• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    液態(tài)金屬凝固過程原子團簇結(jié)構(gòu)表征的新方法

    2015-03-23 11:56:28侯兆陽劉讓蘇田澤安王晉國
    原子與分子物理學(xué)報 2015年2期
    關(guān)鍵詞:原子團金屬鈉湖南大學(xué)

    侯兆陽, 劉讓蘇, 田澤安, 王晉國

    (1.長安大學(xué)應(yīng)用物理系,西安 710064; 2. 湖南大學(xué)物理與微電子科學(xué)學(xué)院,長沙 410082)

    液態(tài)金屬凝固過程原子團簇結(jié)構(gòu)表征的新方法

    侯兆陽1, 劉讓蘇2, 田澤安2, 王晉國1

    (1.長安大學(xué)應(yīng)用物理系,西安 710064; 2. 湖南大學(xué)物理與微電子科學(xué)學(xué)院,長沙 410082)

    采用分子動力學(xué)方法對液態(tài)金屬鈉的凝固過程進行了模擬計算,運用團簇結(jié)構(gòu)表征新方法――團簇類型指數(shù)法(CTIM)對凝固過程中的團簇結(jié)構(gòu)進行了識別.為了闡明CTIM在識別團簇結(jié)構(gòu)上的準確性和效率,將其與廣為采用的Voronoi多面體方法(VPM)進行比較.結(jié)果表明:當采用CTIM和VPM分別對液態(tài)金屬鈉凝固結(jié)構(gòu)中的原子團簇結(jié)構(gòu)進行表征時,它們所得到的微觀結(jié)構(gòu)特征是一致的.非晶態(tài)結(jié)構(gòu)中,原子團簇類型的分布呈現(xiàn)明顯的區(qū)段特征,每一區(qū)段都存在一種主要團簇類型,它們分別是二十面體或其缺陷結(jié)構(gòu).晶體結(jié)構(gòu)中,體系形成以BCC團簇為主體的晶態(tài)結(jié)構(gòu).同時發(fā)現(xiàn),VPM不易區(qū)分不同團簇構(gòu)型之間的細微差別,不同構(gòu)型的原子團簇可能被歸為同種結(jié)構(gòu)類型;而CTIM根據(jù)近鄰原子之間相對位置關(guān)系,直接準確描述原子團簇的構(gòu)型.不但由CTIM分析獲得的凝固體系結(jié)構(gòu)特征與VPM的分析結(jié)果一致;而且CTIM抓住了體系微觀結(jié)構(gòu)特征的主要方面,簡化了團簇結(jié)構(gòu)的表征形式,這在大尺度模擬體系的結(jié)構(gòu)分析中將具有較高效率.

    原子團簇;結(jié)構(gòu)表征方法;分子動力學(xué);凝固結(jié)構(gòu)

    1 Introduction

    Atomic clusters are basic configurations in liquid metals, and their evolution properties play an important role in understanding the solidification mechanism[1,2]. At present, computer simulation methods have been widely used to investigate the microstructures during the solidification processes of liquids. However, only atom positions are recorded in the computer simulations, so the method of characterizing atomic clusters is of essential importance to study the solidification mechanism of liquid metals.

    Several methods have been proposed in the past to characterize atomic clusters in the solidification processes of liquids. Based on bond-orientational order parameters[3], ten Woldeetal.[4]proposed a method to identify individual atoms as either solid- or liquid-like, and then extended to solid- or liquid-like clusters. This method has gained increasing interests for its simple algorithm and high computational efficiency[5-7], but the detailed topology information of atomic clusters is absent, since the bond-orientational order parameters are statistical average quantities. There are alternative approaches to characterize atomic clusters based on the operation of graphs. One is the Voronoi polyhedron method (VPM), which was first used by Finney as early as 1970[8]. In this method, the configuration of an atomic cluster composed of a central atom along with its surrounding neighbor atoms is characterized by the shape of Voronoi polyhedron associated with the central atom. However, some vertices in the Voronoi polyhedron often split into small faces because of thermal fluctuations and rounding errors in computation, then the Voronoi polyhedron is distorted. Some approximate approaches[9-11]were adopted to eliminate the small faces, but these approximate treatments are not very reasonable since the small faces resulted from thermal vibrations may be comparable to the original ones. In addition, VPM is hard to describe the atomic clusters with larger size as the computational complexity. Another widely used method for cluster characterization is the Honeycutt and Andersen (HA) bond-type index method[12]. This method adopts a set of indices to describe the configuration of atomic cluster composed of a pair of atoms along with their common neighbor atoms. While the atomic clusters described by the HA bond-type index method usually contain no more than ten atoms[13]. In order to characterize the atomic clusters with larger size, we have proposed the cluster-type index method (CTIM)[14-16]based on the HA bond-type index method.

    The reliability and efficiency of structural characterization method of atomic clusters are believed to be a key issue to achieve reliable results in the investigation of solidification mechanism of liquids by computer simulations. Accordingly, in this paper, we present the cluster characterization method of CTIM[14-16]proposed by us in detail, and evaluate its reliability and efficiency by comparing it with the widely used VPM. To compare the structural features of atomic clusters obtained by the VPM and CTIM, respectively, the solidification processes of liquid metal Na are simulated since extensive researches have been carried out on it[17-19].

    2 Molecular dynamics simulation

    The solidification processes of liquid metal Na are simulated by the molecular dynamics (MD) method. MD simulations are performed for a system containing 1000 Na atoms in a cubic box with periodic boundary conditions under constant-pressure. The equations of motion are integrated by the leap-frog algorithm with a time step of 2 fs. The interatomic potential adopted here is the effective pair potential derived from the generalized non-local model pseudopotential (GNMP) based upon the first-principle interaction force in the second order perturbation theory[20, 21]. For simple metals and their alloys, the accuracy and reliability of this effective pair potential have been demonstrated extensively by computing their structural, dynamic and thermodynamics properties[20-23]. The pair potential is cut off at 20 a.u. (atomic unit).

    Simulation calculations are started at 973 K (the melting point Tmof Na is near 371 K). First of all, let the system run 20000 time steps at 973 K to obtain the equilibrium liquid determined by the energy changes of system. Then the Gaussian thermostatis adopted to decrease the system temperature to 73 K at two cooling rates of 1×1014K/s and 1×1011K/s. The intervals between two temperature points are 50 K. At each given temperature, the instantaneous spatial coordinates of each atom are recorded for the structural analyses below. Finally, the structural analyses are performed in terms of the radical distribution function (RDF), VPM, and CTIM.

