• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    LiBr分子基態(tài)光譜常數(shù)和分子常數(shù)研究

    2015-03-23 02:17:08張金平張洋洋
    關(guān)鍵詞:金平基態(tài)洋洋

    張金平,田 凱,李 慧,張洋洋

    (黃河科技學(xué)院信息工程學(xué)院,鄭州 450006)

    LiBr分子基態(tài)光譜常數(shù)和分子常數(shù)研究

    張金平,田 凱,李 慧,張洋洋

    (黃河科技學(xué)院信息工程學(xué)院,鄭州 450006)

    采用高精度的量子化學(xué)從頭計(jì)算多參考組態(tài)相互作用方法(MRCI)和相關(guān)一致基, 計(jì)算了LiBr分子基態(tài)的光譜常數(shù)(Re,ωeandDe)和勢能曲線. 為獲得更準(zhǔn)確的結(jié)果, 計(jì)算中還考慮了二階Douglas-Kroll-Hess相對論修正對LiBr分子基態(tài)的平衡鍵長、諧振頻率和離解能影響. 將計(jì)算得到的勢能曲線擬合為Murrell-Sorbie解析勢能函數(shù)形式, 并進(jìn)一步計(jì)算得到LiBr分子基態(tài)的其它光譜常數(shù)(ωeχe,αe,BeandD0). 比較發(fā)現(xiàn)它們與實(shí)驗(yàn)值符合的非常好. 通過求解核運(yùn)動(dòng)徑向Schr?dinger方程, 找到了LiBr分子基態(tài)的全部振動(dòng)態(tài). 還計(jì)算了每一個(gè)振動(dòng)態(tài)的振動(dòng)能級(jí)、經(jīng)典轉(zhuǎn)折點(diǎn)和慣性轉(zhuǎn)動(dòng)常數(shù), 這些結(jié)果與已有的實(shí)驗(yàn)值一致.

    光譜常數(shù); 勢能曲線; 分子常數(shù); 相對論修正

    1 Introduction

    In the earliest days, alkali metal halides are of importance in quantum chemistry. They have played a central role in the understanding of the ionic bond[1]as well as in the development of the Landau-Zener method[2,3]for treating curve crossings. Recently, alkali metal halides also have important practical applications, from halogen metallurgy, chemical vapor transport and deposition[4-7]to the lamp industry. Among the alkali metal halides, LiBr molecule is one of the species which has received particular attention. A number of experimental[8-17]and theoretical[18-27]studies have been carried out about the LiBr molecule.

    Around the 1950s, the experimental investigation of the LiBr molecule has been applied with the microwave spectroscopy technique[8]. Up until now, an increasing amount of interest has been paid to the comprehension of the properties of the LiBr molecule. However, it is important to mention that the spectroscopic constants of the LiBr molecule such as the harmonic frequencyωehave shown a wide variation[8-12, 16, 17]. And up to now, the accurate harmonic frequency has not been determined experimentally. On the theoretical front, these investigations[18-27]have focused mainly on the electronic structure and spectroscopic properties of the LiBr molecule potential in the equilibrium region. However, the extracted molecular parameters from these investigations are all incomplete. For example, we have found very little results about their vibrational levels, classical turning points and inertial rotation and centrifugal distortion constants, which are very useful in the theoretical rovibrational transition calculations.

    The goal of the present work is to provide accurate harmonic frequencyωe, equilibrium internuclear distanceReand the potential energy curves (PECs) of the LiBr(X1∑+) molecule. Following, illustrate the relativistic scalar correction importance on the studied molecular properties. And the ab initio PECs are fitted to the analytical potential energy functions (APEFs) using a suitable Murrel-Sorbie (M-S) function. Based on the APEFs, the spectroscopic parameters and total vibrational manifolds are determined. The reliability of present theoretical method has been evaluated. The present results also provide more complete and accurate theoretical investigations on the molecular constants of LiBr molecule to this day.

