• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    電子碰撞激發(fā)氫原子和氦離子散射微分截面的計(jì)算

    2015-03-23 01:51:01賴(lài)卓勁陳德鋒潘霖慶蔣曉涵徐永亮陳長(zhǎng)進(jìn)
    關(guān)鍵詞:汕頭大學(xué)氫原子微分

    賴(lài)卓勁,陳德鋒,潘霖慶,蔣曉涵,徐永亮,陳長(zhǎng)進(jìn)

    (汕頭大學(xué)理學(xué)院,汕頭 515063)

    電子碰撞激發(fā)氫原子和氦離子散射微分截面的計(jì)算

    賴(lài)卓勁,陳德鋒,潘霖慶,蔣曉涵,徐永亮,陳長(zhǎng)進(jìn)

    (汕頭大學(xué)理學(xué)院,汕頭 515063)

    本文詳細(xì)介紹計(jì)算電子碰撞激發(fā)散射截面的扭曲波玻恩近似(DWBA)理論模型,并對(duì)低能DWBA模型進(jìn)行修正.利用修正的DWBA模型計(jì)算了電子碰撞激發(fā)氫原子和氦離子1s-2s 和1s-2p的散射微分截面.將關(guān)于氫原子由基態(tài)到n=2態(tài)的電子碰撞激發(fā)散射微分截面與絕對(duì)實(shí)驗(yàn)測(cè)量數(shù)據(jù)比較,發(fā)現(xiàn)二者符合得很好,這驗(yàn)證了我們對(duì)DWBA修正的正確性.本文工作為擬合強(qiáng)場(chǎng)誘導(dǎo)的氦原子非序列雙電離關(guān)聯(lián)電子動(dòng)量譜提供了有效的理論方法.

    電子碰撞激發(fā); 散射微分截面; 扭曲波玻恩近似

    1 Introduction

    The process of electron impact excitation of atoms and ions is one of the most basic and important processes in atomic physics. Theoretical investigations of such problems are of not only practical interest but also more fundamental interest. Numerous theoretical methods have been proposed for calculations of differential cross sections (DCSs) for electron impact excitation, including the distorted wave Born approximation (DWBA)[1,2], the second-order distorted wave model[3], the convergent close-coupling (CCC) calculations[4], and theR-matrix method[5], among which the DWBA is the simplest. The sophisticated theoretical models, such as the CCC and theR-matrix method, are supposed to be able to reproduce accurate DCS in angular distribution and absolute magnitude as well at low incident energies. On the other hand, for high energies, both the total cross sections (TCSs) and the DCSs predicted by DWBA are in fairly good agreement with the absolute measurements. However, it has been well recognized that, at low energies, the TCS predicted by the DWBA substantially overestimates the experimental values. "Ideally, one could use theR-matrix approach for low energies, the DWBA for high energies, and the two theories would yield the same results for intermediate energies. Unfortunately, we do not live in an ideal world."[6]

    The purpose of this work is to calibrate the DWBA for electron impact excitation of H and He+at low energies by employing the empirical formula proposed by Tongetal.[7]. This calibration procedure has been previously applied to correct the overestimate of DWBA on the DCS for electron impact excitation of Ne and Ar[8].

    Our ultimate objective is to apply the calibrated DWBA to simulate the correlated momentum distributions in nonsequential double ionization (NSDI) of He in strong laser fields[9,10].

    The process of NSDI is one of the laser-induced rescattering processes, which still remains one of the most interesting and challenging topics in strong field physics. Both electron impact ionization and electron impact excitation of ions could be involved in NSDI. In the last two decades a lot of experimental measurements have been performed, particularly noteworthy are the correlated momentum distributions of the two outgoing electrons which were measured at the turn of this century[11]. In the meantime, a number of theoretical efforts have been devoted to this problem as well. In one of the theoretical models, which was developed by Chenetal.[12,13], the correlated two-electron momentum spectra can be treated as a product of the wave packet for laser-induced returning electrons and the differential cross sections for the laser-free electron impact excitation and/or ionization of the parent ion. In the practical simulations of the correlated electron momentum distributions for NSDI, one needs to evaluate the DCS for electron impact excitation of the parent ion to all possible excited states at all incident energies from threshold to the maximum returning electron energy which is usually less than 200 eV. Due to the heavy computational demand, relatively simple and efficient theoretical approaches are highly desired. Since the shape of the DCS predicted by DWBA is typically in fairly good agreement with the experimental measurements, once the overestimate of DWBA on the DCS is corrected, the calibrated DWBA can serve as a good candidate for such required theoretical tools.

    The organization of this paper is as follows: In section 2, the theory of DWBA for electron impact excitation is presented in detail and the method to calibrate DWBA is proposed. In section 3, the normalization factors for DWBA at incident energies below 1000 eV are given for electron impact excitation of H and He+from 1s to 2s and 2p, and the calibrated DCSs of DWBA for H at 50 eV and 100 eV are compared with the experimental measurements. Furthermore, some calibrated DCSs of DWBA for H and He+at four different incident energies below 100 eV are analyzed. And finally some conclusions are drawn in section 4.

    Atomic units are used in this paper unless otherwise specified.

    2 Theory

    In this section, we present the general form for DWBA theory in detail on electron impact excitation of atoms which can be easily applied to electron impact excitation of ions. A method used to calibrate the DWBA at energies below 1000 eV is also given.

    2.1 Basic equations

    The problem to be considered here is inelastic electron-atom (e-A) scattering. The Hamiltonian for such a process is given by

    (1)

    wherer1andr2are the position vectors for the projectile and the bound state electron with respect to the nucleus, respectively. In Eq. (1),VA+is the effective potential based on single active electron approximation, which takes the form as

    (2)

    where the parametersai, as given explicitly in Table 1 in Tong and Lin[14], were obtained by fitting the calculated binding energies of the ground state and the first few excited states of the target atom using this potential to the experimental data. Both the exact initial state wave functionΨi(r1,r2) and the final state wave functionΨf(r1,r2) of the system satisfy the Schr?dinger equation

    HΨj(r1,r2)=EΨj(r1,r2) (j=i,f),

    (3)

    whereEis the total energy.

