), and the Shandong Province Natural Science Foundation of China for Distinguished Young Scholars (Grant No. JQ200913).

    Bassez, M. P., Takano, Y., and Ohkouchi, N., 2009. Organic analysis of peridotite rocks from the Ashadze and Logatchev hydrothermal sites.International Jourmal of Molecular Sciences, 10: 2986-2998.

    Bobbie, R. J., and White, D. C., 1980. Characterization of benthic microbial community structure by high-resolution gas chromatography of fatty acid methyl esters.Applied and Environmental Microbiology, 39: 1212-1222.

    Brault, M., Marty, J. C., and Saliot, A., 1984. Fatty acids from particulate matter and sediment in hydrothermal environments from the east Pacific rise, near 13°N.Organic Geochemistry, 6: 217-222.

    Brazelton, W., Schrenk, M., Kelley, D., and Barass, J., 2006. Methane and sulfur-metabolizing microbial communities dominate the lost city hydrothermal field ecosystem.Applied and Environmental Microbiology, 72: 6257-6270.

    Colaco, A., Prieto, C., Martins, A., Figueiredo, M., Lafon, V., Monteiro, M., and Banadarra, N., 2009. Seasonal variations in lipid composition of the hydrothermal vent mussel Bathymodiolus azoricus from the Menez Gwen vent field.Marine Environmental Research, 67: 146-152.

    Corre, E., Reysenbach, A. L., and Prieur, D., 2001. ε-Proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge.FEMS Microbiology Letters, 205: 329-335.

    DeMets, C., Gordon, R. G., Argus, D. F., and Stein, S., 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimate of current plate motions.Geophysical Research Letters, 21: 2191-2194.

    Ding, K., Seyfried, W. E., Tivey, M. K., and Bradley, A. M., 2001.In situmeasurement of dissolved H2and H2S in high-temperature hydrothermal vent fluids at the Main Endeavour Field, Juan de Fuca Ridge.Earth and Planetary Science Letters, 186 (3-4): 417-425.

    Dowling, N. J. E., Widdel, F., and White, D. C., 1986. Phospholipid ester-linked fatty acid biomarkers of acetateoxidizing sulphate-reducers and other sulphide-forming bacteria.Journal of General Microbiology, 132: 1815-1825.

    Edlund, A., Nichols, P. D., Roffey, R., and White, D. C., 1985. Extractable and lipopolysaccharide fatty acid and hydroxyl acid profiles fromDesulfovibriospecies.Journal of Lipid Research, 26: 982-988.

    Farrington, J. W., Quinn, J. G., and Davis, W. R., 1973. Fatty acid composition ofNephtys incisaandYoldia eimatula.Journal of the Fisheries Research Board of Canada, 30:181-185.

    Fouad, B. M., Jean, C. M., and Aline, F. M., 1992. Fatty acid composition in deep hydrothermal vent symbiotic bivalves.Journal of Lipid Research, 33: 1797-1806.

    Guerreiro, V., Narciso, L., Almeida, A. J., and Biscoito, M., 2004. Fatty acid profiles of deep-sea fishes from the Lucky Strike and Menez Gwen hydrothermal vent fields (Mid-Atlantic Ridge).Cybium, 28 (1): 33-44.

    Guezennec, J., and Fiala-Medioni, A., 1996. Bacterial abundance and diversity in the Barbados Trench determined by phospholipids analysis.FEMS Microbiology Ecology, 19:83-93.

    Huang, X., Zeng, Z., Chen, S., Yin, X., Wang, X., Zhao, H., Yang, B., Rong, K., and Ma, Y., 2013. Component characteristics of organic matter in hydrothermal barnacle shells from Southwest Indian Ridge.Acta OceanologicaSinica, 12: 60-67.

    Joseph, J. D., 1982. Lipid composition of marine and estuarine invertebrates. Part II. Mollusca.Progress in Lipid Research, 21: 109-153.

    Kohring, L. L., Ringelberg, D. B., Devereux, R., Stahl, D. A., Mittelman, M. W., and White, D. C., 1994. Comparison of phylogenetic relationship based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among dissimilatory sulfatereducing bacteria.FEMS Microbiology Letters, 119: 303-308.

