• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of κ-carra-Oligosaccharides with Microwave Assisted Acid Hydrolysis Method

    2015-04-05 08:20:56LIGuangshengZHAOXiaLVYoujingLIMiaomiaoandYUGuangli
    Journal of Ocean University of China 2015年2期

    LI Guangsheng, ZHAO Xia, LV Youjing, LI Miaomiao, and YU Guangli,

    1)Key Laboratory of Marine Drugs,Ministry of Education,Qingdao266003,P. R. China

    2)Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology,School of Medicine and Pharmacy,Ocean University of China,Qingdao266003,P. R. China

    Preparation of κ-carra-Oligosaccharides with Microwave Assisted Acid Hydrolysis Method

    LI Guangsheng1),2), ZHAO Xia1),2), LV Youjing1),2), LI Miaomiao1),2), and YU Guangli1),2),*

    1)Key Laboratory of Marine Drugs,Ministry of Education,Qingdao266003,P. R. China

    2)Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology,School of Medicine and Pharmacy,Ocean University of China,Qingdao266003,P. R. China

    A rapid method of microwave assisted acid hydrolysis was established to prepare κ-carra-oligosaccharides. The optimal hydrolysis condition was determined by an orthogonal test. The degree of polymerization (DP) of oligosaccharides was detected by high performance thin layer chromatography (HPTLC) and polyacrylamide gel electrophoresis (PAGE). Considering the results of HPTLC and PAGE, the optimum condition of microwave assisted acid hydrolysis was determined. The concentration of κ-carrageenan was 5 mg mL-1; the reaction solution was adjusted to pH 3 with diluted hydrochloric acid; the solution was hydrolyzed under microwave irradiation at 100 ℃ for 15min. Oligosaccharides were separated by a Superdex 30 column (2.6 cm × 90 cm) using AKTA Purifier UPC100 and detected with an online refractive index detector. Each fraction was characterized by electrospray ionization mass spectrometry (ESI-MS). The data showed that odd-numbered κ-carra-oligosaccharides with DP ranging from 3 to 21 could be obtained with this method, and the structures of the oligosaccharides were consistent with those obtained by traditional mild acid hydrolysis. The new method was more convenient, efficient and environment-friendly than traditional mild acid hydrolysis. Our results provided a useful reference for the preparation of oligosaccharides from other polysaccharides.

    κ-carrageenan; oligosaccharides; microwave degradation; acid hydrolysis

    1 Introduction

    Carrageenans are highly sulfated galactans isolated from marine red algae. They are consisted of linearly repeated modules of alternating 3-linked β-D-galactopyranose (β-Gal, unit G) and 4-linked α-D-galactopyranose (α-Gal, unit D) with unit D frequently occurred as the 3,6-anhydro form (anGal, unit A) (Yanget al., 2009). The main types of carrageenan are kappa (κ-), iota (ι-) and lambda (λ-) depending on the number and position of sulfate groups (Abadet al., 2009).

    Because of the superior gelling and high viscosity properties of the native carrageenan, their oligomers are often used. Many evidences have demonstrated that the molecular mass of sulfated polysaccharides was related to their biological activities. Oligomers of carrageenan have showed their promises as anti-herpetic and anti-oxidant (Carlucciet al., 1997; Sunet al., 2010; Yuanet al., 2005), anti-human immunodeficiency virus (HIV) (Yamadaet al., 2000), anti-virus (Wanget al., 2011; Yuet al., 2012) and anti-tumors (Huet al., 2006; Yuanet al., 2006).

    Oligomers of carrageenan can be obtained either byhydrolyzing carrageenan or synthesizing from monosaccharide. The first process is considered as the most competitive because a wide variety of oligomers can be obtained from one polymer; while the second is complicated and expensive, and only a low degree of polymerization (DP) oligomers can be produced (Courtois, 2009). Many depolymerization methods of carrageenan have been reported, including acid hydrolysis (Karlsson and Singh, 1999; Myslabodskiet al., 1996), enzymatic hydrolysis (Wu, 2012; Collenet al., 2009; Mouet al., 2003), hydrogen peroxide degradation (Sunet al., 2010) and irradiation degradation with gamma rays (Abadet al., 2009; Relleveet al., 2005). Recently, application of microwave irradiation techniques is attracting more and more attentions due to its effectiveness. It has been used in many fields of carbohydrate research, such as extraction (Rodriguez-Jassoet al., 2011), methylation (Singhet al., 2003), degradation (Singhet al., 2006; Yuet al., 1996) of polysaccharides, and desulfation of sulfated polysaccharides (Navarroet al., 2007). Huet al. (2013) has reported the preparation of guluronic acid oligosaccharides by using microwave irradiation. This method is not only convenient, less time consuming, but also environment-friendly. However, the preparation of κ-carra-oligosaccharides using microwave has not been reported.

    The purpose of this study is to establish an efficientand convenient method of preparing a series of different κ-carra-oligosaccharides and determine their structures by electrospray mass spectrometry (ESI-MS).

    2 Experiments

    2.1 Materials

    κ-carraheptaose was prepared by the Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology. Galactose (Gal) was purchased from Sigma (USA).