    Since Eq. (3) cannot be solved analytically, one has to employ approximate Hamiltonians, which can be expressed as

    +VA+(r2) (j=i,f),

    (4)

    whereUi(Uf) is the distorting potential used to calculate the wave functionχki(χkf) for the projectile in the incident (exit) channel with momentum ki(kf). With this approximation, the initial (final) state wave function can be expressed as a product of the initial (final) state wave function for the projectile and the wave function for the bound electron in the ground (excited) state.

    The initial and final state wave functions for the projectile satisfy the differential equation

    (5)

    and the bound state wave functions are eigenfunctions of the equation

    (6)

    whereεj(j=i,f) are the corresponding eigenenergies of the initial and final states. Due to energy conservation,

    εf.

    (7)

    In the distorted wave Born approximation, the direct transition amplitude for excitation from an initial stateΦito a final stateΦfis given by

    (8)

    whereViis the perturbation interaction,

    (9)

    And the exchange scattering amplitude is given by

    (10)

    2.2 Partial wave expansions

    To evaluate the scattering amplitude, we perform standard partial wave expansions. The distorted wave for the incident electron with outgoing (+) boundary condition is expanded as

    (11)

    (12)

    In this work, all continuum waves are normalized toδ(k-k′). For a plane wave, the radial componentχl(k,r)/krin Eqs. (11) and (12) is a standard spherical Bessel functionjl(kr) .

    The initial and final bound states can be expressed as

    , f ).

    (13)

    Inthescatteringamplitude(8),theperturbationpotentialisthelastremainingquantitywhichneedstobeexpanded.Thefirsttermintheperturbationpotential(9)canbeexpandedas

    (14)

    (15)

    Theexpansions(14)and(15)thenyield

    (16)

    wheretheradialfactorAlT(r1,r2) is given by

    (17)

    2.3Calculationofthedifferentialcrosssections

    Thedifferentialcrosssectionforelectronimpactexcitationofatomsisgivenby

    (18)

    wheretheprefactorNdenotes the number of electrons in the subshell from which one electron is excited.

    With the expansions given in the above subsection, the direct scattering amplitude is given by

    ×

    AlT(r1,r2)φNiLi(r2)χli(ki,r1)×F1F2

    (19)

    whereF1andF2are given by

    (20)

    and

    (21)

    ToperformtheintegralsoverpolaranglesinEqs. (20)and(21),wehaveusedtherelations

    (22)

    and

    (23)

    whereC(l1l2l3;m1m2m3) is a Clebsch-Gordan coefficient.

    The product ofF1andF2can be further simplified as

    ;000)C(lTLiLf;000)×

    C(lfgLf;μfμgMf),

    (24)

    whereW(l1l2l3l4;l5l6) is a Racah coefficient, and we have used

    C(l1l2l3;m1m2m3)C(l3l4l5;m3m4m5)=

    C(l1gl5;m1μgm5).

    (25)

    Furthermore,byusing

    C(l1l2l3;m1m2m3)=

    (26)

    wecanrewriteC(lfgLf;μfμgMf) in Eq. (24) as

    C(lfLfg;μf,-Mf,-μg).

    (27)

    Consequently,

    ;000)C(lTLiLf;000)

    ×C(lfLfg;μf,-Mf,μf-Mf)δμi+Mi,Mf-μf.

    (28)

    SubstitutingEq. (28)intoEq. (19),wefinallyobtain

    ;μi,Mi,μi+

    Mi)×C(lfLfg;μf,-Mf,μf-Mf)C(lflilT;000)

    AlT(r1,r2)φNiLi(r2)χli(ki,r1).

    (29)

    Similarly,theexchangescatteringamplitudeisgivenby

    C(liLig;μi,Mi,μi+Mi)×C(Lflfg;-Mf,-μf,-Mf-μf)C(LflilT;000)C(lTLilf;000)×W(LflilfLi;lTg)

    χlf(kf,r2)AlT(r1,r2)φNiLi(r2)χli(ki,r1).

    (30)

    2.4Distortingpotentials

    IntheDWBAmodel,thedistortingpotentialsUiandUfwhich are used in Eq. (5) to evaluate the wave functions for the projectile in the initial and final states respectively play an important role in the numerical calculations, since the calculated DCSs are sensitive to the distorted wave functions describing the projectile. Unfortunately, neitherUinorUfis determined directly by the formalism. Here, we use static potentials which take the form as

    (31)

    Asshownpreviously,VA+(r) in Eq. (31) is the atomic potential used to evaluate eigenstate wave functionsΦiandΦffor the bound electron in the initial and final states, respectively. Obviously, the distorting potentials given by Eq.(31) for electron impact excitation of atoms are neutral asymptotically.

    2.5 Calibration of DWBA

    To evaluate the total cross sections for electron impact excitation, Tongetal.[7]employed an empirical formula

    (32)

    where

    (33)

    with △Eis the excitation energy for a given transition andεis the eigenenergy of the corresponding excited state in atomic hydrogen. The parametersβ,γandδin Eq. (33) have been obtained initially by fitting the TCS to the convergent-close coupling (CCC) results for hydrogen from 1s to 2p and further tested fore+He+(1s) →e+He+(2p). However, it has been found that, with the parameters given in Ref. [7], the formula Eq. (32) fails to predict the correct values of the TCS for excitation of other atoms and ions. Even for H and He+, the TCS for excitation to other excited states reproduced by Eq. (32) are much higher than the CCC data and the shape of the TCS as a function of incident energy does not agree with the CCC very well, either.