    Lein, A. Y., Peresypkin, V. I., and Simoneit, B. R. T., 2003. Origin of hydrocarbons in hydrothermal sulfide ores in the Mid-Atlantic Ridge.Lithology and Mineral Resources, 38 (5):383-393.

    以關(guān)系到千家萬戶的糧食加工行業(yè)為例,在解決糧食供應(yīng)問題后,人們的生活開始由溫飽型向小康型逐步過渡。如小型礱谷機(jī),碾米機(jī)和200型榨油機(jī)、“東方紅”牌糧機(jī)和“雙獅”牌礱谷膠輥等具有代表性的機(jī)械,開始被運(yùn)用到米、面、油的深加工、精加工上來,以提高原料的利用率。

    Li, J., Zhou, H., Peng, X., Fu, M., Chen, Z., and Yao, H., 2011. Abundance and distribution of fatty acids within the walls of an active deep-sea sulfide chimney.Journal of Sea Research, 65: 333-339.

    Li, Y. L., Peacock, A. D., White, D. C., Geyer, R., and Zhang, C., 2007. Spatial patterns of bacterial signature biomarkers in marine sediments of the Gulf of Mexico.Chemical Geology, 238: 168-179.

    McCaffrey, M. A., Farrington, J. W., and Repeta, D. J., 1989. Geochemical implications of the lipid composition ofThioplocaspp. from the Peru upwelling regions 15°S.Organic Geochemistry, 14: 61-68.

    McCollom, T., and Shock, E. L., 1997. Geochemical constraints on chemolithoautotr-ophic metabolism by microorganisms in seafloor hydrothermal systems.Geochimica et Cosmochimica Acta, 61: 4375-4391.

    Morgunova, I. P., Ivanov, V. N., Litvinenko, I. V., Petrova, V. I., Stepanova, T. V., and Cherkashev, G. A., 2012. Geochemistry of organic matter in bottom sediments of the ashadze hydrothermal field.Oceanology, 52 (3): 345-353.

    Morris, R. J., and Culkin, F., 1976. Marine lipids: Analytical techniques and fatty acid ester analyses.Oceanography and Marine Biology, 14: 391-433.

    Pond, D. W., Allen, C. E., Bell, M. V., Dover, C. L., Fallick, A. E., Dixon, D. R., and Sargent, J. R., 2002. Origins of long-chain polyunsaturated fatty acids in the hydrothermal vent wormsRidgea piscesaeandProtis hydrothermica.Marine Ecology Progress Series, 225: 219-226.

    Pond, D. W., Dixon, D. R., Bell, M. V., Fallick, A. E., and Sargent, J. R., 1997. Occurrence of 16:2(n-4) and 18:2(n-4) fatty acids in the lipids of the hydrothermal vent shrimpsRimicaris exoculataandAlvinocaris markensis: Nutritional and trophic implications.Marine Ecology Progress Series, 156: 167-174.

    Pond, D. W., Fallick, A. E., Stevens, C. J., Morridon, D. J., and Dixon, D. R., 2008. Vertebrate nutrition in a deep-sea hydrothermal vent ecosystem: Fatty acid and stable isotope evidence.Deep-Sea ResearchI, 55: 1718-1726.

    Pond, D. W., Gebruk, A., Southward, E. C., Southward, A. J., Fallick, A. E., Michael, V. B., and Sargent, J. R., 2000. Unusual fatty acid composition of storage lipids in the bresilioid shrimpRimicaris exoculatacouples the photic zone with MAR hydrothermal vent sites.Marine Ecology Progress Series, 198: 171-173.

    Pranal, V., Medioni, A. F., and Guezennec, J., 1997. Fatty acid characteristics in two symbiont-bearing mussels from deepsea hydrothermal vents of the south-western Pacific.Marine Biological Association of the UK, 77: 473-492.

    Pranal, V., Medioni, A. F., and Guezennec, J., 1996. Fatty acid characteristics in two symbiotic gastropods from a deep hydrothermal vent of the West Pacific.Marine Ecology Progress Series, 142: 175-184.