    2.2 Optimization of Microwave-Assisted Acid Hydrolysis of κ-carrageenan

    κ-carrageenan was purified by the KCl classification method (Smith and Cook, 1953). The purified κ-carrageenan was dissolved in water and adjusted to pH 2 to 4 with diluted hydrochloric acid. Then an orthogonal L9(3)4test design was used to optimize the hydrolysis condition based on the results of the single-factor experiment. Nine groups of different experiments were carried out under the specific experimental conditions (Table 1) for the depolymerization of κ-carrageenan, and the reaction volume was 2 mL. The parameters of the microwave oven (MARS, CEM Corporation, USA) were listed in Table 2.

    Table 1 Orthogonal experiments of degradation of κ-carrageenan

    Table 2 The setting parameters of the microwave oven

    2.3 High Performance Thin Layer Chromatography (HPTLC) Analysis

    The degraded κ-carrageenan oligosaccharides (KCO) were checked on a silica gel HPTLC plate (Merck corporation, Germany) (Zhanget al., 2006), developed in a solvent system of n-butanol/formic acid/water (4:6:1) and Gal was used as a standard. The developed plate was stained by dipping in a reagent containing 1 mL of 37.5% HCl, 2 mL of aniline, 10 mL of 85% H3PO4, 200 mL of acetone and 2 g diphenylamine, and then heated at 100℃ for 5 min.

    2.4 Polyacrylamide Gel Electrophoresis (PAGE) Analysis

    PAGE was used to analyze the DP of KCO (DP 〉 7), which could not be well detected by HPTLC. An equal volume of each sample (5 μL) was combined with one volume of 50% sucrose, and the mixture was loaded onto a stacking gel of 5% (total acrylamide) and fractionated on a 22% resolving gel. Electrophoresis was performed on the model 3000Xi computer controlled electrophoresis (Bio-Rad, USA) at 100 V for 10 min for stacking gel and 200 V for 120 min for 22% resolving gel. The gel was fixed and stained with Alcian Blue in 2% acetic acid. The gel was scanned, digitized, and analyzed by the software Quantity One 4.6.2 software (Bio-Rad, USA).

    2.5 Separation of κ-carrageenan Oligosaccharides

    KCO (0.5 g) prepared by microwave-assisted acid hydrolysis under the optimum condition was dissolved in 10 mL of 0.1 mol L-1NH4HCO3and applied on a Superdex 30 column (2.6 × 90 cm) using an AKTA Purifier UPC100 (GE, USA) equipped with an online refractive index detector (Shodex R101, Japan). The column was eluted with 0.1 mol L-1NH4HCO3at a flow rate of 0.5 mL min-1, and each fraction (3 mL per tube) was collected using a fraction collector.

    2.6 ESI-MS Analysis

    Negative-ionization mode electrospray mass spectroscopy on Micromass Q-Tof Ultima instruments (Waters, Manchester, UK) was performed for the molecular mass analysis of each oligosaccharide. The sample was dissolved in 50% acetonitrile and injected in a 5 μL loop and delivered to the electrospray source using a syringe pump at a flow rate of 5 μL min-1. The nitrogen gas was used as nebulizing and desolvation gas at 4.2 kg cm-2and kept at 250℃.

    3 Results and Discussion

    3.1 HPTLC Analysis of the Orthogonal Test

    In order to obtain the optimal condition of microwave-assisted acid hydrolysis κ-carrageenan, an orthogonal L9(3)4test was used. The KCO obtained under different hydrolysis conditions were analyzed by HPTLC (Fig.1). Gal (lane G) and κ-carraheptaose (lane 10) were used as standards. Lanes 1-9 were the different orthogonal experiments, respectively. Nearly no oligosaccharide (DP 〈 7) was prepared under the condition of experiments 2 and 3, and no oligosaccharide larger than DP 7 was prepared in experiments 4, 7 and 8. Lanes 1, 5, 6 and 9 showed that a series of oligosaccharides can be obtained in experiments 1, 5, 6 and 9, respectively. However, only the oligosaccharides with DP less than 7 can be well separated on the plate due to the low resolution of TLC. The higher resolution of κ-carrageenanoligosaccharides with DP 〉 7 need PAGE technique.

    Fig.1 HPTLC analysis of the orthogonal test. Lane G, Gal; Lanes 1-9, samples from the nine orthogonal L9(3)4experiments; Lane 10, κ-carraheptaose.

    3.2 PAGE Analysis of the Orthogonal Test

    Because of the low resolution of TLC, PAGE was used subsequently to detect oligosaccharides with DP 〉 5 (Fig.2). A κ-carraheptaose (lane 10) was used as standard. Lanes 1-9 were bands for samples from the different orthogonal test, respectively. The result was basically in accordance with that in HPTLC. Nearly no band was observed in experiments 4, 7 and 8, because the oligosaccharides obtained in these experiments were too small to stain with Alcian Blue. The KCO in experiments 1 and 5 between DP 5 and 21 (Fig.3, the peaks were marked as K5 to K21) was showed up. The gel was scanned and analyzed using Quantity One 4.6.2 software, it showed that the mount of oligosaccharides obtained in experiment 5 was larger than that in experiment 1 (Fig.3). Oligosaccharides could also be prepared under the condition in experiments 2, 3, 6 and 9, however, a lot of polysaccharides were left. It means the yield of oligosaccharides in these experiments was lower than that in experiments 1 and 5.