    To adjust the overall difference in magnitude, we introduce a prefactor to modify the empirical formula, which is given by

    (34)

    Itshouldbenotedthat,inEq. (34),εdenotes the eigenenergy of the corresponding excited state in target atoms or ions. In the present work, we apply the same fitting procedure as in Ref. [7] to obtain the parameters. For excitations of H and He+from 1s to 2s, the parameters we obtained areβ= 0.7638,γ= 1.1759, andδ= 0.6706, which are different from those in Ref. [7]. It has been found that with this set of parameters, the TCS reproduced by Eq. (34) are in better agreement with CCC in shape. These parameters are further tested by comparing the predicted excitation cross section with CCC for excitations of H and He+from 1s to 3s and 4s. For excitations of H and He+from 1s tonp (n=2, 3 and 4), the parameters areβ= 1.32,γ= -1.08, andδ= -0.04. The prefactor α is then determined by matching the TCS from Eq. (34) with the CCC data at high energies.

    It should also be noted that the TCS of CCC are not available for most atoms or ions. Hence, the applicability of the above fitting procedure to excitation of other atoms and ions is quite limited. Fortunately, both the DCS and the TCS of DWBA are reliable at high energies. Therefore, the prefactorαcan be obtained by matching the TCS from Eq. (34) with the DWBA results at high energies, say 1000 eV, provided that the parametersβ,γand δ remain the same for all target atoms and ions.

    (35)

    TocalibratetheDWBAatlowenergies,wedefineanormalizationfactor

    C(Ei)=σM-Tong(Ei)/σDWBA(Ei).

    (36)

    BymultiplyingtheDCSofDWBAbythenormalizationfactorateachincidentenergy,oneobtainsthecalibratedDWBAas

    .

    (37)

    3 Results and discussion

    ToobtainthenormalizationfactorstocalibratetheDCSofDWBA,wecalculatetheTCSfromtheempiricalformulaofEq. (34)andtheTCSofDWBA.TheresultsareshowninFigs. 1and2forexcitationsofHandHe+,respectively.ThecorrespondingCCCresults[15]arealsoplottedforcomparison.ItcanbeseenthattheCCCdataforexcitationfrom1sto2sarereproducedverywellforbothHandHe+whileforexcitationfrom1sto2pslightdifferencesexist.Whereas,theagreementbetweentheTCSofTongandCCCcanbeimprovediftheTCSofTongat1000eVisfittedtoCCCratherthanDWBA.ThereasonthatwefittheTCSofTongat1000eVtoDWBAinsteadofCCCisthatDWBAresultsarealwaysavailable.

    Fig.1 TCSs (left vertical axis) and normalization factors of DWBA (right vertical axis) for excitation of H from (a) 1s to 2s and (b) 1s to 2p at incident energies from the excitation energy of 10.2 eV to 1000 eV. Dotted curve, total cross sections of DWBA; Solid curve, total cross sections calculated using the empirical formula Eq. (34); Chain curve, normalization factor given by Tong/DWBA; Solid circles, CCC data[15]

    Fig.2 TCSs (left vertical axis) and normalization factors of DWBA (right vertical axis) for excitation of He+ from (a) 1s to 2s and (b) 1s to 2p at incident energies from the excitation energy of 40.8 eV to 1000 eV. Dotted curve, total cross sections of DWBA; Solid curve, total cross sections calculated using the empirical formula of Eq. (34); Chain curve, normalization factor given by Tong/DWBA; Solid circles, CCC data[15]

    TheabsoluteexperimentalmeasurementsofKhakooet al.[16]forelectronimpactexcitationofthe12S → 22S + 22PlevelsofHatincidentenergiesof50and100eVprovidetheexcellentpossibilityofastringenttestforthepresentcalibrationprocedure.ItisillustratedinFig. 3thatthecalibratedDWBADCSsfollowtheexperimentaldataverywelloverthewholeangularregionforbothincidentenergies.Toseethecontributionsfromtheexcitationsof12S → 22Sand12S → 22Pseparately,thecorrespondingtheoreticalDCSsofthecalibratedDWBAarealsoplottedinFig. 3forcomparison.Onecanseethattheexcitationof1sto2pdominatestheforwardscatteringforangularregionfrom0oto45oat50eVand0oto30oat100eV.Ontheotherhand,theexcitationof1sto2scannotbeneglectedintheregionoflargerscatteringangles.

    Fig.3 Comparison of the DCSs of the calibrated DWBA with experimental measurements of Khakoo et al.[16] for excitation of H from ground state to n=2 state at incident energies of (a) 50 eV and (b) 100 eV

    InFig. 4weshowtheDCSsofDWBAweightedbythenormalizationfactorsforexcitationsofHfrom1sto2sand1sto2patincidentenergiesof15, 25, 50and100eV,respectively.TheslopesofDCSsforbothexcitationsof1sto2sand1sto2pchangemorerapidlyatlargerscatteringanglesasincidentenergydecreases.Inadditiontotheslopechange,extraminimaarereproducedbytheDWBAaround70oforexcitationof1sto2pand100ofor1sto2pat15eV.

    Fig.4 Calibrated DCSs of DWBA for excitation of H from (a) 1s to 2s and (b) 1s to 2p at incident energies of 15, 25, 50, and 100 eV, respectively

    Fig. 5showsthesimilarresultsforexcitationsofHe+atenergiesbelow100eV.ComparedtotheexcitationofH,enhancedbackwardscatteringDCSsarepredictedbytheDWBAduetolargerCoulombattractiontothescatteredelectronsincelargeanglescatteringtakesplacewhentheprojectileisclosertothenuclearofHesuchthatitseesmorechargethanthenuclearchargeofH.Asaresult,aminimumappearsintheDCSsforbothexcitationof1sto2sand1sto2pat45and60eV.BothofthedepthsandpositionsoftheminimuminDCSshavesignificantphysicalimportancesincetheyreflectthestructureinformationofthetargets.Inaddition,withtheincreaseofincidentenergy,theangleatwhichtheslopechangesdoesnotmoveasmuchasthatforH,whichevenalmostremainsfixedat110ofortheexcitationofHe+from1sto2p,asshowninFig. 5(b).