    3 Cluster characterization methods

    3.1 VPM

    The Voronoi polyhedron associated with a given atom is defined as the smallest closed convex polyhedron consisting of the planes that perpendicularly bisect the coordination vectors from the atom to its neighbors[8]. The Voronoi polyhedron corresponds to the Wigner-Seitz cell in the crystalline state. It is customary to define the signature of a Voronoi polyhedron as a set of integers (n3n4n5…ni……), whereniis the number ofi-edged faces of the polyhedron. For example, (0 0 12 0) denotes a polyhedron composed of 12 pentagons, whose shape corresponds to the icosahedron cluster; while the atoms in bcc and fcc environments are associated with the (0 6 0 8) and (0 12 0 0) Voronoi polyhedra, respectively. Their schematic configurations under perfect conditions are shown in Fig. 1. As the thermal fluctuations in the realistic solidification system, Voronoi polyhedra would be distorted, as shown in Fig. 2.

    Fig. 1 Schematic configurations of (0 0 12 0), (0 6 0 8) and (0 12 0 0) Voronoi polyhedra under perfect conditions. The quadrangle, pentagon and hexagon faces are colored with cyan, white, and buff, respectively

    Fig. 2 Schematic configurations of (0 0 12 0) and (0 6 0 8) Voronoi polyhedra in present simulation system.The quadrangle, pentagon and hexagon faces are colored with cyan, white, and buff, respectively

    3.2 CTIM

    The HA bond-type index method[12]adopts a set of four integersijklto describe the configuration of an atomic cluster composed of a pair of atoms along with their common neighbor atoms. The first integeriis to identify the bonding of two given atoms.iis 1 when they are bonded in the root pair, otherwise 2. The second integerjis the number of near-neighbor atoms shared in common by the root pair. The third integerkis the number of bonds among the shared neighbors. The fourth integerlis needed to distinguish configurations having the same first three indices but being different bond geometries. In order to characterize atomic clusters with larger size, we have proposed the CTIM[14-16]based on the HA bond-type index. We define the basic cluster as the smallest cluster composed of one central atom along with its nearest-neighbor atoms, and the CTIM adopts four indices (N,n1,n2,n3) to denote different types of basic clusters, whereNis the number of the nearest-neighbor atoms, namely, the coordination number (CN), andn1,n2,n3denotes the numbers of 1441, 1551 and 1661 bond-types, respectively, by these bond-types the surrounding atoms are connected with the central one of the basic cluster. For example, the (12 0 12 0) denotes an icosahedron basic cluster that is composed of one central atom and 12 neighbor atoms (all of them form 1551 bond-type with the central atom); the (14 0 12 2) expresses a Frank-Kasper polyhedron basic cluster that is composed of one central atom and 14 neighbor atoms (twelve of them form 1551 bond-types with the central atom and two of them form 1661 bond-type with the central atom); the (14 6 0 8) stands for a bcc basic cluster (bcc crystal unit) composed of one central atom and 14 near neighbor atoms (six of them form 1441 bond-type with the central atom and eight of them form 1661 bond-type with the central atom), and so on. The schematics of these basic clusters are shown in Fig. 3.

    By means of CTIM, many kinds of basic clusters in liquid, amorphous as well as the bcc crystal can be represented effectively[14-15]. However, the familiar fcc crystal unit which is made up of twelve 1421 bond-types, and the hcp crystal unit which is made up of six 1421 and six 1422 bond-types, cannot be described clearly. In order to comprehensively describe crystal clusters (containing hcp and fcc basic clusters), two indices (namely, the fifth and sixth ones which respectively represent the numbers of 1421 and 1422 bond-types) are added to the CTIM. For convenience of discussion, the CTIM with six integers is called as CTIM-2. In CTIM-2, the icosahedron, bcc, fcc and hcp crystal units can be expressed in turn by (12 0 12 0 0 0), (14 6 0 8 0 0), (12 0 0 0 12 0) and (12 0 0 0 6 6), respectively. In the solidification processes of liquid Na, fcc and hcp basic clusters are very scarce, so we adopt the CTIM with four indices in this work for simplification.

    Fig. 3 Schematic configurations of (12 0 12 0), (14 0 12 2) and (14 6 0 8) basic clusters in present simulation system. The cyan, white, and yellow spheres denote 1441, 1551, and 1661 bond-types, respectively

    Based on the CTIM, extended clusters with large size can be described clearly, for details see Refs. [14,15]. As examples, Fig. 4(a) is a large cluster including 25 atoms combined by three basic clusters; while Fig. 4(b) contains 49 atoms combined by seven basic clusters.

    Fig. 4 Schematic configurations of two extended clusters. (Schematic configurations of central atoms at bottom right corner) (a) A large cluster including 25 atoms combined by three different basic clusters [one (13 3 6 4), one (14 1 10 3) and one (14 3 6 5) ]; (b) A large cluster including 49 atoms combined by seven basic clusters [two (13 3 6 4), one (13 4 4 5), two (13 5 2 6) , one (15 4 4 7) and one (15 5 2 8)]. The black spheres are the central atoms, and the white spheres are their surface atoms

    4 Results

    To verify the validity of our simulation methods, the RDF obtained in present simulations is compared with that of experimental results of Waseda[24]as shown in Fig. 5. It can be seen that the simulation RDF of liquid Na (573 K) are in agreement with the experimental results. This indicates that present simulations are rather successful in describing the physical nature of the system. Moreover, from the RDFs of the solidification solids (73 K) at different cooling rates (see Fig. 5), it can be found that the solidification solid with the cooling rate of 1×1014K/s displays amorphous feature, while distinct crystal characteristics are shown for that with the cooling rate of 1×1011K/s.