    Considering the results of HPTLC and PAGE, the optimum condition of microwave assisted acid hydrolysis of κ-carrageenan was in test 1 (90℃, pH 2, 5 min, 5 mg mL-1) or test 5 (100℃, pH 3, 15 min, 5 mg mL-1). The condition in test 5 (100℃, pH 3, 15 min, 5 mg mL-1) was chosen as the optimum one, because less salt was produced in the hydrolysis procedure for the relative higher pH value and more oligosaccharides could be obtained.

    Fig.2 PAGE analysis result of the orthogonal test. Lanes 1-9, samples from the nine orthogonal L9(3)4experiments; Lane 10, κ-carraheptaose.

    Fig.3 Grey integral analysis of experiments 1 and 5 in PAGE by Quantity One 4.6.2 software.

    3.3 Separation of KCO

    The KCO mixture was separated by size exclusion chromatography on a preparative Superdex 30 column. The 0.1 mol L-1NH4HCO3was used as elution solvent due to its good volatility, and it was easy to remove from KCO by rotary evaporation and lyophilization. The preparative Superdex 30 column gave a satisfactory resolution of KCO from DP 3 to 21. Ten major oligosaccharide fractions were marked as K3 to K21 (Fig.4) based on refractive index detector.

    Fig.4 Separation graph of KCO on a Superdex 30 column (2.6 cm × 90 cm). Elution was performed with 0.1 mol L-1NH4HCO3at a flow rate of 0.5 mL min-1and detected by an online refractive index detector. K3-K21 indicated the fractions with degree of polymerization from 3 to 21.

    3.4 ESI-MS Analysis of KCO

    The main ions observed in the ESI-MS spectra of K3-K13 were listed in Table 3, and the DPs of KCO were determined by the molecular mass of each fraction. The ESI-MS spectra of K9 and K11 were shown in Fig.5. Taking K9 as an example, the ions at m/z 359.84 and 455.55 were corresponding to the five charged ion [M-5H]5-and the four charged ion [M-5H+Na]4-, respectively. So the molecular mass of K9 was calculated as 1804.20 Da (DP = 9). These results indicated that the oligosaccharides obtained by this method were oddnumbered, which was consistent with the oligosaccharides produced with the mild acid hydrolysis method (Yanget al., 2009; Yuet al., 2002; Yuet al., 2006).

    In this study, a rapid degradation method of κ-carrageenan was established by microwave assisted acid hydrolysis. The optimum hydrolysis condition was obtained by an orthogonal test, and the results were analyzed by HPTLC, PAGE and ESI-MS. The optimum hydrolysis condition was 100℃ 15 min, pH 3 and 5 mg mL-1ofκ-carrageenan. Odd-numbered κ-carra-oligosaccharides of DP from 3 to 21 were obtained by using this method, and the structures of the oligosaccharides were consistent with the oligosaccharides obtained by acid hydrolysis. This method was more convenient and rapid, and the reaction time was only 15 min, which was significantly shorter than that of traditional mild acid hydrolysis (90 min) (Yanget al., 2009). Besides, the pH value (3) of the reaction solution was much higher than that in the mild acid hydrolysis (0.1 mol L-1H2SO4), producing less salt during the hydrolysis procedure, and this would be very convenient for the further research of carrageenan.

    Fig.5 Negative-ion ESI-MS spectra of κ-carra-oligosaccharides. A, K9; B, K11.

    4 Conclusions

    κ-carra-oligosaccharides can be prepared from κ-carrageenan with a microwave assisted acid hydrolysis method. The optimum hydrolysis condition was 5 mg mL-1of κ-carrageenan, pH 3 and 100℃ for 15 min. Odd-numbered κ-carra-oligosaccharides with degree of polymerization (DP) from 3 to 21 could be obtained with this method, and the structures of the oligosaccharides were consistent with those obtained with traditional mild acid hydrolysis.

    Acknowledgements

    This research was supported by the Special Fund for Marine Scientific Research in the Public Interest (201005024), NSFC-Shandong Joint Fund for Marine Science Research Centers (U1406402), Qingdao Science & Technology Project (11-2-2-1-hy), and National Science & Technology Support Program of China (2013BAB 01B02).

    Abad, L. V., Kudo, H., Saiki, S., Nagasawa, N., Tamada, M., Katsumura, Y., Aranilla, C. T., Relleve, L. S., and De La Rosa, A. M., 2009. Radiation degradation studies of carrageenans.Carbohydrate Polymers, 78 (1): 100-106.

    Carlucci, M. J., Pujol, C. A., Ciancia, M., Noseda, M. D., Matulewicz, M. C., Damonte, E. B., and Cerezo, A. S., 1997. Antiherpetic and anticoagulant properties of carrageenans from the red seaweedGigartina skottsbergiiand their cyclized derivatives: Correlation between structure and biological activity.International Journal of Biological Macromolecules, 20 (2): 97-105.

    Collen, P. N., Lemoine, M., Daniellou, R., Guegan, J. P., Paoletti, S., and Helbert, W., 2009. Enzymatic degradation of kappa-carrageenan in aqueous solution.Biomacromolecules, 10 (7): 1757-1767.

    Courtois, J., 2009. Oligosaccharides from land plants and algae:Production and applications in therapeutics and biotechnology.Current Opinion in Microbiology, 12 (3): 261-273.

    Hu, T., Li, C., Zhao, X., Li, G., Yu, G., and Guan, H., 2013. Preparation and characterization of guluronic acid oligosaccharides degraded by a rapid microwave irradiation method.Carbohydrate Research, 373: 53-58.