    2 Computational methods

    All the calculations are made with the full valence complete active space self-consistent field (CASSCF) mothod[28]followed by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach[29, 30]. A full CI exactly solves the Schr?dinger equation within some basis sets, but is usually too complex a calculation to compute molecules containing more electrons. The single reference methods can almost always be done, and usually are not very challenging (to the computer or the user), however, their accuracy is limited. MRCI is a way to systematically include those configuration state functions (CSFs) that contribute most significantly to the correlation energy[31]. It is precise in treating small systems, especially dimers.

    The present calculations are performed with the MOLPRO 2008.1 package[32]. The one electron correlation-consistent basis set of Dunning and co-workers[33]is used throughout the present work. In particular, for the Li atom thespdfghcc-pV5Z basis set is employed, while for the Br atom the largest basis sets aug-cc-pV5Z are used, respectively. We believe that the very large basis sets, coupled with the effectiveness of the high-quality ab initio quantum chemical method MRCI procedure in treating the electron correlation, can give reliable harmonic frequencyωe, equilibrium internuclear distanceRe, dissociation energyDeand the PEC.

    In general, the PECs calculations are made at intervals of 0.05 nm over the internuclear distance range from 0.08 to 2.07 nm. The ab initio results are all fitted to the Murrel-Sorbie (M-S) function with the least-squares fitting method. Thus the APEFs are derived, and then the rest spectroscopic parameters,ωeχe,αe,BeandD0, are determined. Based on the APEFs, the first 20 vibrational states are performed by solving radial Schr?dinger equation of nuclear motion. And the complete vibrational levels, the classical turning points (RminandRmax), and the inertial rotation constants are reproduced whenJ= 0. All the calculations are carried out on our supercomputer Dawning TC4000A.

    3 Results and discussion

    Table 1 presents the results of the MRCI calculated molecular properties (equilibrium distancesRe, harmonic frequencyωeand dissociation energyDe) and experimental data for the LiBr(X1∑+) molecule. In order to obtain more accurateRe,ωeandDe, we take into consideration the effects on these spectroscopic parameters by the relativistic corrections at these basis sets. The results obtained by the Douglas-Kroll-Hess 2ndorder (DKH2) scalar relativistic corrections and the deviations from the non-relativistic (NR) results are also listed in Table 1.

    From Table 1, it is not diffcult to find that the DKH2 corrections make theResmall, thus slightly closer to the available experimental result[18]. As to theωe, the DKH2 corrections also make it better when compared with the non-relativistic calculations. Only theDebecomes further deviating from the measurement[18]under the DKH2 corrections. According to these, we think that the results obtained at the DKH2 corrections are in better accord with the experiments than those obtained at the non-relativistic calculations as a whole. Therefore, we employ the PECs obtained at the DKH2 corrections for further investigations.

    Table 1 Spectroscopic parameter (Re,ωeandDe) comparisons with the latest experiments for LiBr(X1∑+) obtained by non-relativistic (NR) and DKH2 at the MRCI level of theory (Li for cc-pV5Z and Br for aug-cc-pV5Z)

    3.1 APEF of the LiBr(X1∑+)

    Here we use the M-S function to fit the LiBr potentials. This function can be commonly written as follows,

    V(ρ)=-De(1+∑(ni=1aiρi)exp(-a1ρ).

    (1)

    Where,ρ=R-Re,Ris the internuclear distance of diatomic molecule.ReandDeare its equilibrium internuclear and distance dissociation energy, respectively. Which are regarded as the fixed parameters in the fitting process. The parametersai(i= 1, 2, 3,…,n) are determined by fitting.

    Fitting equation (1) with the least-squares method, the parametersaiare determined. In order to attain a satisfactory result, of which the extracted spectroscopic parameters are the closest to the experiments, we try it fromn= 3 ton= 8. By comparison with the spectroscopic experiments (Be,αe,ωeχeandD0)[8, 11-14, 16, 17], we find that the best favorable results can be obtained atn= 4. The fitting results are tabulated in Table 2.