    Saito, H., and Hashimoto, J., 2010. Characteristics of the fatty acid composition of a deep-sea vent gastropod, ifremeria nautilei.Lipids, 45: 537-548.

    Saito, H., 2011. Characteristics of fatty acid composition of the deep-sea vent crab,Shinkaia crosnieriBaba and Williams.Lipids, 46: 723-740.

    Shulga, N. A., and Peresypkin, V. I., 2012. New data on the composition of organic matter in the hydrothermal deposits of the Mid-Atlantic Ridge (Broken Spur, Snake Pit, TAG).Doklady Earth Sciences, 444 (2): 773-775.

    Simoneit, B. R. T., 1977. Organic matter in eolian dusts over the Atlantic Ocean.Marine Chemistry, 5: 443-464.

    Simoneit, B. R. T., Lein, A. Y., Peresypkin, V. I., and Osipov, G. A., 2004. Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow Field (Mid-Atlantic Ridge at 36°N).Geochimica et Cosmochimica Acta, 68 (10): 2275-2294. Tao, C., Li, H., Yang, Y., Ni, J., Cui, R., Chen, Y., He, Y., Li, J., Huang, W., Lei, J., and Wang, Y., 2011. Two hydrothermal fields found on the southern Mid-Atlantic Ridge.Science China Earth Sciences, 54: 9.

    Van Dover, C. L., 2000.The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press, Princeton, 424pp.

    Van Vleet, E. S., and Quinn, J. G., 1979. Early diagenesis of fatty acids and isoprenoid alcohols in estuarine and coastal sediments.Geochimica et Cosmochimica Acta, 43: 289-303.

    Venkatesan, M. I., Ruth, E., Rao, P. S., Nath, B. N., and Rao, B. R., 2003. Hydrothermal petroleum in the sediments of the Andaman Backarc Basin, Indian Ocean.Applied Geochemistry, 18: 845-861.

    Yamanaka, T., and Sakata, S., 2004. Abundance and distribution of fatty acids in hydrothermal vent sediments of the western Pacific Ocean.Organic Geochemistry, 35: 573-582.

    Zhang, C., Huang, Z., Cantu, J., Pancost, R. D., Brigmon, R. L., Lyons, T. W., and Sassen, R., 2005. Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrates in the Gulf of Mexico.Applied and Environmental Microbiology, 71: 2106-2112.

    (Edited by Ji Dechun)

    (Received March 5, 2014; revised April 18, 2014; accepted May 20, 2014)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    * Corresponding author. E-mail: zgzeng@ms.qdio.ac.cn