    Hu, X., Jiang, X., Aubree, E., Boulenguer, P., and Critchley, A. T., 2006. Preparation andin vivoantitumor activity of κ-carrageenan oligosaccharides.Pharmaceutical Biology, 44 (9):646-650.

    Karlsson, A., and Singh, S. K., 1999. Acid hydrolysis of sulphated polysaccharides. Desulphation and the effect on molecular mass.Carbohydrate Polymers, 38 (1): 7-15.

    Mou, H. J., Jiang, X. L., and Guan, H. S., 2003. A κ-carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity.Journal of Applied Phycology, 15 (4): 297-303.

    Myslabodski, D. E., Stancioff, D., and Heckert, R. A., 1996. Effect of acid hydrolysis on the molecular weight of kappa carrageenan by GPC-LS.Carbohydrate Polymers, 31 (1-2):83-92.

    Navarro, D. A., Flores, M. L., and Stortz, C. A., 2007. Microwave-assisted desulfation of sulfated polysaccharides.Carbohydrate Polymers, 69 (4): 742-747.

    Relleve, L., Nagasawa, N., Luan, L. Q., Yagi, T., Aranilla, C., Abad, L., Kume, T., Yoshii, F., and Dela Rosa, A., 2005. Degradation of carrageenan by radiation.Polymer Degrada-tion and Stability, 87 (3): 403-410.

    Rodriguez-Jasso, R. M., Mussatto, S. I., Pastrana, L., Aguilar, C. N., and Teixeira, J. A., 2011. Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed.Carbohydrate Polymers, 86 (3): 1137-1144.

    Singh, V., Tiwari, A., Kumari, P., and Tiwari, S., 2006. Microwave-promoted hydrolysis of plant seed gums on alumina support.Carbohydrate Research, 341 (13): 2270-2274.

    Singh, V., Tiwari, A., Tripathi, D. N., and Malviya, T., 2003. Microwave promoted methylation of plant polysaccharides.Tetrahedron Letters, 44 (39): 7295-7297.

    Smith, D. B., and Cook, W. H., 1953. Fractionation of carrageenin.Archives of Biochemistry and Biophysics, 45 (1): 232-233.

    Sun, T., Tao, H., Xie, J., Zhang, S., and Xu, X., 2010. Degradation and antioxidant activity of k-carrageenans.Journal of Applied Polymer Science, 117 (1): 194-199.

    Wang, W., Zhang, P., Hao, C., Zhang, X. E., Cui, Z. Q., and Guan, H. S., 2011.In vitroinhibitory effect of carrageenan oligosaccharide on influenza A H1N1 virus.Antiviral Research, 92 (2): 237-246.

    Wu, S., 2012. Degradation of κ-carrageenan by hydrolysis with commercial α-amylase.Carbohydrate Polymers, 89 (2): 394-396.

    Yamada, T., Ogamo, A., Saito, T., Uchiyama, H., and Nakagawa, Y., 2000. Preparation of O-acylated low-molecularweight carrageenans with potent anti-HIV activity and low anticoagulant effect.Carbohydrate Polymers, 41 (2): 115-120.

    Yang, B., Yu, G., Zhao, X., Jiao, G., Ren, S., and Chai, W., 2009. Mechanism of mild acid hydrolysis of galactan polysaccharides with highly ordered disaccharide repeats leading to a complete series of exclusively odd-numbered oligosaccharides.FEBS Journal, 276 (7): 2125-2137.

    Yu, G., Guan, H., Ioanoviciu, A. S., Sikkander, S. A., Thanawiroon, C., Tobacman, J. K., Toida, T., and Linhardt, R. J., 2002. Structural studies on kappa-carrageenan derived oligosaccharides.Carbohydrate Research, 337 (5): 433-440.

    Yu, G., Li, M., Wang, W., Liu, X., Zhao, X., Lv, Y., Li, G., Jiao, G., and Zhao, X., 2012. Structure and anti-influenza A (H1N1) virus activity of three polysaccharides fromEucheuma denticulatum.Journal of Ocean University of China, 11 (4): 527-532.

    Yu, G., Zhao, X., Yang, B., Ren, S., Guan, H., Zhang, Y., Lawson, A. M., and Chai, W., 2006. Sequence determination of sulfated carrageenan-derived oligosaccharides by high-sensitivity negative-ion electrospray tandem mass spectrometry.Analytical Chemistry, 78 (24): 8499-8505.

    Yu, H., Chen, S., Suree, P., Nuansri, R., and Wang, K., 1996. Effect of microwave irradiation on acid-catalyzed hydrolysis of starch.The Journal of Organic Chemistry, 61 (26): 9608-9609.

    Yuan, H., Song, J., Li, X., Li, N., and Dai, J., 2006. Immunomodulation and antitumor activity of kappa-carrageenan oligosaccharides.Cancer Letters, 243 (2): 228-234.

    Yuan, H., Zhang, W., Li, X., Lu, X., Li, N., Gao, X., and Song, J., 2005. Preparation andin vitroantioxidant activity of kappa-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives.Carbohydrate Research, 340 (4): 685-692.