    Fig. 5 RDFs of liquid Na (573 K), its amorphous and crystal solids (73 K) at cooling rates of 1×1014 K/s and 1×1011 K/s, respectively. The experimental points at 573 K are taken from Ref.[24]

    To evaluate the feasibility of CTIM, atomic clusters in the same solidification solids are characterized by the VPM and CTIM, respectively. According to the VPM, the statistical numbers of various Voronoi polyhedra in the amorphous and crystal solids (73 K) can be obtained. A total of 134 different types of Voronoi polyhedra are detected in the amorphous structure, while only 24 types in the crystal structure. Among these Voronoi polyhedra, those only composed of quadrangle, pentagon and hexagon faces are dominated. Their total numbers amount to 87.7% of all Voronoi polyhedra in the amorphous solid, while 96.2% in the crystal solid. Thus we only show the statistical numbers of the Voronoi polyhedra composed of quadrangle, pentagon and hexagon faces in Fig. 6 for clearness. From Fig. 6(a), it can be found that when the different Voronoi polyhedra are arranged in turn according to the numbers of quadrangle, pentagon and hexagon faces, distributions of these polyhedra show six broad peaks at (0 0 12 0), (0 1 10 2), (0 2 8 2), (0 3 6 4), (0 4 4 6) and (0 5 2 6). The (0 0 12 0) Voronoi polyhedron corresponding to icosahedron cluster and its defective cases[25]with the (0 1 10 2), (0 2 8 2), (0 2 8 4), (0 3 6 4) signatures are favorable in the amorphous structure, and their total number reaches to 52.9% of all Voronoi polyhedra in the system. It should be noted that the fraction of (0 0 12 0) is not highest among them, even though it is often referred to as the typical configuration of amorphous structures[26,27]. The fraction of (0 6 0 8) signature which corresponds to the bcc crystal unit is very small, but its defective cases with (0 4 4 6) and (0 5 2 6) signatures[17]are abundant. From Fig. 6(b), it can be found that (0 6 0 8) Voronoi polyhedron is the characteristic cluster of crystal solid, and its fraction reaches 93.6% in the system.

    When the atomic clusters in amorphous and crystal solids (73 K) are characterized by the CTIM, the statistical numbers of various basic clusters are obtained, respectively, as shown in Fig. 7. From Fig. 7(a), it can be seen that when the different basis clusters are arranged in turn according to the numbers of 1441, 1551 and 1661 bond-types, distributions of these basic clusters show five broad peaks at (12 0 12 0), (13 1 10 2), (14 2 8 4), (13 3 6 4) and (14 4 4 6). The icosahedron basic cluster (12 0 12 0) and its defective cases (13 1 10 2), (14 1 10 3), (14 2 8 4), (13 3 6 4)[15]are favorable, and their total number occupies 54.4% of all basic clusters in the system. From Fig. 7(b), it can be found that the (14 6 0 8) basic cluster is the characteristic clusters of crystal solid, and its fraction reaches 98.8% in the system.

    Fig. 7 Number distributions of basic clusters in the solidification solids (73 K) of liquid Na. (a) Amorphous solid with the cooling rate of 1×1014 K/s, (b) Crystal solid with the cooling rate of 1×1011 K/s

    5 Discussion

    When we compare the structural features of atomic clusters in the same solidification solids obtained by the VPM and CTIM, respectively, it can be found that their results are consistent with each other. The distributions of atomic clusters in the amorphous structure characterized by the two different methods both display several broad peaks, and each peak corresponds to one favorable cluster type. The favorable cluster types both are icosahedron and its defective cases, described as the (0 0 12 0), (0 1 10 2), (0 2 8 2), (0 2 8 4) and (0 3 6 4) polyhedra in VPM, while the (12 0 12 0), (13 1 10 2), (14 2 8 4) and (13 3 6 4) basic clusters in CTIM. The dominated cluster type in the crystal structure characterized by the two different methods both is bcc crystal unit, described as the (0 6 0 8) polyhedra in VPM, while the (14 6 0 8) basic cluster in CTIM. This indicates the feasibility of CTIM.

    The favorable cluster types in solidification structures have similar representation signatures characterized by the VPM and CTIM. To make clear their relationships in topology, the configurations of the same atomic clusters characterized by the two methods are shown together in Fig. 8. It can be found that the VPM indirectly describes the cluster configurations by means of the shapes of Voronoi polyhedra associated with central atoms; while the CTIM directly describes the cluster configurations according to the position relations of neighbor atoms.

    Fig.8 Schematic configurations of atomic clusters characterized by VPM and CTIM together. (a) Icosahedron with central atom 327-numbered; (b) bcc crystal unit with central atom 200-numbered. The quadrangle, pentagon and hexagon faces of Voronoi polyhedra are colored with cyan, white, and buff, respectively; while these colors respectively denote 1551, 1441, and 1661 bond-types in CTIM

    The neighbor atoms which form 1441, 1551, and 1661 bond-types with central atoms, respectively, correspond to the quadrangle, pentagon and hexagon faces of Voronoi polyhedra. But the inverse is not always true. Namely, the quadrangle, pentagon and hexagon faces of Voronoi polyhedra do not always correspond to the 1441, 1551 and 1661 bond-types, respectively. For example, as shown in Fig. 9, the Voronoi polyhedron associated with the central atom 14-numbered has the (0 0 12 0) signature, reflecting the icosahedron local configuration. However, the neighbor atoms labeled 629 and 879 both form 1431 bond-types with the central atom and those labeled 402 and 879 both form 1543 bond-types, since the distances between 629- and 879-labeled atoms, between 402- and 879 -labeled atoms both are a little farther than the bonding length. Thus this atomic cluster constitutes eight 1551 bond-types, two 1543 bond-types, and two 1431 bond-types. It is not a canonical icosahedron characterized by CTIM. This means that the VPM is difficult to distinguish the small differences between cluster configurations just according to the statistical number of multi-edged faces, and different cluster configurations may be classified into the same type. While the CTIM directly describe the cluster configurations and can exactly present the relative position relations of neighbor atoms.

    Fig. 9 Structural configuration of an atomic cluster with central atom 14- numbered characterized by VPM and CTIM together

    In VPM, each atom in a system would correspond to a Voronoi polyhedron, and a complete set of these polyhedra form a Voronoi diagram. But the number of basic clusters characterized by CTIM in the amorphous sample is just 167, because not all cluster configurations meet its bonding conditions. It is interesting that though the CTIM only detects a few atomic clusters in the system, the structural features obtained by the two methods are the same. By further analyzing the cluster structures detected by CTIM, we find they are only part of the cluster configurations detected by VPM, in which the faces of Voronoi polyhedra are close to equilateral polygon. This indicates that though the CTIM can not detect all atomic clusters in a system, it still can exactly reflect the feature of microstructures. And it simplifies the representation format of atomic clusters by outstanding the principal ones. This would be efficient for larger-scale systems[28].