    Table 2 The M-S APEF parameters for LiBr(X1∑+) by DKH2 corrections at the MRCI level of theory (Li for cc-pV5Z and Br for aug-cc-pV5Z)

    In order to evaluate the fitting quality of the PEC, we calculate the root mean square error (ΔERMSE) in the fitting process,

    (2)

    WhereVAPEF(i) andVab initio(i) are energies attained by the fitting and by the ab initio calculations, respectively.Nis the number of fitting points (hereN= 235). The presentΔERMSEis of only 0.003279 eV (about 0.076 Kcal/mol). It shows that the M-S function is very suitable for reproducing the PEC of the LiBr(X1∑+), and the fitting process is of high quality. Therefore, the present APEF collected in Table 2 should be reliable and can be used to perform the spectroscopic and vibrational manifold calculations, such as the spectroscopic parameters, the vibrational levels, the classical turning points and the inertial rotation constants, etc.

    3.2 Spectroscopic parameters (Be,αe,ωeχeandD0)

    Now, we calculate the rest spectroscopic parameters (Be,αe,ωeχeandD0) of the LiBr(X1∑+) as the APEF tabulated in Table 2. Using equation (1), we can derive the expressions of the force constants, quadraticf2, cubicf3and quarticf4, at the equilibrium position as follows,

    (3)

    (4)

    (5)

    ThenthespectroscopicparametersBe, αe, ωeχeandD0canbedeterminedaccordingtothefollowingequations(6)-(9),

    (6)

    (7)

    (8)

    (9)

    TheBe,αe,ωeχeandD0values derived at the MRCI level have been tabulated in Table 3 together with theReandωevalues for integrality. In addition, we also collect the available measurements[8-17]and other theories[18-27]in this Table for convenient comparison.

    In Table 3, one can find that theDevalue at this basis set under the DKH2 corrections is good agreement with the available experiment[17], and the deviation from it[17]is of 0.86%. We also find that the presentReresult is also in accord with the experiments[8, 10-12, 14, 16, 17], and the difference between them is of 1.15%. As to theωeof the LiBr(X1∑+), different experiments[8-12, 16, 17]gave different results and the differences among these measurements[8-12, 16, 17]are very large as can be seen in Table 3. This makes it difficult for us to accurately compare the present value with them. However, on the one hand, the present basis set (Li for cc-pV5Z and Br for aug-cc-pV5Z) is a very large one; on the other hand, theDeandRevalues obtained at the MRCI level of theory are accurate. According to these, we conclude that theωevalue should be accurate. Theωedeviation between this theory and the latest experiment[16]is of only 0.83%. The rest spectroscopic parametersωeχe,Be,αeandD0reproduced from the APEF are favourite well with the measurements[10-17], too. So we can further conclude that the present APEF is credible.

    Very recently, Matcha[18]calculated the spectroscopic parameters of the LiBr(X1∑+) using the self-consistent field (SCF) method. As we can see in Table 3, theDeandαevalues were too small when compared with the measurement[17], while theωevalue was too large when compared with the experiments[8-12, 16, 17]. Redingtom[19]performed theDe,Re,ωeχeandαecalculations. Unfortunately, theDevalue deviating from the measurement[17]was too large and the important constants,ωe,BeandD0, were not evaluated. Several theoretical spectroscopic investigations[20, 22, 24, 26]obtained onlyωeχeandαevalues. Obviously, other spectroscopic parameters, such asDe,Re,ωe,BeandD0, were not derived in their work. Refs. [21, 23, 25, 27] also calculated some spectroscopic parameters and their investigations were not complete.

    From the above discussion, it is easy to find that the present spectroscopic investigations are more accurate and complete than those obtained by previous theories[18-27]. Therefore, we can employ the APEF tabulated in Table 2 to make the vibrational manifold calculations.

    3.3 Vibrational manifolds

    In order to determine the vibrational eigenvalues, we must solve the radial Schr?dinger equation of nuclear motion. In the adiabatic approximation, the radial Schr?dinger equation of nuclear motion can be written as,

    (10)