    Zhang, Z., Yu, G., Zhao, X., Liu, H., Guan, H., Lawson, A. M., and Chai, W., 2006. Sequence analysis of alginate-derived oligosaccharides by negative-ion electrospray tandem mass spectrometry.Journal of the American Society for Mass Spectrometry, 17 (4): 621-630.

    (Edited by Qiu Yantao)

    (Received May 29, 2013; revised August 9, 2013; accepted December 23, 2014)

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2015

    * Corresponding author. Tel: 0086-532-82031609 E-mail: glyu@ouc.edu.cn

    成人免费观看视频高清| 18禁动态无遮挡网站| 2021少妇久久久久久久久久久| 三上悠亚av全集在线观看| 亚洲三级黄色毛片| 亚洲成人av在线免费| 中文字幕人妻熟女乱码| 久久国产亚洲av麻豆专区| 亚洲av综合色区一区| 秋霞伦理黄片| 寂寞人妻少妇视频99o| 亚洲国产av影院在线观看| 狂野欧美激情性xxxx在线观看| 高清不卡的av网站| 好男人视频免费观看在线| 大片电影免费在线观看免费| 最黄视频免费看| 九色成人免费人妻av| 一本久久精品| 黑人巨大精品欧美一区二区蜜桃 | 亚洲综合色网址| 性色avwww在线观看| 久久人人97超碰香蕉20202| 欧美人与善性xxx| 最新的欧美精品一区二区| 一边亲一边摸免费视频| 亚洲五月色婷婷综合| 在线观看免费视频网站a站| av.在线天堂| 日韩精品有码人妻一区| 9191精品国产免费久久| 午夜福利视频在线观看免费| 国产熟女欧美一区二区| 一级毛片 在线播放| 男男h啪啪无遮挡| 纯流量卡能插随身wifi吗| 99国产精品免费福利视频| 欧美亚洲 丝袜 人妻 在线| 97在线视频观看| 欧美 亚洲 国产 日韩一| 涩涩av久久男人的天堂| 国产成人精品久久久久久| 亚洲一级一片aⅴ在线观看| 国产免费一区二区三区四区乱码| 亚洲图色成人| 国产精品一区二区在线观看99| 日韩伦理黄色片| av国产精品久久久久影院| 久久精品久久久久久久性| 蜜桃在线观看..| 美女大奶头黄色视频| 国产国拍精品亚洲av在线观看| 老司机影院成人| 国产又爽黄色视频| 一级,二级,三级黄色视频| 久久久精品94久久精品| 韩国高清视频一区二区三区| 国产一区二区三区综合在线观看 | 丁香六月天网| 中文字幕人妻丝袜制服| av片东京热男人的天堂| 春色校园在线视频观看| 午夜福利乱码中文字幕| 2022亚洲国产成人精品| 91在线精品国自产拍蜜月| 国产精品久久久久久精品古装| 人妻一区二区av| av播播在线观看一区| 免费大片18禁| 精品一区二区三区视频在线| 在线 av 中文字幕| 毛片一级片免费看久久久久| 欧美精品av麻豆av| 人人澡人人妻人| 搡老乐熟女国产| 欧美另类一区| 久久ye,这里只有精品| 欧美性感艳星| 观看美女的网站| 日日摸夜夜添夜夜爱| 午夜91福利影院| 精品久久久精品久久久| 亚洲,欧美,日韩| 久久久久久久久久久免费av| 免费高清在线观看日韩| 精品人妻偷拍中文字幕| 国产熟女午夜一区二区三区| 久久久国产一区二区| 最近中文字幕高清免费大全6| 2021少妇久久久久久久久久久| 久久精品久久久久久久性| 国产精品久久久av美女十八| 热99久久久久精品小说推荐| 亚洲国产日韩一区二区| 黑人高潮一二区| 亚洲av免费高清在线观看| 国产日韩欧美在线精品| av在线观看视频网站免费| 国产亚洲最大av| 黄网站色视频无遮挡免费观看| 人妻一区二区av| 日本色播在线视频| 高清欧美精品videossex| 国产日韩欧美在线精品| 免费人妻精品一区二区三区视频| 亚洲欧美日韩卡通动漫| 亚洲国产毛片av蜜桃av| 久久免费观看电影| 亚洲 欧美一区二区三区| 精品99又大又爽又粗少妇毛片| 精品人妻熟女毛片av久久网站| 欧美日韩精品成人综合77777| 国产1区2区3区精品| 久久精品国产鲁丝片午夜精品| 九九在线视频观看精品| 亚洲精品国产色婷婷电影| 99热这里只有是精品在线观看| 久久久久精品人妻al黑| 亚洲成国产人片在线观看| 欧美日韩av久久| 中国美白少妇内射xxxbb| 日本av免费视频播放| 日日爽夜夜爽网站| 