    Based on the CTIM, all atomic clusters around each atom in a system can also be detected by adjusting the bond-type in the indices (N,n1,n2,n3, …ni…)[29,30]. For example, all crystal phases of Mg-Zn alloy can be characterized by adding 1541, 1321, and 1431 bond-types to the CTIM-2, and distributions of the different phases during diffusion processes can be further detected.

    6 Conclusions

    An alternative method of CTIM for characterizing atomic clusters in the solidification processes of liquids is proposed by us. The feasibility of CTIM is clarified by comparing it with the widely used VPM.

    Our results show that when the atomic clusters in the solidification structures of liquid Na are characterized by the VPM and CTIM, respectively, their structural features are identical. The distributions of atomic clusters in the amorphous structure characterized by the two different methods both display several broad peaks, and each peak corresponds to one favorable cluster type. The favorable cluster types both are icosahedron and its defective cases, described as the (0 0 12 0), (0 1 10 2), (0 2 8 2), (0 2 8 4) and (0 3 6 4) polyhedra in VPM, while the (12 0 12 0), (13 1 10 2), (14 2 8 4) and (13 3 6 4) basic clusters in CTIM. The dominated cluster type in the crystal structure characterized by the two different methods both is bcc crystal unit, described as the (0 6 0 8) polyhedra in VPM, while the (14 6 0 8) basic cluster in CTIM.

    It is also found that the VPM indirectly describes cluster configurations by means of the shapes of Voronoi polyhedra associated with central atoms. The VPM is difficult to distinguish the small differences between cluster configurations. Atomic clusters with different configurations may be classified into the same type. The CTIM directly describes the cluster configurations according to the position relations of neighbor atoms. Though the CTIM just describes a part of cluster configurations satisfying certain bonding conditions in a system, the structural features obtained by it are consistent with the VPM. CTIM simplifies the representation format of atomic clusters by outstanding the principal ones. This is efficient for larger-scale systems.

    [1] Wang L, Bian X, Zhang J. Structural simulation of clusters in liquid Ni50Al50alloys[J].ModellingSimul.Mater.Sci.Eng., 2002, 10(3): 331.

    [2] Zhang J X, Li H, Zhang J,etal. Reverse Monte Carlo study on structural order in liquid and glassy Al-Fe alloys[J].Chin.Phys. B, 2009, 18(11): 4949.

    [3] Steinhardt P J, Nelson D R, Ronchetti M. Bond-orientational order in liquids and glasses[J].Phys.Rev. B, 1983, 28(2): 784.

    [4] Ten Wolde P R, Ruiz-Montero M J, Frenkel D. Numerical evidence for bcc ordering at the surface of a critical fcc nucleus[J].Phys.Rev.Lett., 1995, 75(14): 2714.

    [5] Gasser U, Weeks E R, Schofield A,etal. Real-space imaging of nucleation and growth in colloidal crystallization[J].Science, 2001, 292(5515): 258.

    [6] Kuhn P, Horbach J. Molecular dynamics simulation of crystal growth in Al50Ni50: The generation of defects[J].Phys.Rev. B, 2013, 87(1): 014105.

    [7] Yu D Q, Chen M, Yang H,etal. Structural evolution during crystal nucleation in supercooled liquids with icosahedral short-range order[J].Phil.Mag.Lett., 2009, 89(1): 44.

    [8] Finney J L. Random Packing and the structure of simple liquids[J].Proc.R.Soc.LondonSer. A, 1970, 319(10): 495.

    [9] Swope W C, Andersen H C. 106particle molecular-dynamics study of homogeneous nucleation of crystals in supercooled atomic liquid[J].Phys.Rev. B, 1990, 41(10): 7042.

    [10] Brostow W, Chybicki M, Laskowski R,etal. Voronoi polyhedra and Delaunay simplexes in the structural analysis of molecular-dynamics-simulated materials[J].Phys.Rev. B, 1998, 57(21): 13448.

    [11] Yu D Q, Chen M, Chen X J. Structure analysis methods for crystalline solids and supercooled liquids[J].Phys.Rev. B, 2005, 72(5): 051202.

    [12] Honeycutt J D, Andersen H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters[J].J.Phys.Chem., 1987, 91(19): 4950.

    [13] Tsuzuki H, Branicio P S, Rino J P. Characterization of deformed crystals by analysis of common atomic neighborhood[J].Comput.Phys.Commun., 2007, 177(6): 518.

    [14] Liu R S, Dong K J, Li J Y,etal. Formation and description of nano-clusters formed during rapid solidification processes in liquid metals[J].J.Non-Cryst.Solids, 2005, 351(6-7): 612.

    [15] Hou Z Y, Liu R S, Liu H R,etal. Formation mechanism of critical nucleus during nucleation process of liquid metal sodium[J].J.Chem.Phys., 2007, 127(17): 174503.

    [16] Liu H R, Liu R S, Zhang A L,etal. Formation and evolution characteristics of bcc phase during isothermal relaxation processes of supercooled liquid and amorphous metal Pb[J].Chin.Phys. B, 2011, 21(3): 588.

    [17] Watanabe M S, Tsumuraya K. Crystallization and glass formation processes in liquid sodium: A molecular dynamics study[J].J.Chem.Phys., 1987, 87(8): 4891.

    [18] Qi D W, Moore R A. Molecular dynamic simulations for crystallization of metallic liquids under different pressures[J].J.Chem.Phys., 1993, 99(11): 8948.

    [19] Walker B G, Marzari N, Molteni C. In-plane structure and ordering at liquid sodium surfaces and interfaces from ab initio molecular dynamics[J].J.Chem.Phys., 2007, 127(13): 134703.

    [20] Wang S, Lai S K. Structure and electrical resistivities of liquid binary alloys[J].J.Phys.F:Met.Phys., 1980, 10(12): 2717.

    [21] Li D H, Li X R, Wang S. Variational calculation of Helmholz free energies with applications to the sp-type liquid metals[J].J.Phys.F:Met.Phys., 1988, 16(3): 309.

    [22] Wu T M, Tsay S F. Instantaneous normal mode analysis of liquid Na[J].J.Chem.Phys., 1996, 105(20): 9281.