    Fig.5 Calibrated DCSs of DWBA for excitation of He+ from (a) 1s to 2s and (b) 1s to 2p at incident energies of 45, 60, 80, and 100 eV, respectively

    4 Conclusions

    WepresentamethodtocorrecttheoverestimateofDWBAontheTCSsforelectronimpactexcitationofHandHe+.ThepurposeofthisworkistoapplythecalibratedDWBAtosimulatethecorrelatedmomentumdistributionsforlaser-inducednonsequentialdoubleionizationofHe.Thecalibrationmethodisbasedontwoassumptions: (1)therelativeangulardistributionsoftheDCSspredictedbytheDWBAatlowincidentenergiesarefairlyaccurate,and(2)theTCSsreproducedbytheDWBAathighincidentenergiesarereliable.ThevalidityofthecalibrationmethodisconfirmedbytheagreementbetweentheDCSsobtainedbythecalibratedDWBAandtheabsoluteexperimentalmeasurementsforexcitationsofHfromthegroundstateton=2state.ThecalculatedDCSswiththecalibratedDWBAforexcitationsofHandHe+from1sto2sand1sto2pbelow100eVarealsopresentedandthestructureoftheDCSsisanalyzed.

    [1] Madison D H, Shelton W N. Distorted-wave approximation and its application to the differential and integrated cross sections for electron-mpact excitation of the 21P state of Helium [J].Phys.Rev. A, 1973, 7: 499.

    [2] Bartschat K, Madison D H. Electron impact excitation of rare gases: differential cross sections and angular correlation parameters for neon, argon, krypton and xenon [J].J.Phys. B, 1987, 20: 5839.

    [3] Madison D H, Winters K H. A second-order distorted-wave model for the excitation of the 21P state of helium by electron and positron impact [J].J.Phys. B, 1983, 16: 4437.

    [4] Zeman V, Bartschat K. Electron-impact excitation of the (2p53s) and (2p53p) states of neon [J].J.Phys. B, 1997, 30: 4609.

    [5] Bray I, Stelbovics A T. Convergent close-coupling calculations of electron-hydrogen scattering [J].Phys.Rev. A, 1992, 46: 6995.

    [6] Khakoo M A, Wrkich J, Larsen M,etal. Differential cross sections and cross-section ratios for the electron-impact excitation of the neon 2p53s configuration [J].Phys.Rev. A, 2002, 65: 062711.

    [7] Tong X M, Zhao Z X, Lin C D. Correlation dynamics between electrons and ions in the fragmentation of D2 molecules by short laser pulses [J].Phys.Rev. A, 2003, 68: 043412.

    [8] Liang Y Q, Chen Z G, Madison D H,etal. Calibration of distorted wave Born approximation for electron impact excitation of Ne and Ar at incident energies below 100 eV [J].J.Phys. B, 2011, 44: 085201.

    [9] Staudte A, Ruiz C, Schoffler M,etal. Binary and recoil collisions in strong field double ionization of helium [J].Phys.Rev.Lett., 2007, 99: 263002.

    [10] Rudenko A, Jesus V L B de, Ergler Th,etal. Correlated two-electron momentum spectra for strong-field nonsequential double ionization of He at 800 nm [J].Phys.Rev.Lett., 2007, 99: 263003.

    [11] Weber Th, Giessen H, Weckenbrock M,etal. Correlated electron emission in multiphoton double ionization [J].Nature, 2000, 405: 658.

    [12] Chen Z J, Liang Y Q, Lin C D. Quantum theory of recollisional (e, 2e) process in strong field nonsequential double ionization of helium [J].Phys.Rev.Lett., 2010, 104: 253201.

    [13] Chen Z J, Liang Y Q, Lin C D. Quantitative rescattering theory of correlated two-electron momentum spectra for strong-field nonsequential double ionization of helium [J].Phys.Rev. A, 2010, 82: 063417.

    [14] Tong X M, Lin C D. Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime [J].J.Phys. B, 2005, 38: 2593.

    [15] See Bray I, CCC-database, http://atom.curtin.edu.au/CCC-WWW/index.html.

    [16] Khakoo M A, Larsen M, Paolini B,etal. Absolute differential cross sections for the electron impact excitation of the 12S→22S+22Plevels of atomic hydrogen at 50 and 100 eV [J].Phys.Rev.Lett., 1999, 82: 3980.

    Calculation of differential cross sections for electron impact excitation of H and He+

    LAI Zhuo-Jin, CHEN De-Feng, PAN Lin-Qing, JIANG Xiao-Han, XU Yong-Liang, CHEN Zhang-Jin

    (College of Science, Shantou University, Shantou 515063, China)

    We present the distorted wave Born approximation (DWBA) for electron impact excitation and a method to calibrate the DWBA. With the calibrated DWBA, the differential cross sections (DCSs) for excitation of H and He+from 1s to 2s and 2p are calculated and the results are compared with the absolute experimental measurements for H at incident energies of 50 eV and 100 eV. It has been found that the theoretical results are in very good agreement with experiment, which confirms the validity of the calibration procedure. This work prepares an efficient theoretical method for numerical simulations of non-sequential double ionization of He in strong laser pulse in which laser-induced electron impact excitation of He+is involved.