巨乳人妻的诱惑在线观看| 男的添女的下面高潮视频| 亚洲欧洲精品一区二区精品久久久 | 久久av网站| 观看av在线不卡| 18禁在线无遮挡免费观看视频| 久久久国产欧美日韩av| 久久99精品国语久久久| 亚洲色图综合在线观看| 欧美97在线视频| 日韩av在线免费看完整版不卡| 两个人看的免费小视频| 精品人妻一区二区三区麻豆| av在线观看视频网站免费| 天堂8中文在线网| 国产成人aa在线观看| 亚洲av综合色区一区| 黄色 视频免费看| 高清在线视频一区二区三区| 国产av一区二区精品久久| 免费高清在线观看日韩| 国产精品成人在线| 日韩av免费高清视频| 99久久综合免费| 99热这里只有是精品在线观看| 国产色婷婷99| 国产精品.久久久| 汤姆久久久久久久影院中文字幕| 日本vs欧美在线观看视频| av天堂久久9| 少妇人妻精品综合一区二区| 久久精品人人爽人人爽视色| av一本久久久久| 亚洲精品456在线播放app| 99精国产麻豆久久婷婷| 狂野欧美激情性xxxx在线观看| 18禁动态无遮挡网站| 一级毛片黄色毛片免费观看视频| 国产日韩一区二区三区精品不卡| 在线观看人妻少妇| 国产一区二区三区av在线| 亚洲成人手机| 欧美变态另类bdsm刘玥| 美女主播在线视频| 欧美国产精品va在线观看不卡| 蜜桃在线观看..| 99热国产这里只有精品6| 亚洲四区av| 18+在线观看网站| 又大又黄又爽视频免费| 99热6这里只有精品| 国产在线免费精品| 亚洲内射少妇av| 在线观看www视频免费| www.av在线官网国产| av片东京热男人的天堂| 久久精品久久久久久久性| 久久久久久久久久人人人人人人| 国产视频首页在线观看| 日本91视频免费播放| 婷婷色麻豆天堂久久| 啦啦啦视频在线资源免费观看| tube8黄色片| 最新的欧美精品一区二区| 伦理电影免费视频| 久久精品久久精品一区二区三区| 一区二区三区四区激情视频| 五月天丁香电影| 精品人妻一区二区三区麻豆| 90打野战视频偷拍视频| 久久久久精品久久久久真实原创| 在线观看三级黄色| 综合色丁香网| 天天躁夜夜躁狠狠躁躁| 视频在线观看一区二区三区| 精品国产国语对白av| 午夜免费观看性视频| 99香蕉大伊视频| 日本欧美国产在线视频| av有码第一页| 搡老乐熟女国产| 精品亚洲乱码少妇综合久久| 街头女战士在线观看网站| 亚洲欧美清纯卡通| 亚洲中文av在线| 中文精品一卡2卡3卡4更新| 欧美3d第一页| 你懂的网址亚洲精品在线观看| 亚洲国产精品一区三区| 国产一区有黄有色的免费视频| 免费人妻精品一区二区三区视频| 美女国产高潮福利片在线看| 免费av不卡在线播放| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品乱久久久久久| 久久久久久人妻| 国产免费一级a男人的天堂| av在线播放精品| 成人综合一区亚洲| 久久精品久久久久久噜噜老黄| 中文乱码字字幕精品一区二区三区| 在线精品无人区一区二区三| 男女边吃奶边做爰视频| 老女人水多毛片| 国产精品成人在线| 日韩 亚洲 欧美在线| 成人免费观看视频高清| 午夜免费鲁丝| 考比视频在线观看| 亚洲精品色激情综合| 欧美 日韩 精品 国产| 大话2 男鬼变身卡| 丰满少妇做爰视频| 久久久久国产网址| 国产日韩一区二区三区精品不卡| 在线观看免费视频网站a站| 亚洲国产av新网站| 啦啦啦啦在线视频资源| 永久免费av网站大全| 久久97久久精品| 久热这里只有精品99| 精品国产一区二区久久| 婷婷成人精品国产| 日韩av在线免费看完整版不卡| 最后的刺客免费高清国语| 18禁国产床啪视频网站| 2018国产大陆天天弄谢| 老女人水多毛片| 69精品国产乱码久久久| 国产亚洲一区二区精品| a级毛片在线看网站| 丰满少妇做爰视频| videosex国产| 日日爽夜夜爽网站| 91精品三级在线观看| 国产男人的电影天堂91| 亚洲图色成人| 国产欧美日韩综合在线一区二区| 久久久精品区二区三区| 亚洲av国产av综合av卡| 精品一区二区三区视频在线| 免费女性裸体啪啪无遮挡网站| av国产精品久久久久影院| 午夜视频国产福利| 精品久久蜜臀av无| 在线观看人妻少妇| av片东京热男人的天堂| 99久久人妻综合| 一区二区三区精品91| 国内精品宾馆在线| 亚洲成色77777| 欧美日韩视频高清一区二区三区二| 天天影视国产精品| 日日撸夜夜添| 亚洲美女搞黄在线观看| 日本午夜av视频| 黄色视频在线播放观看不卡| 国产免费一级a男人的天堂| 9191精品国产免费久久| videosex国产| 午夜福利视频精品| 亚洲国产日韩一区二区| 久久久久久久精品精品| 高清视频免费观看一区二区| 久久ye,这里只有精品| 