    猜你喜歡
    榨油機(jī)膠輥東方紅
    Entrevista ping-pong “Mi mayor logro es haber aprendido espa?ol”
    LXC-866MD型膠輥紡紗實(shí)踐
    紡織器材(2022年4期)2022-08-18 14:05:34
    免加油并條膠輥在FA315型并條機(jī)上的應(yīng)用
    紡織器材(2022年4期)2022-08-18 14:05:34
    “東方紅”五號(hào)衛(wèi)星平臺(tái)
    東方紅20周年譜華章
    東方紅閃耀航展
    NFR865型免處理膠輥的應(yīng)用體會(huì)
    紡織器材(2015年5期)2015-12-19 06:38:34
    短膠輥在集聚紡細(xì)紗機(jī)上的應(yīng)用
    紡織器材(2015年4期)2015-12-19 06:37:30
    家庭新型電器
    ——家用榨油機(jī)
    低溫壓榨是榨油機(jī)的技術(shù)發(fā)展趨勢(shì)
    亚洲欧洲日产国产| 久久久久久久大尺度免费视频| 男人添女人高潮全过程视频| 亚洲欧美精品自产自拍| 在线观看三级黄色| av国产久精品久网站免费入址| 精品国产超薄肉色丝袜足j| 成人午夜精彩视频在线观看| 久久久久久久久久久久大奶| 一级片'在线观看视频| 嫩草影院入口| 三上悠亚av全集在线观看| 热99久久久久精品小说推荐| 人人妻人人爽人人添夜夜欢视频| 国产精品久久久久久久久免| 如何舔出高潮| 中文字幕亚洲精品专区| 精品视频人人做人人爽| 捣出白浆h1v1| 黄片小视频在线播放| 午夜福利视频在线观看免费| 国产成人精品在线电影| 色婷婷av一区二区三区视频| 国产成人a∨麻豆精品| 女人被躁到高潮嗷嗷叫费观| 亚洲国产中文字幕在线视频| 下体分泌物呈黄色| 欧美av亚洲av综合av国产av | av网站在线播放免费| 亚洲欧美清纯卡通| 欧美在线黄色| 日韩av在线免费看完整版不卡| 一边亲一边摸免费视频| 亚洲精品成人av观看孕妇| 秋霞伦理黄片| 国产精品国产三级专区第一集| 亚洲国产中文字幕在线视频| 一边摸一边抽搐一进一出视频| 午夜影院在线不卡| av网站免费在线观看视频| 啦啦啦在线观看免费高清www| 无限看片的www在线观看| 999久久久国产精品视频| 不卡视频在线观看欧美| 日韩精品有码人妻一区| 欧美乱码精品一区二区三区| 国产野战对白在线观看| 国产成人精品久久二区二区91 | 女人被躁到高潮嗷嗷叫费观| 亚洲成人av在线免费| 精品一区二区三区四区五区乱码 | 国产av精品麻豆| 亚洲欧美一区二区三区黑人| 在线看a的网站| 日韩,欧美,国产一区二区三区| 波野结衣二区三区在线| 亚洲国产欧美一区二区综合| 精品国产乱码久久久久久小说| 亚洲综合色网址| 黄色怎么调成土黄色| 亚洲精品中文字幕在线视频| 伦理电影大哥的女人| 在线观看免费午夜福利视频| 热re99久久国产66热| www.自偷自拍.com| 亚洲欧美精品自产自拍| 777米奇影视久久| av不卡在线播放| 日本欧美视频一区| 天天躁夜夜躁狠狠久久av| 国产片内射在线| 久久久久国产精品人妻一区二区| 人妻 亚洲 视频| 亚洲精品自拍成人| 一区二区三区四区激情视频| 日日啪夜夜爽| 电影成人av| 成人影院久久| 狠狠精品人妻久久久久久综合| 久久久久久久久久久免费av| 一本色道久久久久久精品综合| 亚洲综合精品二区| 亚洲视频免费观看视频| 波多野结衣一区麻豆| 精品少妇久久久久久888优播| 婷婷成人精品国产| 天天添夜夜摸| 中文精品一卡2卡3卡4更新| av女优亚洲男人天堂| 日韩欧美一区视频在线观看| 