    Electron impact excitation; Distorted wave Born approximation; Differential cross sections

    2014-2-4

    國(guó)家自然科學(xué)基金(11274219);廣東省高等學(xué)校人才引進(jìn)項(xiàng)目;教育部留學(xué)回國(guó)人員啟動(dòng)基金項(xiàng)目;汕頭大學(xué)科研啟動(dòng)經(jīng)費(fèi)項(xiàng)目

    賴(lài)卓勁 (1992—),男,廣東人,主要從事原子與分子物理研究.

    陳長(zhǎng)進(jìn). E-mail: chenzj@stu.edu.cn

    103969/j.issn.1000-0364.2015.08.013

    O562.5

    A

    1000-0364(2015)08-0603-08

    猜你喜歡
    汕頭大學(xué)氫原子微分
    擬微分算子在Hp(ω)上的有界性
    一維模型氫原子在啁啾激光場(chǎng)中的閾上電離
    《汕頭大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿啟事
    汕頭大學(xué)14項(xiàng)教學(xué)案例獲評(píng)省級(jí)在線(xiàn)教學(xué)優(yōu)秀案例
    汕頭大學(xué)7個(gè)專(zhuān)業(yè)入選國(guó)家級(jí)一流本科專(zhuān)業(yè)建設(shè)點(diǎn)
    上下解反向的脈沖微分包含解的存在性
    《汕頭大學(xué)學(xué)報(bào)》投稿須知
    關(guān)于氫原子躍遷問(wèn)題的難點(diǎn)突破
    借助微分探求連續(xù)函數(shù)的極值點(diǎn)
    對(duì)氫原子能量吸收的再認(rèn)識(shí)お
    亚洲成人免费电影在线观看| 精品一区二区三区视频在线观看免费 | 国产单亲对白刺激| 亚洲精品久久成人aⅴ小说| 我的亚洲天堂| 欧美精品一区二区免费开放| 亚洲男人天堂网一区| 午夜视频精品福利| 真人做人爱边吃奶动态| 亚洲人成电影免费在线| 女人久久www免费人成看片| 国产精品麻豆人妻色哟哟久久| 欧美人与性动交α欧美软件| 青草久久国产| 国产精品二区激情视频| 午夜免费成人在线视频| 亚洲av成人一区二区三| 91麻豆av在线| 麻豆国产av国片精品| 精品久久久久久久毛片微露脸| avwww免费| 欧美 日韩 精品 国产| 老司机亚洲免费影院| 制服人妻中文乱码| 制服诱惑二区| 久久国产精品大桥未久av| 亚洲男人天堂网一区| 久久国产精品男人的天堂亚洲| 久久精品亚洲熟妇少妇任你| 91老司机精品| 国产极品粉嫩免费观看在线| 狠狠婷婷综合久久久久久88av| 男女无遮挡免费网站观看| 乱人伦中国视频| 亚洲成人免费电影在线观看| 欧美精品亚洲一区二区| 美国免费a级毛片| 国产免费视频播放在线视频| 欧美一级毛片孕妇| 日本vs欧美在线观看视频| 后天国语完整版免费观看| 亚洲国产欧美一区二区综合| 最近最新中文字幕大全免费视频| 免费高清在线观看日韩| 一本一本久久a久久精品综合妖精| 少妇被粗大的猛进出69影院| 女人高潮潮喷娇喘18禁视频| 亚洲精品中文字幕在线视频| 国产精品免费视频内射| 丁香六月欧美| 国产片内射在线| 中文字幕色久视频| 99香蕉大伊视频| 18在线观看网站| 51午夜福利影视在线观看| 国产亚洲欧美在线一区二区| 十八禁网站网址无遮挡| 久久狼人影院| 99久久人妻综合| 国产亚洲一区二区精品| 无限看片的www在线观看| a级片在线免费高清观看视频| 久久午夜综合久久蜜桃| 国产精品亚洲av一区麻豆| 男女下面插进去视频免费观看| 大陆偷拍与自拍| 一二三四社区在线视频社区8| 露出奶头的视频| 伊人久久大香线蕉亚洲五| 国产亚洲一区二区精品| 又黄又粗又硬又大视频| 国产亚洲精品一区二区www | 19禁男女啪啪无遮挡网站| 精品视频人人做人人爽| 美女午夜性视频免费| 少妇精品久久久久久久| 国产精品久久久av美女十八| 国产精品影院久久| 女同久久另类99精品国产91| 色老头精品视频在线观看| 亚洲欧美一区二区三区久久| 黄色a级毛片大全视频| 夜夜夜夜夜久久久久| bbb黄色大片| 后天国语完整版免费观看| a在线观看视频网站| 亚洲黑人精品在线| 男女免费视频国产| 一个人免费在线观看的高清视频| 欧美日本中文国产一区发布| 捣出白浆h1v1| 中文字幕人妻丝袜一区二区| 19禁男女啪啪无遮挡网站| 国产在线免费精品| 精品人妻在线不人妻| 久久国产精品男人的天堂亚洲| 新久久久久国产一级毛片| 国产无遮挡羞羞视频在线观看| 97人妻天天添夜夜摸| 国产成+人综合+亚洲专区| 王馨瑶露胸无遮挡在线观看| 精品高清国产在线一区| 免费一级毛片在线播放高清视频 | 最新在线观看一区二区三区| 免费不卡黄色视频| 视频区图区小说| 69精品国产乱码久久久| 一区在线观看完整版| 香蕉国产在线看| 久久久国产成人免费| tocl精华| 精品熟女少妇八av免费久了| 麻豆国产av国片精品| 欧美日韩视频精品一区| 亚洲av国产av综合av卡| 欧美精品一区二区大全| 亚洲精华国产精华精| 叶爱在线成人免费视频播放| 大陆偷拍与自拍| 日韩熟女老妇一区二区性免费视频| 午夜福利免费观看在线| 国产一区二区激情短视频| 亚洲精品国产精品久久久不卡| 老汉色av国产亚洲站长工具| 久久毛片免费看一区二区三区| 国产精品麻豆人妻色哟哟久久| 国产无遮挡羞羞视频在线观看| 超碰97精品在线观看| 成人特级黄色片久久久久久久 | 999精品在线视频| 激情在线观看视频在线高清 | 久久午夜综合久久蜜桃| 久久久精品94久久精品| 国产单亲对白刺激| 日本vs欧美在线观看视频| 国产成人影院久久av| 久久中文字幕人妻熟女| 一个人免费在线观看的高清视频| 在线天堂中文资源库| 亚洲中文av在线| 久久久水蜜桃国产精品网| 宅男免费午夜| 久久天堂一区二区三区四区| 精品一区二区三卡| 亚洲国产看品久久| 人妻 亚洲 视频| 久久中文看片网| 视频区欧美日本亚洲| 国产午夜精品久久久久久| 视频区欧美日本亚洲| 欧美激情高清一区二区三区| 亚洲av成人不卡在线观看播放网| 欧美日韩精品网址| 在线观看免费高清a一片| 精品第一国产精品| 高清av免费在线| 久久久国产一区二区| 国产精品 欧美亚洲| 熟女少妇亚洲综合色aaa.| 黄色丝袜av网址大全| 丰满迷人的少妇在线观看| 成人影院久久| 亚洲欧洲精品一区二区精品久久久| 午夜激情久久久久久久| 亚洲avbb在线观看| 日本一区二区免费在线视频| 久久这里只有精品19| av又黄又爽大尺度在线免费看| 最新美女视频免费是黄的| 啦啦啦视频在线资源免费观看| 国产99久久九九免费精品| 女性被躁到高潮视频| 久久久久久人人人人人| 天天躁狠狠躁夜夜躁狠狠躁| 搡老岳熟女国产| 一本一本久久a久久精品综合妖精| 岛国毛片在线播放| 满18在线观看网站| 久久人妻熟女aⅴ| 91国产中文字幕| 免费观看a级毛片全部| 日本vs欧美在线观看视频| 最新在线观看一区二区三区| 一级片'在线观看视频| 国产aⅴ精品一区二区三区波| 久久青草综合色| 丝袜美足系列| 国产精品1区2区在线观看. | 久久久久国产一级毛片高清牌| 成人18禁高潮啪啪吃奶动态图| 女人爽到高潮嗷嗷叫在线视频| 国产精品国产高清国产av | 亚洲精品一卡2卡三卡4卡5卡| 亚洲专区中文字幕在线| 日本欧美视频一区| 欧美日韩中文字幕国产精品一区二区三区 | 成人精品一区二区免费| 老司机深夜福利视频在线观看| 老汉色∧v一级毛片| 国产精品影院久久| 欧美激情 高清一区二区三区| 在线看a的网站| aaaaa片日本免费| 最近最新中文字幕大全电影3 | 一区二区三区国产精品乱码| 欧美中文综合在线视频| 久久毛片免费看一区二区三区| 国产一卡二卡三卡精品| 亚洲性夜色夜夜综合| 中国美女看黄片| 国产精品亚洲av一区麻豆| 91老司机精品| www日本在线高清视频| 亚洲精品中文字幕在线视频| 国产精品久久久av美女十八| 欧美变态另类bdsm刘玥| 色在线成人网| 在线观看www视频免费| 在线亚洲精品国产二区图片欧美| 天天躁夜夜躁狠狠躁躁| 国产在线一区二区三区精| 精品少妇久久久久久888优播| 丁香六月欧美| 高清欧美精品videossex| 窝窝影院91人妻| 欧美久久黑人一区二区| 久久人人爽av亚洲精品天堂| 精品国产乱子伦一区二区三区| 久久国产亚洲av麻豆专区| 亚洲中文日韩欧美视频| 久久久久精品国产欧美久久久| 一级毛片女人18水好多| 日日夜夜操网爽| 日本av手机在线免费观看| 色播在线永久视频| 夜夜骑夜夜射夜夜干| 久久午夜综合久久蜜桃| 亚洲 欧美一区二区三区| 欧美激情久久久久久爽电影 | 国产欧美日韩综合在线一区二区| 久9热在线精品视频| 欧美黄色淫秽网站| 国产成+人综合+亚洲专区| www日本在线高清视频| 精品少妇一区二区三区视频日本电影| 亚洲熟女毛片儿| 日本黄色视频三级网站网址 | 最新美女视频免费是黄的| 黄片播放在线免费| 99精品在免费线老司机午夜| 一本久久精品| 黄色视频在线播放观看不卡| 中文字幕制服av| 人人妻,人人澡人人爽秒播| 免费看a级黄色片| 动漫黄色视频在线观看| 成年版毛片免费区| 国产视频一区二区在线看| 亚洲中文字幕日韩| 中文字幕制服av| 精品亚洲成国产av| 欧美激情极品国产一区二区三区| 免费观看人在逋| 色精品久久人妻99蜜桃| 首页视频小说图片口味搜索| 青青草视频在线视频观看| 一边摸一边抽搐一进一出视频| 欧美国产精品va在线观看不卡| 欧美精品亚洲一区二区| 亚洲欧美色中文字幕在线| 深夜精品福利| 性色av乱码一区二区三区2| 日韩一卡2卡3卡4卡2021年| www.