    [23] Jin Z H, Lu K, Gong Y D,etal. Glass transition and atomic structures in supercooled Ga0.15Zn0.15Mg0.7metallic liquids: A constant pressure molecular dynamics study[J].J.Chem.Phys., 1997, 106(21): 8830.

    [24] Waseda Y.Thestructureofnon-crystallinematerials[M]. New York: McGraw-Hill, 1980: 268.

    [25] Ma E, Cheng Y Q. Atomic-level structure and structure property relationship in metallic glasses[J].Prog.Mater.Sci., 2011, 56(4): 379.

    [26] Luo W K, Sheng H W, Alamgir F M,etal. Icosahedral short-range order in amorphous alloys[J].Phys.Rev.Lett., 2004, 92(14): 145502.

    [27] Yang L, Guo G Q. Preferred clusters in metallic glasses[J].Chin.Phys. B, 2010, 19(12): 126101.

    [28] Liu R S, Liu H R, Dong K J,etal. Simulation study of size distributions and magic number sequences of clusters during the solidification process in liquid metal Na[J].J.Non-Cry.Solids, 2009, 355(9): 541.

    [29] Tian Z A, Liu R S, Dong K J,etal. A new method for analyzing the local structures of disordered systems[J].EPL, 2011, 96(3): 36001.

    [30] Gao S, Wu Y Q, Shen T,etal. Analysis of Zn-Mg alloy structure and phases distribution of Zn-Mg diffusion system[J].ActaPhys.Chim.Sin., 2012, 28(09): 2037 (in Chinese)

    A new method for structural characterization of atomic clusters in solidification processes of liquid metals

    HOU Zhao-Yang1, LIU Rang-Su2, TIAN Ze-An2, WANG Jin-Guo1

    (1. Department of Applied Physics, Chang'an University, Xi'an 710064, China;2. School of Physics and Microelectronics Science, Hunan University, Changsha 410082, China )

    A molecular dynamics simulation has been performed on the solidification process of liquid Na, and the atomic clusters in the solidification process have been identified by means of a new characterization method -- cluster-type index method (CTIM) proposed by us. In order to evaluate the reliability and efficiency of CTIM, it is compared with the widely used Voronoi polyhedron method (VPM). Our results show that when the atomic clusters in the solidification structures of liquid Na are characterized by the VPM and CTIM, respectively, their structural features are identical. The distributions of atomic clusters in the amorphous structure characterized by the two different methods both display several broad peaks, and each peak corresponds to one favorable cluster type. The favorable cluster types both are icosahedron and its defective cases. The dominated cluster type in the crystal structure characterized by the two different methods both is bcc crystal unit. It is also found that the VPM is difficult to distinguish the small differences between cluster configurations according to the shapes of Voronoi polyhedra, and different cluster configurations may be classified into the same type. The CTIM directly describes cluster configurations according to the position relations of neighbor atoms. CTIM simplifies the representation format of atomic clusters by means of outstanding the principal ones. This will be efficient in the structural analysis of larger-scale simulation systems.

    Atomic cluster; Microstructure characterization method; Molecular dynamic simulation; Solidification

    103969/j.issn.1000-0364.2015.02.010

    2014-05-08

    國家自然科學(xué)基金(51101022, 50831003); 中央高?;究蒲袠I(yè)務(wù)費(CHD2012JC096)