成人黄色视频免费在线看| 免费久久久久久久精品成人欧美视频| netflix在线观看网站| 韩国av在线不卡| 欧美在线黄色| 国产精品偷伦视频观看了| 成人18禁高潮啪啪吃奶动态图| 韩国高清视频一区二区三区| 久久国产精品大桥未久av| 一级毛片 在线播放| 亚洲四区av| 久久狼人影院| 国产精品无大码| 久久 成人 亚洲| 99久久人妻综合| 99国产综合亚洲精品| 成年女人毛片免费观看观看9 | 性色av一级| 在线天堂中文资源库| 99热国产这里只有精品6| 91精品国产国语对白视频| 韩国精品一区二区三区| 国产福利在线免费观看视频| 久久热在线av| 精品亚洲成a人片在线观看| 久久99一区二区三区| www.精华液| 日韩中文字幕欧美一区二区 | 中文字幕人妻熟女乱码| 久久精品亚洲熟妇少妇任你| 欧美老熟妇乱子伦牲交| 亚洲av成人精品一二三区| 亚洲欧美一区二区三区久久| av视频免费观看在线观看| 国产精品国产三级专区第一集| 久久青草综合色| 嫩草影视91久久| av.在线天堂| 夫妻午夜视频| 婷婷色av中文字幕| 中文字幕人妻丝袜一区二区 | 亚洲国产看品久久| 亚洲天堂av无毛| 久久韩国三级中文字幕| 在线观看免费视频网站a站| 亚洲精品自拍成人| 国产99久久九九免费精品| 老汉色∧v一级毛片| 亚洲精品一二三| 成年人免费黄色播放视频| 日韩人妻精品一区2区三区| svipshipincom国产片| 亚洲欧美精品综合一区二区三区| 人妻 亚洲 视频| 只有这里有精品99| 亚洲,一卡二卡三卡| 男人舔女人的私密视频| 午夜福利在线免费观看网站| 日本vs欧美在线观看视频| 一本大道久久a久久精品| 国产免费又黄又爽又色| 久久久久久久久久久久大奶| 搡老乐熟女国产| 另类精品久久| 国产亚洲av片在线观看秒播厂| 精品亚洲乱码少妇综合久久| kizo精华| 欧美激情高清一区二区三区 | 亚洲欧美清纯卡通| 亚洲熟女毛片儿| 美女中出高潮动态图| av.在线天堂| 亚洲av男天堂| av卡一久久| 晚上一个人看的免费电影| 国产精品国产av在线观看| 午夜福利乱码中文字幕| 不卡视频在线观看欧美| 丝袜人妻中文字幕| 超色免费av| 欧美日韩一级在线毛片| 青青草视频在线视频观看| 97人妻天天添夜夜摸| 午夜福利视频在线观看免费| 天天添夜夜摸| 在线观看国产h片| 午夜精品国产一区二区电影| 麻豆av在线久日| 一二三四中文在线观看免费高清| 午夜福利一区二区在线看| 日本色播在线视频| 国产精品嫩草影院av在线观看| 蜜桃在线观看..| 亚洲av成人精品一二三区| 9热在线视频观看99| 亚洲,欧美,日韩| 日韩大片免费观看网站| 婷婷成人精品国产| 电影成人av| 一二三四中文在线观看免费高清| 国产一卡二卡三卡精品 | 一边摸一边做爽爽视频免费| 国产伦人伦偷精品视频| 精品少妇久久久久久888优播| 国产亚洲av片在线观看秒播厂| 国产极品天堂在线| 亚洲自偷自拍图片 自拍| 亚洲国产精品999| 亚洲国产av新网站| 亚洲精品中文字幕在线视频| 国产精品 国内视频| 国产免费视频播放在线视频| 宅男免费午夜| 可以免费在线观看a视频的电影网站 | 日韩精品免费视频一区二区三区| 观看av在线不卡| 在现免费观看毛片| 午夜福利在线免费观看网站| 综合色丁香网| 秋霞伦理黄片| 久久久久视频综合| 久久久久久久国产电影| 只有这里有精品99| 水蜜桃什么品种好| 欧美日韩一区二区视频在线观看视频在线| 黄色怎么调成土黄色| 久久国产精品男人的天堂亚洲| 波多野结衣一区麻豆| 国产精品嫩草影院av在线观看| 国产在线视频一区二区| av天堂久久9| 免费黄频网站在线观看国产| 99精品久久久久人妻精品| 99久国产av精品国产电影| 久久精品国产亚洲av涩爱| 