精华液| 啦啦啦中文免费视频观看日本| 99国产精品99久久久久| 欧美精品啪啪一区二区三区| 欧美 亚洲 国产 日韩一| 欧美精品啪啪一区二区三区| 777久久人妻少妇嫩草av网站| 妹子高潮喷水视频| 纯流量卡能插随身wifi吗| 国产欧美日韩一区二区三区在线| 十八禁高潮呻吟视频| av视频免费观看在线观看| 亚洲熟妇熟女久久| 久久国产精品大桥未久av| 男女下面插进去视频免费观看| 如日韩欧美国产精品一区二区三区| 一本—道久久a久久精品蜜桃钙片| 窝窝影院91人妻| 热99国产精品久久久久久7| 国产视频一区二区在线看| 成年动漫av网址| 亚洲久久久国产精品| 免费看十八禁软件| 久久久精品国产亚洲av高清涩受| 欧美成人免费av一区二区三区 | 伊人久久大香线蕉亚洲五| 91成人精品电影| 国产精品香港三级国产av潘金莲| 欧美精品高潮呻吟av久久| 巨乳人妻的诱惑在线观看| 欧美变态另类bdsm刘玥| 国产一卡二卡三卡精品| 久久中文字幕一级| cao死你这个sao货| 国产精品一区二区在线观看99| 日本a在线网址| 一级,二级,三级黄色视频| 性少妇av在线| 成人18禁在线播放| 9色porny在线观看| 色综合婷婷激情| 色婷婷久久久亚洲欧美| 天天躁夜夜躁狠狠躁躁| 午夜福利视频在线观看免费| 国产精品久久久人人做人人爽| 久久精品熟女亚洲av麻豆精品| 日韩欧美三级三区| 国产有黄有色有爽视频| 亚洲av国产av综合av卡| aaaaa片日本免费| 国产单亲对白刺激| 最近最新中文字幕大全电影3 | 国产一区有黄有色的免费视频| 国产高清激情床上av| 亚洲成av片中文字幕在线观看| 久久久国产精品麻豆| 欧美精品人与动牲交sv欧美| 精品国产乱码久久久久久小说| 国产人伦9x9x在线观看| 国产免费视频播放在线视频| 黄色视频在线播放观看不卡| 成年版毛片免费区| 老熟妇仑乱视频hdxx| 久久精品国产亚洲av香蕉五月 | 黄色视频在线播放观看不卡| 丝瓜视频免费看黄片| 国产欧美日韩一区二区三| 免费女性裸体啪啪无遮挡网站| 国产色视频综合| 国产97色在线日韩免费| 这个男人来自地球电影免费观看| 在线天堂中文资源库| 亚洲精品中文字幕一二三四区 | 午夜成年电影在线免费观看| 精品少妇久久久久久888优播| 色老头精品视频在线观看| 欧美日韩亚洲高清精品| 国产男靠女视频免费网站| 国产一区二区三区综合在线观看| 五月开心婷婷网| 男女免费视频国产| aaaaa片日本免费| 色尼玛亚洲综合影院| 亚洲av成人一区二区三| 动漫黄色视频在线观看| 巨乳人妻的诱惑在线观看| 国产在线免费精品| 欧美日韩视频精品一区| 日韩一卡2卡3卡4卡2021年| 久久青草综合色| 成年人午夜在线观看视频| 亚洲三区欧美一区| 久久亚洲精品不卡| 亚洲七黄色美女视频| 日本vs欧美在线观看视频| 国产精品一区二区免费欧美| 激情在线观看视频在线高清 | 9色porny在线观看| 精品国内亚洲2022精品成人 | 国产亚洲一区二区精品| 国产主播在线观看一区二区| 国产精品一区二区在线观看99| 99riav亚洲国产免费| 国产欧美日韩综合在线一区二区| 久久久精品94久久精品| 精品国内亚洲2022精品成人 | 午夜福利视频在线观看免费| 天天影视国产精品| 欧美日本中文国产一区发布| 成人免费观看视频高清| 免费看十八禁软件| 欧美另类亚洲清纯唯美| 少妇猛男粗大的猛烈进出视频| 亚洲熟女毛片儿| 国产欧美日韩一区二区三区在线| 天堂动漫精品| 亚洲五月婷婷丁香| 十八禁人妻一区二区| 色综合欧美亚洲国产小说| 日日夜夜操网爽| 亚洲五月色婷婷综合| 久热这里只有精品99| 日本a在线网址| 欧美黄色淫秽网站| 亚洲av片天天在线观看| 久久国产精品影院| 在线观看一区二区三区激情| 91成年电影在线观看| 亚洲熟女精品中文字幕| 丰满迷人的少妇在线观看| 岛国在线观看网站| 在线观看人妻少妇| 99国产精品免费福利视频| 一边摸一边抽搐一进一小说 | h视频一区二区三区| 久久国产精品大桥未久av| 久久香蕉激情| 我的亚洲天堂| 丝袜在线中文字幕| 免费少妇av软件| 亚洲性夜色夜夜综合| 精品熟女少妇八av免费久了| 欧美久久黑人一区二区| 91精品国产国语对白视频| 亚洲精品中文字幕在线视频| 宅男免费午夜| 青草久久国产| av网站在线播放免费| 美国免费a级毛片| 国产精品麻豆人妻色哟哟久久| 91成年电影在线观看| 日韩有码中文字幕| 久久影院123| 久久婷婷成人综合色麻豆| 天堂动漫精品| 久久久久久亚洲精品国产蜜桃av| 一本综合久久免费| 国产欧美日韩一区二区三区在线| 国产三级黄色录像| 色婷婷av一区二区三区视频| 久久久精品区二区三区| 我要看黄色一级片免费的| 一区二区三区激情视频| 亚洲视频免费观看视频| 中亚洲国语对白在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 色婷婷久久久亚洲欧美| 一进一出好大好爽视频| 精品国产乱子伦一区二区三区| 免费在线观看影片大全网站| 啦啦啦 在线观看视频| 视频区图区小说| 