    HereV(r) is the APEF tabulated in Table 2.ris the internuclear distance of two atoms, Br and Li.μis the reduced mass of the LiBr(X1∑+).υandJare the vibrational and the rotational quantum numbers, respectively.Eυ,JandΨυ,J(r) are the eigenvalues and eigenfunctions of the potentialJ(J+1)·?2/2μr2+V(r), respectively. The rotational sublevel of a given vibrational level is represented by the following power series,Where,G(υ) is the vibrational level.Bυis the inertial rotation constant. AndDυ,Hυ,Lυ,Mυ,NυandOυare the centrifugal distortion constants. By numerically solving equation (10) with the Numerov method[34], we have obtained a total of 126 vibrational states for the LiBr(X1∑+) when the rotational quantum numberJis set to equal zero (J=0). For each vibrational state, 1 vibrational levelG(υ), 1 inertial rotation constantBυand the classical turning points(RminandRmax) are obtained. Here, duo to the length limitation of the paper, we present only the first 20 vibrational levels, classical turning points and inertial rotation constants with the available experiments[16, 12]are all collected in Table 4.

    Table 3 Spectroscopic parameter comparisons with the measurements and other theories for LiBr(X1∑+) by using DKH2 at the MRCI level of theory. In the calculations, the basis set used for Li is cc-pV5Z and for Br is aug-cc-pV5Z

    (11)

    To our knowledge, in experiment, only Brazier et al.[16]determined theGυ,RminandRmaxvalues whenν≤ 9 for the LiBr(X1∑+) molecular. And Rusk and Gordy[12]obtained theBυvalues for the LiBr(X1∑+) molecular whenν=0. These results are listed in Table 4 for convenient comparisons. As a whole, the present results are in good accord with these experiments. For example, by comparison between present theory and experiment[16]in Table 4, we find that the largest deviations do not exceed 1.23%[16]forRminandRmax, 1.7%[16]forGυexcepts whenυ= 6, respectively. And by comparisonBυvalues between this theory and experiment[12]in Table 6, we also find that the deviations ofBυdo not exceed 1.4%[12]forυ=0.

    By the way, we have used the present program codes to calculate the vibrational level, classical turning points and inertial rotation constants of the X1∑+,a3∑+and A1Π states of NO+ion[35].Favorable agreement exists when compared with experiments. These investigations show that the present program codes and method are reliable.

    Unfortunately, to the best of our knowledge, no vibrational level and classical turning points exist anywhere whenν>9 and no inertial rotation constants can be found in the literature when the vibrational level is higher than zero for the LiBr(X1∑+) molecular. Thus, we cannot make any direct comparison among them. But according to the reliable APEF, the excellent agreement between the present spectroscopic parameters and the measurements[8-17]and the good accord of the vibrational level, classical turning points and inertial rotation constants between theory and experiments[16, 12], we conclude that the rest results collected in Table 4 must be accurate.

    Table 4 Comparisons of the calculated vibrational levels, classical turning points and inertial rotation constants with experiments for LiBr(X1∑+) whenJ=0 at the MRCI level of theory

    4 Conclusions

    The PECs of the LiBr(X1∑+) molecular have been obtained using the MRCI theory and large correlation-consistent basis sets (cc-pV5Z for Li and aug-cc-pV5Z for Br) at the DKH2 corrections. The present spectroscopic constants, which are determined by the PECs obtained here, are in agreement with the experimental data. The first 20 vibrational levels, the classical turning points and the inertial rotation constants are also calculated whenJ=0 by numerically solving the radial Schr?dinger equation of nuclear motion with the Numerov method. Comparison with the available experiments shows that the present calculations are reliable and accurate. As a whole, the present results provide more accurate and complete investigations on the molecular parameters of the LiBr(X1∑+) molecular when compared with the previous theoretical studies.

    [1] Pauling L.Thenatureofthechemicalbond[M]. 3rd ed. New York: Cornell University Press, 1960.

    [2] Landau L D. On the theory of transfer of energy at collisions [J].Phys.Z.Sowjetunion, 1932, 2: 46.

    [3] Zener C. Non-adiabatic crossing of energy levels [J].Proc.R.Soc.Lond. A, 1932, 137 (833): 696.

    [4] Binnewies M. Chemische transportreaktionen [J].Chem.UnsererZeit, 1998, 32 (1): 15.

    [5] Ozaki T, Jiang J, Murase K,etal. Mutual separation characteristics for the yttrium and lanthanides with chemical vapor transport process mediated by metal chloride gaseous complexes [J].J.AlloysComp., 1998, 265 (1): 125.