    侯兆陽(1980—), 河南南陽人,副教授,博士,研究方向為液態(tài)金屬凝固理論.E-mail: zhaoyanghou@163.com

    O552.6

    A

    1000-0364(2015)02-0232-09

    猜你喜歡
    原子團金屬鈉湖南大學(xué)
    湖南中煙聯(lián)合湖南大學(xué)揭示植物維持代謝平衡的機制
    Ti3Al 合金凝固過程晶核形成及演變過程的模擬研究*
    PBL教學(xué)法在高中化學(xué)教學(xué)中的應(yīng)用*——以金屬鈉及其化合物為例
    云南化工(2021年8期)2021-12-21 06:38:02
    一種精確測量原子噴泉冷原子團溫度的方法*
    金屬鈉的性質(zhì)與考查方式賞析
    A Study on the Cohesion of English and ChineseBlessing Short Messages
    從水說起學(xué)化學(xué)之鹽
    烴的組成和性質(zhì)考點初探
    從水說起學(xué)化學(xué)之鹽
    Fe團簇在Fe(110)表面上擴散和結(jié)構(gòu)穩(wěn)定性的分子動力學(xué)研究
    亚洲人成网站在线观看播放| 深夜a级毛片| 国产成人一区二区在线| 免费黄网站久久成人精品| 日本一二三区视频观看| 大码成人一级视频| 中文欧美无线码| 欧美一级a爱片免费观看看| 大片免费播放器 马上看| 日韩精品有码人妻一区| 三级国产精品欧美在线观看| 交换朋友夫妻互换小说| 熟女电影av网| 黄色配什么色好看| 亚洲国产日韩一区二区| 国产探花极品一区二区| 国产一区二区三区综合在线观看 | 夜夜骑夜夜射夜夜干| 18禁裸乳无遮挡免费网站照片| 一级二级三级毛片免费看| 亚洲国产欧美在线一区| 久久精品国产自在天天线| av国产免费在线观看| 男人舔奶头视频| 欧美日韩一区二区视频在线观看视频在线| 久久亚洲国产成人精品v| 亚洲av成人精品一区久久| 国产v大片淫在线免费观看| 欧美精品亚洲一区二区| 王馨瑶露胸无遮挡在线观看| 综合色丁香网| 少妇被粗大猛烈的视频| 亚洲精品日韩av片在线观看| 久久久午夜欧美精品| 国内少妇人妻偷人精品xxx网站| 久久久久久久久久人人人人人人| 国产白丝娇喘喷水9色精品| 国产av一区二区精品久久 | 亚洲精华国产精华液的使用体验| 老师上课跳d突然被开到最大视频| 久久精品久久久久久久性| a 毛片基地| 国语对白做爰xxxⅹ性视频网站| 久久人人爽av亚洲精品天堂 | 久久久久久久大尺度免费视频| 我要看黄色一级片免费的| 中文精品一卡2卡3卡4更新| 国产成人91sexporn| 婷婷色综合大香蕉| 亚洲天堂av无毛| 91aial.com中文字幕在线观看| 这个男人来自地球电影免费观看 | 久久精品人妻少妇| www.av在线官网国产| av视频免费观看在线观看| 欧美极品一区二区三区四区| 少妇 在线观看| 成年人午夜在线观看视频| 啦啦啦视频在线资源免费观看| 好男人视频免费观看在线| 高清不卡的av网站| 王馨瑶露胸无遮挡在线观看| 免费观看性生交大片5| 在线观看免费高清a一片| 国产精品熟女久久久久浪| 最后的刺客免费高清国语| 亚洲婷婷狠狠爱综合网| 国产综合精华液| 色哟哟·www| 亚洲精品乱久久久久久| 九色成人免费人妻av| 国产成人精品婷婷| 精品午夜福利在线看| 日韩三级伦理在线观看| 日韩中文字幕视频在线看片 | 麻豆精品久久久久久蜜桃| 久久久久性生活片| 国产黄片视频在线免费观看| 国产视频首页在线观看| 最近中文字幕高清免费大全6| 少妇裸体淫交视频免费看高清| 视频中文字幕在线观看| 高清不卡的av网站| 最近中文字幕高清免费大全6| 国产免费视频播放在线视频| 国产免费一区二区三区四区乱码| 久久久久网色| 亚洲国产成人一精品久久久| 99热这里只有是精品50| 欧美一级a爱片免费观看看| 中文字幕久久专区| 午夜免费观看性视频| 亚洲,欧美,日韩| 久久久午夜欧美精品| 亚洲自偷自拍三级| 嫩草影院入口| 久久久色成人| 女性被躁到高潮视频| 国产精品久久久久成人av| 毛片女人毛片| 性色av一级| 国产 一区 欧美 日韩| 麻豆成人av视频| 全区人妻精品视频| 国产免费福利视频在线观看| 纵有疾风起免费观看全集完整版| 日韩欧美 国产精品| 久久久亚洲精品成人影院| 免费播放大片免费观看视频在线观看| 欧美精品国产亚洲| 国产男人的电影天堂91| 国产成人精品婷婷| 激情五月婷婷亚洲| 日韩欧美精品免费久久| 最近的中文字幕免费完整| 亚洲国产精品国产精品| 国产日韩欧美亚洲二区| 欧美成人午夜免费资源| 日本欧美视频一区| 一级毛片aaaaaa免费看小| 成人一区二区视频在线观看| 亚洲精华国产精华液的使用体验| 黑丝袜美女国产一区| 日韩伦理黄色片| 狂野欧美激情性xxxx在线观看| 国产片特级美女逼逼视频| 嘟嘟电影网在线观看| 极品少妇高潮喷水抽搐| h日本视频在线播放| 永久免费av网站大全| 日本色播在线视频| 欧美精品国产亚洲| 久久午夜福利片| 久久精品夜色国产| 国产欧美日韩一区二区三区在线 | 99久久精品一区二区三区| 亚洲第一av免费看| 亚洲无线观看免费| 亚洲第一区二区三区不卡| 久久热精品热| 亚洲欧洲国产日韩| 深爱激情五月婷婷| 亚洲国产最新在线播放| 亚洲精品中文字幕在线视频 | 国产成人免费无遮挡视频| 国产片特级美女逼逼视频| av线在线观看网站| 久久久精品免费免费高清| 国产伦在线观看视频一区| 国产男女超爽视频在线观看| 在线看a的网站| 日本与韩国留学比较| 99久久精品热视频| 欧美一区二区亚洲| 99久久精品国产国产毛片| 国产亚洲av片在线观看秒播厂| 免费大片黄手机在线观看| 日韩欧美 国产精品| 国产精品福利在线免费观看| 欧美日韩视频精品一区| 日韩伦理黄色片| 免费不卡的大黄色大毛片视频在线观看| 777米奇影视久久| 国产精品欧美亚洲77777| 午夜免费鲁丝| videossex国产| 亚洲国产色片| 狂野欧美白嫩少妇大欣赏| 香蕉精品网在线| 国产一区有黄有色的免费视频| 欧美日本视频| 插逼视频在线观看| 日韩人妻高清精品专区| 这个男人来自地球电影免费观看 | 身体一侧抽搐| 久久99蜜桃精品久久| 