水蜜桃什么品种好| 亚洲av美国av| 国产国语露脸激情在线看| 国产精品熟女久久久久浪| 国产主播在线观看一区二区| 亚洲av国产av综合av卡| 精品第一国产精品| 日韩中文字幕欧美一区二区| 成年人免费黄色播放视频| 菩萨蛮人人尽说江南好唐韦庄| 国产1区2区3区精品| 久久精品国产a三级三级三级| 亚洲人成77777在线视频| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕精品免费在线观看视频| 欧美在线黄色| 一级,二级,三级黄色视频| 50天的宝宝边吃奶边哭怎么回事| 免费看a级黄色片| 久久人妻福利社区极品人妻图片| 午夜激情久久久久久久| 757午夜福利合集在线观看| 日韩欧美三级三区| 成年女人毛片免费观看观看9 | 大型黄色视频在线免费观看| 90打野战视频偷拍视频| 国产精品亚洲av一区麻豆| 搡老熟女国产l中国老女人| 十八禁高潮呻吟视频| 亚洲精品中文字幕一二三四区 | 黄色成人免费大全| 搡老岳熟女国产| 中亚洲国语对白在线视频| 啦啦啦中文免费视频观看日本| 狠狠精品人妻久久久久久综合| 女人久久www免费人成看片| 夜夜夜夜夜久久久久| 97人妻天天添夜夜摸| 一进一出好大好爽视频| 欧美人与性动交α欧美精品济南到| 国产在线精品亚洲第一网站| 少妇粗大呻吟视频| 久久中文字幕人妻熟女| 精品久久蜜臀av无| 久久国产精品影院| 国产在线视频一区二区| 亚洲人成电影免费在线| 99九九在线精品视频| 日韩成人在线观看一区二区三区| 免费观看av网站的网址| www.熟女人妻精品国产| 日本黄色视频三级网站网址 | 熟女少妇亚洲综合色aaa.| 麻豆乱淫一区二区| 欧美黑人欧美精品刺激| 无人区码免费观看不卡 | 一边摸一边做爽爽视频免费| 国产伦理片在线播放av一区| 色婷婷av一区二区三区视频| 黄色成人免费大全| 黄色视频不卡| 一进一出抽搐动态| 女性被躁到高潮视频| 宅男免费午夜| 麻豆av在线久日| 黄色a级毛片大全视频| 国产在线一区二区三区精| 亚洲性夜色夜夜综合| √禁漫天堂资源中文www| 精品国产亚洲在线| 久久久水蜜桃国产精品网| 欧美精品一区二区免费开放| 一区二区三区国产精品乱码| 天天影视国产精品| 制服诱惑二区| 啦啦啦视频在线资源免费观看| 亚洲精品在线观看二区| 51午夜福利影视在线观看| 亚洲情色 制服丝袜| 乱人伦中国视频| 亚洲国产欧美一区二区综合| 最新美女视频免费是黄的| 狠狠精品人妻久久久久久综合| 成年人免费黄色播放视频| 精品一区二区三区四区五区乱码| 在线十欧美十亚洲十日本专区| kizo精华| 视频区图区小说| 国产精品久久久久久精品电影小说| 欧美黄色片欧美黄色片| 操美女的视频在线观看| 免费日韩欧美在线观看| 一进一出好大好爽视频| 极品人妻少妇av视频| 精品少妇一区二区三区视频日本电影| 女人久久www免费人成看片| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品亚洲熟妇少妇任你| 精品少妇黑人巨大在线播放| 一本—道久久a久久精品蜜桃钙片| 黄色视频在线播放观看不卡| 国产在线视频一区二区| 婷婷丁香在线五月| 热99国产精品久久久久久7| 1024香蕉在线观看| 人人妻人人澡人人看| 少妇 在线观看| 久久国产精品大桥未久av| 久久人妻av系列| 97在线人人人人妻| a在线观看视频网站| 一区二区三区乱码不卡18| 天堂动漫精品| 大码成人一级视频| 精品一区二区三区视频在线观看免费 | 国产免费现黄频在线看| 在线av久久热| 日韩中文字幕欧美一区二区| 国产欧美日韩精品亚洲av| 啦啦啦 在线观看视频| 超色免费av| 亚洲免费av在线视频| 91大片在线观看| 精品少妇内射三级| 麻豆成人av在线观看| 久久精品aⅴ一区二区三区四区| tocl精华| 亚洲精品一卡2卡三卡4卡5卡| 香蕉丝袜av| 一级毛片女人18水好多| 欧美+亚洲+日韩+国产| 欧美在线一区亚洲| 大片免费播放器 马上看| 天堂动漫精品| 91麻豆av在线| 丝瓜视频免费看黄片| 99riav亚洲国产免费| 中文字幕精品免费在线观看视频| 精品少妇黑人巨大在线播放| 免费久久久久久久精品成人欧美视频| 亚洲全国av大片| 国产色视频综合| 色老头精品视频在线观看| 国产午夜精品久久久久久| 国产片内射在线| av天堂在线播放| 别揉我奶头~嗯~啊~动态视频| 水蜜桃什么品种好| 久久人妻福利社区极品人妻图片| 黑人欧美特级aaaaaa片| 女人高潮潮喷娇喘18禁视频| 欧美乱妇无乱码| 99国产精品一区二区三区| 亚洲中文av在线| 高清在线国产一区| 搡老岳熟女国产| 免费不卡黄色视频| 在线观看一区二区三区激情| 一区二区av电影网| 免费在线观看影片大全网站| av福利片在线| 超碰97精品在线观看| 夜夜爽天天搞| 亚洲成人免费电影在线观看| 男女边摸边吃奶| 五月天丁香电影| 香蕉丝袜av| 欧美激情久久久久久爽电影 | 99国产精品一区二区三区| 久久免费观看电影|