    [6] Hendricks J H, Aquino M I, Maslar J E,etal. Metal and ceramic thin film growth by reaction of alkali metals with metal halides: a new route for low-temperature chemical vapor deposition [J].Chem.Mater., 1998, 10 (8): 2221.

    [7] Ottosson M, Andersson T, Carlsson J O,etal. Chemical vapor deposition of the superconducting YBa2Cu3O7-xphase using halides as metal sources [J].Appl.Phys.Lett., 1989, 54 (24): 2476.

    [8] Honig A, Mandel M, Stitch M L,etal. Microwave spectra of the alkali halides [J].Phys.Rev., 1954, 96 (3): 629.

    [9] Klemperer W, Rice S A. Infrared spectra of the alkali halides. Ⅰ. lithium halides [J].J.Chem.Phys., 1957, 26 (3): 618.

    [10] Berry R S, Klemperer W. Spectra of the alkali halides. Ⅲ. Electronic spectra of lithium chloride, lithium bromide, and lithium iodide [J].J.Chem.Phys., 1957, 26 (4): 724.

    [11] Klemperer W, Norris W G, B chler A,etal. Infrared spectra of lithium halide monomers [J].J.Chem.Phys., 1960, 33 (5): 1534 and references herein.

    [12] Rusk J R, Gordy W. Millimeter wave molecular beam spectroscopy: alkali bromides and iodides [J].Phys.Rev., 1962, 127 (3): 817.

    [13] Hebert A J, Breivogel F W, Street K. Radio-frequency and microwave spectra of LiBr by the molecular-beam eledtric-resonance method [J].J.Chem.Phys., 1964, 41 (8): 2368.

    [14] Lide D R, Cahill P, Gold L P. Microwave spectrum of lithium chloride [J].J.Chem.Phys., 1964, 40 (1): 156 and references herein.

    [15] Su T -M R, Riley S J. Alkali halide photofragment spectra. Ⅱ. Alkali bromide bond energies and excited state symmetries at 266 nm [J].J.Chem.Phys., 1980, 72 (3): 1614.

    [16] Brazier C R, Oliphant N H, Bernath P F. Diode-laser spectroscopy of alkali halides: the lithium bromide molecule [J].J.Mol.Spectrosec., 1989, 134 (2): 421.

    [17] Huber K P, Herzberg G.MolecularspectraandmolecularstructureIV.Constantsofdiatomicmolecules[M]. New York: Van Nostrand Reinhold Company, 1979.

    [18] Matcha R L. Theoretical analysis of the electronic structure and molecular properties of the alkali halides. Ⅴ. potassium chloride and lithium bromide [J].J.Chem.Phys., 1970, 53 (2): 485.

    [19] Redington R L. Internuclear potential energy functions for alkali halide molecules [J].J.Phys.Chem., 1970, 74 (1): 181.

    [20] Brumer P, Karplus M. Perturbation theory and ionic models for alkali halide systems. diatomics [J].J.Chem.Phys., 1973, 58 (9): 3903.

    [21] Finn E J. Spectroscopic constants of the Rittner potential evaluated by the Dunham method [J].J.Chem.Phys., 1975, 62 (5): 1842.

    [22] Shanker J, Agrwal H B, Agrawal G G. Theory of interionic forces in alkali halide molecules [J].J.Chem.Phys., 1980, 73(8): 4056.

    [23] Kumar M, Kaur A J, Shanker J. Spectroscopic constants of alkali halides and hydrides using modified T-Rittner model [J].J.Chem.Phys., 1986, 84 (10): 5735.[JP]

    [24] Kumar M, Shanker J. Electronic polarizabilities, potential functions, and spectroscopic constants for diatomic molecules of alkali halides and alkali hydrides [J].J.Chem.Phys., 1992, 96 (7): 5289.

    [25] Dotelli G, Lombardi E, Jansen L. Model analysis of bonding in the alkali halide molecules [J].J.Mol.Struct. (Theochem), 1994, 306 (2-3): 177.

    [26] Hati S, Datta B, Datta D. Polarizability of an ion in a molecule. Applications of Ritter’s model to alkali halides [J].J.Phys.Chem., 1996, 100 (51): 19808.