国产免费又黄又爽又色| 中国三级夫妇交换| 久久精品国产鲁丝片午夜精品| 亚洲色图 男人天堂 中文字幕 | 黄色一级大片看看| 亚洲伊人久久精品综合| 一二三四中文在线观看免费高清| 国产亚洲一区二区精品| 亚洲欧美成人精品一区二区| 在线观看三级黄色| 国产高清三级在线| 国产精品国产三级国产av玫瑰| 中文字幕亚洲精品专区| 中文欧美无线码| 国产成人aa在线观看| 亚洲欧美一区二区三区黑人 | 国产在线一区二区三区精| 哪个播放器可以免费观看大片| 亚洲欧美一区二区三区国产| 一级片免费观看大全| 国产精品久久久久成人av| 国产精品一区二区在线观看99| 久久青草综合色| 尾随美女入室| 黄片播放在线免费| 国产毛片在线视频| 国产亚洲最大av| 国产淫语在线视频| 一级a做视频免费观看| 精品亚洲成a人片在线观看| 欧美日韩精品成人综合77777| 久久精品久久久久久久性| 亚洲精品乱码久久久久久按摩| 99久久精品国产国产毛片| 免费高清在线观看日韩| 午夜91福利影院| 伦理电影大哥的女人| 国产成人av激情在线播放| 18+在线观看网站| 国产精品三级大全| 赤兔流量卡办理| 午夜激情久久久久久久| 免费人成在线观看视频色| av又黄又爽大尺度在线免费看| 久久精品国产鲁丝片午夜精品| 久久精品国产自在天天线| 性色av一级| 视频在线观看一区二区三区| 欧美成人午夜精品| 91国产中文字幕| 少妇 在线观看| 成人毛片60女人毛片免费| 99久国产av精品国产电影| 色网站视频免费| 国产精品久久久久久av不卡| 国产男女超爽视频在线观看| videossex国产| 久久女婷五月综合色啪小说| 99九九在线精品视频| 五月开心婷婷网| 中文字幕av电影在线播放| 高清视频免费观看一区二区| 久久99热这里只频精品6学生| 国产不卡av网站在线观看| 午夜久久久在线观看| 免费人成在线观看视频色| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲精品第一综合不卡 | 日韩精品免费视频一区二区三区 | 精品人妻一区二区三区麻豆| 成人国语在线视频| 亚洲国产毛片av蜜桃av| 国产国拍精品亚洲av在线观看| 欧美97在线视频| 亚洲综合色网址| 久久国产精品男人的天堂亚洲 | 久久亚洲国产成人精品v| 久久久精品94久久精品| 尾随美女入室| 一区二区三区四区激情视频| 国产精品一区二区在线观看99| 亚洲成人手机| 国产精品久久久久久久电影| 国内精品宾馆在线| 伊人亚洲综合成人网| 国产 精品1| 人成视频在线观看免费观看| 亚洲精品第二区| 18在线观看网站| 三级国产精品片| 只有这里有精品99| 欧美 日韩 精品 国产| 日韩中字成人| 丝瓜视频免费看黄片| 日韩精品有码人妻一区| 高清在线视频一区二区三区| 日韩中文字幕视频在线看片| 精品一区二区三卡| 国产精品欧美亚洲77777| 欧美变态另类bdsm刘玥| 青青草视频在线视频观看| 十八禁网站网址无遮挡| 丝袜美足系列| 欧美日韩一区二区视频在线观看视频在线| 中文乱码字字幕精品一区二区三区| 国产女主播在线喷水免费视频网站| 9热在线视频观看99| 久久久亚洲精品成人影院| 日韩 亚洲 欧美在线| 婷婷色麻豆天堂久久| 国产精品一二三区在线看| 国产在线免费精品| 美女内射精品一级片tv| 精品熟女少妇av免费看| 国产精品99久久99久久久不卡 | 亚洲av日韩在线播放| 亚洲欧美中文字幕日韩二区| 视频在线观看一区二区三区| 亚洲精品中文字幕在线视频| 最新中文字幕久久久久| 丝袜喷水一区| 亚洲综合色网址| 日韩欧美一区视频在线观看| 成人18禁高潮啪啪吃奶动态图| av视频免费观看在线观看| 极品人妻少妇av视频| 国产精品久久久久久精品古装| 在线看a的网站| 大片免费播放器 马上看| 久热这里只有精品99| 日本av免费视频播放| 国产在视频线精品| www.av在线官网国产| 国产精品三级大全| 亚洲国产成人一精品久久久| 免费观看av网站的网址| 精品少妇久久久久久888优播| 国产亚洲精品第一综合不卡 | 三级国产精品片| 熟女电影av网| 色视频在线一区二区三区| 成人综合一区亚洲| 免费播放大片免费观看视频在线观看| 下体分泌物呈黄色| 看免费成人av毛片| 久久综合国产亚洲精品| 国产成人一区二区在线| 亚洲成人手机| 久久99一区二区三区| 亚洲欧美日韩另类电影网站| 午夜av观看不卡| 免费黄网站久久成人精品| www.