中文精品一卡2卡3卡4更新| 女人被躁到高潮嗷嗷叫费观| 天天躁夜夜躁狠狠久久av| 大片免费播放器 马上看| 国产av一区二区精品久久| 亚洲伊人久久精品综合| 三上悠亚av全集在线观看| 亚洲国产欧美一区二区综合| 99久国产av精品国产电影| 日本黄色日本黄色录像| 亚洲国产精品一区三区| 欧美在线黄色| 国产97色在线日韩免费| 美女视频免费永久观看网站| 亚洲精品视频女| 国产在视频线精品| 性高湖久久久久久久久免费观看| 久久热在线av| 午夜免费男女啪啪视频观看| 亚洲av福利一区| 国产爽快片一区二区三区| 久久久亚洲精品成人影院| 丝袜美足系列| 国产在线免费精品| 精品一区二区三区av网在线观看 | 国产一区二区在线观看av| 麻豆乱淫一区二区| 日韩一本色道免费dvd| 亚洲综合精品二区| 伦理电影大哥的女人| 久久ye,这里只有精品| 涩涩av久久男人的天堂| bbb黄色大片| 亚洲五月色婷婷综合| 欧美激情高清一区二区三区 | 制服丝袜香蕉在线| 精品国产国语对白av| 中文字幕人妻丝袜一区二区 | 国产一区二区三区综合在线观看| 成人影院久久| 一区二区日韩欧美中文字幕| 精品久久久久久电影网| 亚洲精品国产av蜜桃| 国产黄色免费在线视频| 亚洲国产精品成人久久小说| 大香蕉久久网| 狂野欧美激情性xxxx| 波多野结衣一区麻豆| 日韩不卡一区二区三区视频在线| 看免费av毛片| 午夜精品国产一区二区电影| 亚洲av电影在线进入| 成人国产av品久久久| 啦啦啦中文免费视频观看日本| 欧美成人午夜精品| 天天操日日干夜夜撸| 国产免费一区二区三区四区乱码| 国产精品.久久久| 黑人欧美特级aaaaaa片| 蜜桃在线观看..| 午夜激情久久久久久久| 亚洲国产毛片av蜜桃av| 亚洲伊人久久精品综合| 欧美成人精品欧美一级黄| 一级,二级,三级黄色视频| 免费在线观看视频国产中文字幕亚洲 | 韩国av在线不卡| 久久99一区二区三区| 欧美日韩国产mv在线观看视频| 在线精品无人区一区二区三| 久久久久久久久免费视频了| 午夜免费观看性视频| 女人精品久久久久毛片| 精品亚洲成a人片在线观看| 精品国产乱码久久久久久小说| 国产极品粉嫩免费观看在线| 欧美成人精品欧美一级黄| 午夜福利网站1000一区二区三区| 国产国语露脸激情在线看| 亚洲国产精品一区二区三区在线| 在线观看免费午夜福利视频| 热99国产精品久久久久久7| 国产午夜精品一二区理论片| 男女下面插进去视频免费观看| 成人国产av品久久久| 久久久久精品国产欧美久久久 | 又大又爽又粗| 男男h啪啪无遮挡| 精品一区二区三卡| 亚洲人成电影观看| 黄色毛片三级朝国网站| videos熟女内射| 麻豆av在线久日| 丁香六月欧美| 国产日韩欧美在线精品| 黄片无遮挡物在线观看| 国产在视频线精品| 日本黄色日本黄色录像| 爱豆传媒免费全集在线观看| 黄网站色视频无遮挡免费观看| 午夜免费鲁丝| 如何舔出高潮| 欧美激情 高清一区二区三区| 中文天堂在线官网| 精品一区二区三区av网在线观看 | 国产精品久久久久久精品电影小说| 国产av一区二区精品久久| 欧美人与性动交α欧美精品济南到| 亚洲 欧美一区二区三区| 成人午夜精彩视频在线观看| 日本一区二区免费在线视频| 热re99久久国产66热| 秋霞伦理黄片| 欧美日韩视频精品一区| 91精品伊人久久大香线蕉| 午夜福利乱码中文字幕| 青草久久国产| 欧美乱码精品一区二区三区| 另类亚洲欧美激情| 日本vs欧美在线观看视频| 最近2019中文字幕mv第一页| 国产有黄有色有爽视频| av又黄又爽大尺度在线免费看| 国产黄色视频一区二区在线观看| 亚洲中文av在线| 色吧在线观看| 欧美日韩精品网址| 精品少妇黑人巨大在线播放| 各种免费的搞黄视频| 丰满饥渴人妻一区二区三| 