    [27] Bacskay G B, Buckingham A D. Nuclear quadrupole coupling constants in alkali halide molecules: an ab initio quantum chemical study [J].Mol.Phys., 1997, 91 (3): 391.

    [28] Knowles P J, Werner H J. An efficient second-order MC SCF method for long configuration expansions [J].Chem.Phys.Lett., 1985, 115 (3): 259.

    [29] Werner H J, Knowles P J. An efficient internally contracted multiconfiguration-reference configuration interaction method [J].J.Chem.Phys., 1988, 89 (9): 5803.

    [30] Knowles P J, Werner H J. An efficient method for the evaluation of coupling coefficients in configuration interaction calculations [J].Chem.Phys.Lett., 1988, 145 (6): 514.

    [31] Fermann J T, Sherrill C D.SomeCommentsonMulti-ReferenceCI(MRCI) [M]. 1996.

    [32] Werner H J, Knowles P J, Lindh R,etal. 2008 MOLPRO, version 2008.1, a package of ab initio programs.

    [33] (a) Dunning Jr T H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen [J].J.Chem.Phys., 1989, 90 (2): 1007. (b) Kendall R A, Dunning Jr T H, Harrison R J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions [J].J.Chem.Phys., 1992, 96 (9): 6796. (c) Woon D E, Dunning Jr T H. Gaussian basis sets for use in correlated molecular calculations.Ⅰ. Core-valence basis sets for boron through neon [J].J.Chem.Phys., 1995, 103 (11): 4572.

    [35] Zhang J P, Cheng X L, Zhang H,etal. Spectroscopic investigations on NO+(X1∑+, a3∑+, A1П) ion using MRCI method and correlation-consistent sextuple basis set augmented with diffuse functions [J].Chin.Phys. B, 2011, 20 (6): 060401.

    Theoretical investigation on spectroscopic parameters and
    molecular constants of LiBr(X1∑+) molecule

    ZHANG Jin-Ping, TIAN Kai, LI Hui, ZHANG Yang-Yang

    (College of Information Engineering, Huanghe Science and Technology College, Zhengzhou 450006, China)

    Abinitiocalculations using multireference configuration interaction (MRCI) theory in combination with a series of correlation-consistent basis sets are used to determine the accurate spectroscopic parameters (Re,ωeandDe) and potential energy curves for the ground state of diatomic molecules LiBr. We discuss the Douglas-Kroll-Hess 2ndorder scalar relativistic effects on bond lengths, harmonic frequencies and dissociation energies of LiBr. The potential energy curves are all fitted to the Murrell-Sorbie function, which are used to accurately reproduce the spectroscopic parameters such asωeχe,αe,BeandD0, which are in excellent agreement with experimental values. Based on the analytical potential energy function, the total vibrational manifolds of LiBr are calculated by numerically solving the radical Schr?dinger equation of nuclear motion. For each vibrational state, the vibrational level, classical turning points and inertial rotation constants are obtained, which are in agreement with the available experiments.

    Spectroscopic parameter; Potential energy curve; Molecular constant; Relativistic correction

    2014-06-04

    河南省科技廳科技發(fā)展計(jì)劃項(xiàng)目(142300410282, 142102210136);河南省教育廳科學(xué)技術(shù)重點(diǎn)項(xiàng)目(13B140986, 13B430985);鄭州市科技局科技攻關(guān)項(xiàng)目(20130679, 121PYFZX178)

    張金平(1983—),女,河南省鄭州市人,博士,講師,主要研究領(lǐng)域?yàn)樵?、分子結(jié)構(gòu)與光譜,含能材料結(jié)構(gòu)與性質(zhì).E-mail: jinping213@163.com