国产精品秋霞免费鲁丝片| 欧美国产精品一级二级三级 | 亚洲综合色惰| 五月伊人婷婷丁香| 26uuu在线亚洲综合色| 国产真实伦视频高清在线观看| 日日啪夜夜撸| 亚洲成人中文字幕在线播放| 日韩中字成人| 最近手机中文字幕大全| 亚洲综合精品二区| 免费黄色在线免费观看| 国产精品久久久久久久久免| 国产91av在线免费观看| tube8黄色片| 91狼人影院| 亚洲成色77777| 日韩一本色道免费dvd| 亚洲一级一片aⅴ在线观看| 校园人妻丝袜中文字幕| 我要看黄色一级片免费的| 久久99热6这里只有精品| 亚洲精品一区蜜桃| 国产在线男女| 免费看光身美女| 国产黄色免费在线视频| 午夜激情久久久久久久| 久久国内精品自在自线图片| 婷婷色av中文字幕| 超碰97精品在线观看| 99热全是精品| 99久国产av精品国产电影| 美女cb高潮喷水在线观看| 国模一区二区三区四区视频| 国产精品女同一区二区软件| 免费不卡的大黄色大毛片视频在线观看| 日本av免费视频播放| 久久久亚洲精品成人影院| 欧美xxⅹ黑人| 亚洲在久久综合| 亚洲国产毛片av蜜桃av| 免费看日本二区| 久久99热6这里只有精品| 日本一二三区视频观看| 精品少妇黑人巨大在线播放| a 毛片基地| 欧美日韩国产mv在线观看视频 | 国产精品久久久久成人av| 成年免费大片在线观看| 国产亚洲av片在线观看秒播厂| 国产午夜精品一二区理论片| 日韩,欧美,国产一区二区三区| 国产高清不卡午夜福利| 久久久亚洲精品成人影院| 26uuu在线亚洲综合色| 亚洲精品乱久久久久久| 一级毛片电影观看| 亚洲色图综合在线观看| 夜夜骑夜夜射夜夜干| 久久人人爽人人片av| 97在线人人人人妻| 免费看光身美女| av播播在线观看一区| 自拍欧美九色日韩亚洲蝌蚪91 | 一级毛片久久久久久久久女| 能在线免费看毛片的网站| 99热全是精品| 九九爱精品视频在线观看| 少妇的逼水好多| 美女脱内裤让男人舔精品视频| 国产精品无大码| 久久影院123| 毛片女人毛片| 精品人妻一区二区三区麻豆| www.av在线官网国产| 亚洲精品亚洲一区二区| 男女下面进入的视频免费午夜| 高清av免费在线| 午夜福利视频精品| 亚洲精品成人av观看孕妇| 老师上课跳d突然被开到最大视频| 国产高清不卡午夜福利| 国产一区二区三区av在线| 爱豆传媒免费全集在线观看| 国产精品一区二区在线不卡| 亚洲四区av| a级毛色黄片| 日韩电影二区| 五月开心婷婷网| 久久99精品国语久久久| 国国产精品蜜臀av免费| 成人无遮挡网站| 欧美 日韩 精品 国产| 亚洲久久久国产精品| 亚洲精品久久久久久婷婷小说| 少妇人妻 视频| 视频中文字幕在线观看| 老司机影院成人| 蜜桃久久精品国产亚洲av| 中国美白少妇内射xxxbb| 这个男人来自地球电影免费观看 | 国产一区二区三区av在线| 一级二级三级毛片免费看| 中文字幕制服av| 99精国产麻豆久久婷婷| 一级片'在线观看视频| 国产片特级美女逼逼视频| 一级毛片aaaaaa免费看小| 黑人猛操日本美女一级片| 各种免费的搞黄视频| 免费观看性生交大片5| 国产精品久久久久久精品古装| 久久毛片免费看一区二区三区| 人妻夜夜爽99麻豆av| 亚州av有码| 能在线免费看毛片的网站| videos熟女内射| 大陆偷拍与自拍| 男的添女的下面高潮视频| xxx大片免费视频| 亚洲欧美清纯卡通| 免费黄频网站在线观看国产| 两个人的视频大全免费| 亚洲欧美日韩卡通动漫| 日日啪夜夜爽| 天堂中文最新版在线下载| 欧美日韩精品成人综合77777| 久久韩国三级中文字幕| 啦啦啦啦在线视频资源| 99国产精品免费福利视频| 精品久久久久久久久亚洲| 精品久久久久久久久av| 成人无遮挡网站| 老熟女久久久| 老司机影院毛片| 草草在线视频免费看| 国产av国产精品国产| 麻豆精品久久久久久蜜桃| 亚洲,欧美,日韩| 久久精品国产自在天天线| 天美传媒精品一区二区| 插阴视频在线观看视频| 99久久人妻综合| 大香蕉久久网| 国产精品无大码| 91久久精品国产一区二区三区| 99久国产av精品国产电影| 丝瓜视频免费看黄片| 欧美+日韩+精品| 亚洲av国产av综合av卡| 精品午夜福利在线看| 99久久综合免费| 干丝袜人妻中文字幕| 久久这里有精品视频免费| 熟女电影av网| 亚洲国产av新网站| av国产精品久久久久影院| 亚洲精品第二区| 免费人成在线观看视频色| 免费观看av网站的网址| 国内揄拍国产精品人妻在线| 少妇裸体淫交视频免费看高清| 日韩 亚洲 欧美在线| 夜夜爽夜夜爽视频| 亚洲第一区二区三区不卡| 国产精品国产三级国产av玫瑰| 国产免费一区二区三区四区乱码| 欧美日韩亚洲高清精品| 久久精品国产亚洲av涩爱| 男女下面进入的视频免费午夜| 日韩欧美精品免费久久| 久热这里只有精品99| 国产永久视频网站| 国产亚洲最大av| 一级av片app| 亚洲经典国产精华液单| 一区二区av电影网| 日韩免费高清中文字幕av| 乱码一卡2卡4卡精品| 亚洲欧美精品自产自拍| 亚洲国产欧美在线一区| 亚洲av免费高清在线观看| 亚洲精品乱码久久久v下载方式| 在线精品无人区一区二区三 | 成人18禁高潮啪啪吃奶动态图 | 久久国产精品男人的天堂亚洲 | 国产高清不卡午夜福利| 亚洲av成人精品一二三区| 一本久久精品| 大又大粗又爽又黄少妇毛片口| 男女啪啪激烈高潮av片| 99九九线精品视频在线观看视频| 午夜激情福利司机影院| 国产毛片在线视频| 久久99蜜桃精品久久| 嫩草影院入口| 97在线人人人人妻| 一级毛片黄色毛片免费观看视频| www.