免费观看人在逋| 色视频在线一区二区三区| 久久精品aⅴ一区二区三区四区| 如日韩欧美国产精品一区二区三区| 欧美日韩国产mv在线观看视频| 国产又色又爽无遮挡免| 91国产中文字幕| 国产精品久久久久久精品电影小说| 在线精品无人区一区二区三| xxx大片免费视频| 国产一级毛片在线| 人成视频在线观看免费观看| 亚洲一区二区三区欧美精品| 精品国产乱码久久久久久男人| 激情五月婷婷亚洲| 国产一区有黄有色的免费视频| 91国产中文字幕| 久久久久网色| 国产免费现黄频在线看| 777米奇影视久久| 亚洲av在线观看美女高潮| 欧美日韩成人在线一区二区| 欧美国产精品va在线观看不卡| 久久久久久久久久久免费av| 欧美精品人与动牲交sv欧美| 日韩一卡2卡3卡4卡2021年| 亚洲国产精品国产精品| 女人精品久久久久毛片| 国产免费又黄又爽又色| 久久久精品94久久精品| 久久久欧美国产精品| 激情五月婷婷亚洲| 人人妻人人爽人人添夜夜欢视频| 亚洲,一卡二卡三卡| 女性生殖器流出的白浆| av电影中文网址| 在线天堂最新版资源| 不卡av一区二区三区| 成年美女黄网站色视频大全免费| 国产片特级美女逼逼视频| 天天操日日干夜夜撸| 国产精品免费视频内射| 欧美亚洲 丝袜 人妻 在线| 秋霞在线观看毛片| 国产精品无大码| 晚上一个人看的免费电影| 99热国产这里只有精品6| 丝瓜视频免费看黄片| av片东京热男人的天堂| 亚洲第一av免费看| 一级毛片电影观看| 99国产精品免费福利视频| 亚洲,一卡二卡三卡| 国产精品一区二区在线观看99| 大片免费播放器 马上看| 欧美日韩亚洲综合一区二区三区_| 欧美人与性动交α欧美软件| 久久久亚洲精品成人影院| 99热全是精品| 少妇被粗大猛烈的视频| 伊人久久国产一区二区| 欧美日韩亚洲国产一区二区在线观看 | 午夜日韩欧美国产| 香蕉丝袜av| 不卡av一区二区三区| 伊人亚洲综合成人网| 秋霞在线观看毛片| 99香蕉大伊视频| 亚洲图色成人| 可以免费在线观看a视频的电影网站 | 性少妇av在线| 精品国产一区二区三区四区第35| av天堂久久9| 久久精品国产亚洲av涩爱| 在线观看免费高清a一片| 国产av码专区亚洲av| 亚洲一区中文字幕在线| 超色免费av| 女人被躁到高潮嗷嗷叫费观| 日日撸夜夜添| 日本vs欧美在线观看视频| av在线app专区| 可以免费在线观看a视频的电影网站 | 最新在线观看一区二区三区 | 久久久久精品人妻al黑| 欧美日韩国产mv在线观看视频| 亚洲七黄色美女视频| 老司机在亚洲福利影院| 在线观看免费日韩欧美大片| 亚洲图色成人| 美女扒开内裤让男人捅视频| 亚洲久久久国产精品| av卡一久久| 亚洲欧美一区二区三区黑人| 一级黄片播放器| 中文字幕人妻熟女乱码| 亚洲国产毛片av蜜桃av| 国产精品一区二区在线不卡| 亚洲av日韩精品久久久久久密 | 一区二区三区激情视频| 国产国语露脸激情在线看| av在线老鸭窝| 国产精品欧美亚洲77777| 人人妻人人爽人人添夜夜欢视频| 卡戴珊不雅视频在线播放| 国产伦人伦偷精品视频| 99久久99久久久精品蜜桃| 亚洲精品国产色婷婷电影| 丁香六月天网| 人人妻人人澡人人看| 日韩 亚洲 欧美在线| 欧美日韩一区二区视频在线观看视频在线| 99久久99久久久精品蜜桃| 久久99一区二区三区| 麻豆精品久久久久久蜜桃| 国产极品粉嫩免费观看在线| 欧美精品高潮呻吟av久久| 欧美精品av麻豆av| 黄色一级大片看看| 免费日韩欧美在线观看| 免费人妻精品一区二区三区视频| 中文字幕制服av| 中文字幕色久视频| 久久久欧美国产精品| 日日爽夜夜爽网站| 男女之事视频高清在线观看 | 97人妻天天添夜夜摸| 日本av免费视频播放| 亚洲国产精品国产精品| 激情五月婷婷亚洲| 