色视频.com| 午夜影院在线不卡| 国产视频首页在线观看| 欧美激情极品国产一区二区三区 | 亚洲激情五月婷婷啪啪| 免费看av在线观看网站| 亚洲国产精品专区欧美| 精品一品国产午夜福利视频| 美女xxoo啪啪120秒动态图| 精品酒店卫生间| 午夜91福利影院| 午夜福利网站1000一区二区三区| 51国产日韩欧美| 亚洲美女黄色视频免费看| 国产欧美日韩一区二区三区在线| 亚洲精品乱久久久久久| 亚洲精华国产精华液的使用体验| 两个人看的免费小视频| 久久久久久久久久成人| 亚洲成人手机| 边亲边吃奶的免费视频| 蜜桃国产av成人99| 亚洲伊人久久精品综合| 久热这里只有精品99| 日韩成人av中文字幕在线观看| 亚洲av电影在线进入| 国产免费一区二区三区四区乱码| av网站免费在线观看视频| 黄网站色视频无遮挡免费观看| 26uuu在线亚洲综合色| 国产精品麻豆人妻色哟哟久久| 一级毛片电影观看| 国产精品人妻久久久久久| 男女边吃奶边做爰视频| 久久精品熟女亚洲av麻豆精品| 少妇人妻久久综合中文| 另类精品久久| 大话2 男鬼变身卡| 日韩免费高清中文字幕av| 高清黄色对白视频在线免费看| 亚洲欧美日韩另类电影网站| 亚洲欧洲国产日韩| 成年动漫av网址| 天美传媒精品一区二区| 国产av码专区亚洲av| 狂野欧美激情性bbbbbb| 欧美人与性动交α欧美精品济南到 | 日韩 亚洲 欧美在线| 波多野结衣一区麻豆| 老女人水多毛片| 狂野欧美激情性xxxx在线观看| 亚洲中文av在线| 在线 av 中文字幕| 国产精品一国产av| 国产一级毛片在线| 欧美人与性动交α欧美精品济南到 | 大话2 男鬼变身卡| 亚洲成国产人片在线观看| 日日啪夜夜爽| 少妇人妻 视频| 黑人巨大精品欧美一区二区蜜桃 | 午夜影院在线不卡| 色哟哟·www| 97超碰精品成人国产| 国产精品女同一区二区软件| 日韩,欧美,国产一区二区三区| 国产精品久久久久久av不卡| 久久精品人人爽人人爽视色| 好男人视频免费观看在线| 国产欧美亚洲国产| 国产日韩一区二区三区精品不卡| 国产成人一区二区在线| 久久午夜综合久久蜜桃| 精品少妇黑人巨大在线播放| 国产成人免费无遮挡视频| 国产av码专区亚洲av| 丝袜脚勾引网站| 久久99蜜桃精品久久| 成年av动漫网址| 一本—道久久a久久精品蜜桃钙片| 天天影视国产精品| 激情五月婷婷亚洲| 国产探花极品一区二区| 男男h啪啪无遮挡| 美女脱内裤让男人舔精品视频| 99久久精品国产国产毛片| 亚洲欧美精品自产自拍| 国产精品久久久久久精品电影小说| 男的添女的下面高潮视频| 久久久久精品性色| 天天躁夜夜躁狠狠久久av| 亚洲人与动物交配视频| 国产精品无大码| 日日啪夜夜爽| 国产男女内射视频| 国产又色又爽无遮挡免| 在线观看美女被高潮喷水网站| 伦理电影大哥的女人| 午夜91福利影院| 99视频精品全部免费 在线| 成人无遮挡网站| 日本黄大片高清| 欧美日韩av久久| 亚洲一区二区三区欧美精品| 日韩一区二区三区影片| 亚洲色图 男人天堂 中文字幕 | 不卡视频在线观看欧美| 中国国产av一级| 亚洲成av片中文字幕在线观看 | 中文字幕人妻熟女乱码| 欧美 日韩 精品 国产| 少妇被粗大猛烈的视频| 国产欧美日韩一区二区三区在线| 久久久久精品久久久久真实原创| 亚洲图色成人| 菩萨蛮人人尽说江南好唐韦庄| 内地一区二区视频在线| 日韩不卡一区二区三区视频在线| 精品亚洲乱码少妇综合久久| 久久精品久久久久久噜噜老黄| 在线亚洲精品国产二区图片欧美| 观看av在线不卡| 乱人伦中国视频| 久久久久久伊人网av| 精品亚洲成国产av| 爱豆传媒免费全集在线观看| 秋霞伦理黄片| 美女xxoo啪啪120秒动态图| 精品酒店卫生间| 国语对白做爰xxxⅹ性视频网站| 欧美精品一区二区大全| 九九爱精品视频在线观看| 亚洲欧洲精品一区二区精品久久久 | 老司机影院成人| 久久精品久久久久久噜噜老黄| 日韩一区二区视频免费看| 国产成人a∨麻豆精品| 日产精品乱码卡一卡2卡三| 丁香六月天网| 久久精品久久精品一区二区三区| 母亲3免费完整高清在线观看 | 考比视频在线观看| 一区二区三区乱码不卡18| 国产 一区精品| 亚洲丝袜综合中文字幕| 丝袜美足系列| 中文欧美无线码| 国产淫语在线视频| 久久午夜福利片| 成人手机av| 国产精品麻豆人妻色哟哟久久| 亚洲精品av麻豆狂野| 亚洲av中文av极速乱| 亚洲国产毛片av蜜桃av| 啦啦啦视频在线资源免费观看| 午夜日本视频在线| 国产精品麻豆人妻色哟哟久久| 中文字幕av电影在线播放| 亚洲av国产av综合av卡| 国产成人精品一,二区| 美女福利国产在线| 日韩人妻精品一区2区三区| 精品亚洲成国产av| 亚洲,一卡二卡三卡| 丝袜人妻中文字幕| 国产xxxxx性猛交| 美女内射精品一级片tv| 国产精品无大码| 精品人妻在线不人妻| 国语对白做爰xxxⅹ性视频网站| 国产熟女午夜一区二区三区| 少妇的逼水好多| 国产精品久久久久成人av| 最新中文字幕久久久久| 国产伦理片在线播放av一区|