色视频.com| 日韩欧美精品免费久久| 欧美老熟妇乱子伦牲交| 亚洲成人中文字幕在线播放| 免费观看性生交大片5| 高清在线视频一区二区三区| 免费大片黄手机在线观看| 国产精品av视频在线免费观看| av卡一久久| 国产大屁股一区二区在线视频| 交换朋友夫妻互换小说| 精品一区在线观看国产| 久久精品国产亚洲网站| 欧美日本视频| 91久久精品电影网| 精品一区在线观看国产| 亚洲美女搞黄在线观看| 美女脱内裤让男人舔精品视频| 大码成人一级视频| 黄色视频在线播放观看不卡| 免费看不卡的av| 欧美精品一区二区免费开放| 亚洲国产最新在线播放| a级一级毛片免费在线观看| 日韩一本色道免费dvd| 我要看日韩黄色一级片| 国产乱来视频区| 在线精品无人区一区二区三 | 99久久精品国产国产毛片| 大又大粗又爽又黄少妇毛片口| 国产爱豆传媒在线观看| 国产高清国产精品国产三级 | 欧美亚洲 丝袜 人妻 在线| 久久综合国产亚洲精品| 性色av一级| 人人妻人人看人人澡| 午夜日本视频在线| 国模一区二区三区四区视频| 极品少妇高潮喷水抽搐| 日本黄大片高清| 国产男女内射视频| 人妻系列 视频| 看十八女毛片水多多多| 色吧在线观看| 精品一区二区三区视频在线| 国产av一区二区精品久久 | 少妇的逼好多水| 国产中年淑女户外野战色| 不卡视频在线观看欧美| 亚洲av成人精品一二三区| 国产亚洲精品久久久com| 成人午夜精彩视频在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲色图综合在线观看| 久久久欧美国产精品| 一本色道久久久久久精品综合| 狂野欧美激情性bbbbbb| 高清黄色对白视频在线免费看 | 97精品久久久久久久久久精品| 人妻夜夜爽99麻豆av| 99久国产av精品国产电影| 精品国产露脸久久av麻豆| 精品久久久久久久末码| 国产欧美亚洲国产| 偷拍熟女少妇极品色| 18+在线观看网站| 国产男女内射视频| 亚洲av成人精品一区久久| 国产精品av视频在线免费观看| 国产精品国产三级国产专区5o| 欧美激情国产日韩精品一区| 国产亚洲91精品色在线| 国产精品久久久久久久久免| 99视频精品全部免费 在线| 国产精品欧美亚洲77777| 亚洲成人一二三区av| 插逼视频在线观看| 伦理电影免费视频| 日本欧美视频一区| 国产午夜精品久久久久久一区二区三区| 久久国产亚洲av麻豆专区| 交换朋友夫妻互换小说| 久久99热这里只有精品18| a 毛片基地| 国产在线视频一区二区| 欧美国产精品一级二级三级 | 51国产日韩欧美| 国产欧美亚洲国产| 97在线视频观看| 欧美xxxx性猛交bbbb| 制服丝袜香蕉在线| 国产成人免费无遮挡视频| 日韩在线高清观看一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 国产中年淑女户外野战色| 黑丝袜美女国产一区| av一本久久久久| 晚上一个人看的免费电影| 欧美三级亚洲精品| 中国国产av一级| 极品少妇高潮喷水抽搐| 国产精品偷伦视频观看了| 亚洲精品日本国产第一区| 日韩国内少妇激情av| 一本色道久久久久久精品综合| 国产亚洲一区二区精品| 亚洲av日韩在线播放| 久久 成人 亚洲| 日韩成人伦理影院| 亚洲熟女精品中文字幕| 国产精品一区www在线观看| 一个人看视频在线观看www免费| 国产成人免费观看mmmm| 老司机影院成人| www.av在线官网国产| 99九九线精品视频在线观看视频| 最近最新中文字幕大全电影3| 日产精品乱码卡一卡2卡三| 国产精品久久久久久精品电影小说 | 国产精品99久久99久久久不卡 | 岛国毛片在线播放| 成人18禁高潮啪啪吃奶动态图 | 欧美人与善性xxx| 久久久国产一区二区| 女的被弄到高潮叫床怎么办| 欧美精品一区二区大全| 欧美成人a在线观看| 久久久欧美国产精品| 国产男女内射视频| 国产 精品1| 久久女婷五月综合色啪小说| 成人特级av手机在线观看| 国产成人a区在线观看| 午夜福利在线在线| 精品久久久精品久久久| 久久av网站| 91久久精品国产一区二区三区| 99久久人妻综合| 婷婷色综合大香蕉| 2021少妇久久久久久久久久久| 精品少妇黑人巨大在线播放| 一级片'在线观看视频| 99久久人妻综合| 欧美日韩在线观看h| 久久久久网色| 亚洲国产高清在线一区二区三| 美女福利国产在线 | 亚洲av日韩在线播放| 亚洲va在线va天堂va国产| 网址你懂的国产日韩在线| 国产色爽女视频免费观看| 99热这里只有是精品50| 精华霜和精华液先用哪个| 免费看日本二区| 中文字幕av成人在线电影| 婷婷色综合www| 久久久久国产网址| 有码 亚洲区| 久久毛片免费看一区二区三区| 国产亚洲午夜精品一区二区久久| 国产深夜福利视频在线观看| 少妇丰满av| 在线免费观看不下载黄p国产| 日本黄大片高清| 国语对白做爰xxxⅹ性视频网站| 国产成人freesex在线| 天美传媒精品一区二区| 亚洲三级黄色毛片| 少妇丰满av| 国产精品伦人一区二区| 日产精品乱码卡一卡2卡三| 麻豆乱淫一区二区| 日本av免费视频播放| 99热6这里只有精品| 国内少妇人妻偷人精品xxx网站| 国产精品精品国产色婷婷| 亚洲精品国产av蜜桃| 国产精品无大码| 日韩一区二区三区影片| 国内少妇人妻偷人精品xxx网站| 国产人妻一区二区三区在| 大话2 男鬼变身卡| 亚洲精品国产av成人精品| 国产精品一区二区在线观看99| 一区二区三区四区激情视频| 在线播放无遮挡| 成人漫画全彩无遮挡| 日韩成人伦理影院| 激情 狠狠 欧美| 80岁老熟妇乱子伦牲交| 亚洲国产欧美人成| 欧美变态另类bdsm刘玥| 激情 狠狠 欧美| 成人高潮视频无遮挡免费网站| 日本爱情动作片www.在线观看| 亚洲丝袜综合中文字幕| 亚洲内射少妇av| 亚洲三级黄色毛片| 免费久久久久久久精品成人欧美视频 | 国产成人一区二区在线| 多毛熟女@视频| 国产欧美日韩精品一区二区| 又粗又硬又长又爽又黄的视频| 久久久久久久亚洲中文字幕| 爱豆传媒免费全集在线观看| 观看免费一级毛片| av免费在线看不卡| 最近最新中文字幕大全电影3| 精品久久久久久电影网| 亚洲精品国产av蜜桃| av国产免费在线观看| 中文字幕亚洲精品专区| 亚洲av成人精品一二三区| 内地一区二区视频在线| 少妇人妻 视频| 中文字幕人妻熟人妻熟丝袜美| 色吧在线观看| 在线观看人妻少妇| 亚洲自偷自拍三级| 精品久久久噜噜| 国产成人91sexporn| 亚洲精品一区蜜桃| 一区二区av电影网| 新久久久久国产一级毛片| 97超视频在线观看视频| 国产欧美日韩精品一区二区| 欧美少妇被猛烈插入视频| 午夜视频国产福利| 成人18禁高潮啪啪吃奶动态图 | 亚洲电影在线观看av| 日韩亚洲欧美综合| av网站免费在线观看视频| 亚洲国产精品成人久久小说| 久久久久久九九精品二区国产| 亚洲人与动物交配视频| 男人舔奶头视频| 成年免费大片在线观看| 亚洲欧美日韩无卡精品| 男人狂女人下面高潮的视频| 日本午夜av视频| 在线亚洲精品国产二区图片欧美 |