久久精品人人爽人人爽视色| 欧美日韩av久久| av免费观看日本| 少妇精品久久久久久久| 9色porny在线观看| 在线天堂最新版资源| 精品少妇一区二区三区视频日本电影 | 丰满迷人的少妇在线观看| 19禁男女啪啪无遮挡网站| 超碰成人久久| 91国产中文字幕| 伊人久久国产一区二区| 伦理电影免费视频| 欧美激情极品国产一区二区三区| www日本在线高清视频| 午夜日本视频在线| 丝瓜视频免费看黄片| 免费久久久久久久精品成人欧美视频| 日本黄色日本黄色录像| 日本欧美国产在线视频| 成人黄色视频免费在线看| 天天躁狠狠躁夜夜躁狠狠躁| 精品第一国产精品| 美女脱内裤让男人舔精品视频| 免费黄色在线免费观看| 精品久久久久久电影网| 久久久欧美国产精品| 亚洲成人手机| 视频在线观看一区二区三区| 人人妻,人人澡人人爽秒播 | 久久韩国三级中文字幕| 老鸭窝网址在线观看| 纯流量卡能插随身wifi吗| 成年女人毛片免费观看观看9 | 中文字幕另类日韩欧美亚洲嫩草| 国产精品一二三区在线看| 最黄视频免费看| 乱人伦中国视频| 午夜日本视频在线| 日本一区二区免费在线视频| 欧美成人午夜精品| 亚洲国产欧美一区二区综合| 777久久人妻少妇嫩草av网站| 制服丝袜香蕉在线| 男人爽女人下面视频在线观看| 精品国产露脸久久av麻豆| 一本大道久久a久久精品| 天堂中文最新版在线下载| www日本在线高清视频| 亚洲男人天堂网一区| 丰满迷人的少妇在线观看| 亚洲成人国产一区在线观看 | 狂野欧美激情性xxxx| 久久av网站| 一本久久精品| 如日韩欧美国产精品一区二区三区| 欧美精品高潮呻吟av久久| 精品一区二区三区av网在线观看 | 一级毛片我不卡| 午夜日本视频在线| videos熟女内射| 91老司机精品| 国产福利在线免费观看视频| 三上悠亚av全集在线观看| 国产亚洲午夜精品一区二区久久| 久久久久久久久久久免费av| 亚洲精品第二区| 女人精品久久久久毛片| 99re6热这里在线精品视频| 色婷婷久久久亚洲欧美| 国产欧美日韩综合在线一区二区| 日韩一区二区视频免费看| 99久久综合免费| 十八禁人妻一区二区| 亚洲少妇的诱惑av| av天堂久久9| 中文字幕人妻丝袜制服| 99热全是精品| 少妇被粗大猛烈的视频| 极品少妇高潮喷水抽搐| 亚洲精品日韩在线中文字幕| 国产成人免费观看mmmm| 午夜精品国产一区二区电影| 久久精品久久久久久噜噜老黄| 在线亚洲精品国产二区图片欧美| 一区二区av电影网| 亚洲国产毛片av蜜桃av| 激情五月婷婷亚洲| 国产探花极品一区二区| 日韩欧美精品免费久久| 交换朋友夫妻互换小说| 欧美亚洲日本最大视频资源| 精品一区二区免费观看| 一区福利在线观看| 啦啦啦中文免费视频观看日本| 免费观看av网站的网址| 老司机在亚洲福利影院| 亚洲天堂av无毛| 国产精品久久久av美女十八| 国产亚洲最大av| 午夜福利免费观看在线| 国产精品久久久久久精品电影小说| 国产精品一国产av| 日本91视频免费播放| 国产视频首页在线观看| 亚洲精品美女久久久久99蜜臀 | 黑人欧美特级aaaaaa片| 五月开心婷婷网| 日本欧美国产在线视频| 汤姆久久久久久久影院中文字幕| 国产精品一二三区在线看| 日本午夜av视频| 亚洲精品一区蜜桃| 色婷婷av一区二区三区视频| 欧美97在线视频| 久久久久人妻精品一区果冻| 老汉色av国产亚洲站长工具| 99久久99久久久精品蜜桃| 午夜福利网站1000一区二区三区| 韩国av在线不卡| 成人国产麻豆网| 国产免费又黄又爽又色| 成人18禁高潮啪啪吃奶动态图| 成人免费观看视频高清| 美国免费a级毛片| 最新的欧美精品一区二区| 国产一区有黄有色的免费视频| 91精品国产国语对白视频| av在线观看视频网站免费| av在线老鸭窝|