    103969/j.issn.1000-0364.2015.08.007

    O561.1

    A

    1000-0364(2015)08-0564-08

    猜你喜歡
    金平基態(tài)洋洋
    SiC trench MOSFET with dual shield gate and optimized JFET layer for improved dynamic performance and safe operating area capability
    Rapid identification of volatile organic compounds and their isomers in the atmosphere
    一類非線性Choquard方程基態(tài)解的存在性
    Effect of anode area on the sensing mechanism of vertical GaN Schottky barrier diode temperature sensor
    擬相對論薛定諤方程基態(tài)解的存在性與爆破行為
    一類反應(yīng)擴(kuò)散方程的Nehari-Pankov型基態(tài)解
    非線性臨界Kirchhoff型問題的正基態(tài)解
    洋洋兔 編繪
    一鳴驚人
    竭澤而漁(下)
    色播亚洲综合网| 老司机午夜福利在线观看视频| xxx96com| 日韩精品中文字幕看吧| 久久久国产欧美日韩av| 香蕉丝袜av| av福利片在线| 久久人妻av系列| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产毛片av蜜桃av| 亚洲精品国产精品久久久不卡| 俺也久久电影网| 欧美中文日本在线观看视频| 久久精品亚洲精品国产色婷小说| 亚洲自拍偷在线| 亚洲中文av在线| 色精品久久人妻99蜜桃| 午夜成年电影在线免费观看| 婷婷精品国产亚洲av| 亚洲第一av免费看| 国产黄色小视频在线观看| 国产成人av教育| 美女扒开内裤让男人捅视频| 老司机在亚洲福利影院| 午夜福利一区二区在线看| 国产成人精品无人区| 成人国语在线视频| 色老头精品视频在线观看| 丁香欧美五月| 精品免费久久久久久久清纯| 熟女少妇亚洲综合色aaa.| 国产免费男女视频| 亚洲国产精品999在线| 嫩草影院精品99| 国产精品美女特级片免费视频播放器 | 岛国视频午夜一区免费看| 国产精品 国内视频| 特大巨黑吊av在线直播 | 欧美成人一区二区免费高清观看 | 亚洲欧美激情综合另类| 好看av亚洲va欧美ⅴa在| 嫩草影视91久久| 日韩三级视频一区二区三区| 日韩有码中文字幕| 亚洲午夜理论影院| 国产精品影院久久| 黄色视频,在线免费观看| 精品熟女少妇八av免费久了| 一级毛片精品| av天堂在线播放| 欧美性猛交黑人性爽| 午夜精品久久久久久毛片777| 淫妇啪啪啪对白视频| 黄网站色视频无遮挡免费观看| 国产欧美日韩一区二区三| 亚洲国产欧美一区二区综合| 久久国产精品人妻蜜桃| 欧美一区二区精品小视频在线| 亚洲熟妇熟女久久| 久久久精品国产亚洲av高清涩受| 国产成+人综合+亚洲专区| 女人高潮潮喷娇喘18禁视频| 狠狠狠狠99中文字幕| 久久精品国产99精品国产亚洲性色| 91九色精品人成在线观看| 亚洲精品一区av在线观看| a级毛片a级免费在线| 国产精品美女特级片免费视频播放器 | 一级作爱视频免费观看| 在线国产一区二区在线| 色在线成人网| 欧美日韩乱码在线| 老司机午夜福利在线观看视频| 欧美性长视频在线观看| 久久天堂一区二区三区四区| 久久久久国内视频| 一级毛片女人18水好多| 男人舔女人的私密视频| 少妇裸体淫交视频免费看高清 | 精品久久久久久久久久久久久 | 成人午夜高清在线视频 | 亚洲熟妇中文字幕五十中出| 国产成人一区二区三区免费视频网站| 欧美乱色亚洲激情| 久热这里只有精品99| 99精品久久久久人妻精品| 国产精品电影一区二区三区| 女人高潮潮喷娇喘18禁视频| 亚洲五月天丁香| 欧美大码av| 身体一侧抽搐| a级毛片a级免费在线| 最新在线观看一区二区三区| 午夜激情av网站| 黄色女人牲交| 欧美乱妇无乱码| 午夜久久久久精精品| 亚洲中文字幕日韩| 久久久久久大精品| 成人三级做爰电影| 变态另类成人亚洲欧美熟女| 午夜免费观看网址| 欧美日韩一级在线毛片| 香蕉久久夜色| 一级a爱片免费观看的视频| 国产精品久久久久久人妻精品电影| 亚洲国产精品久久男人天堂| 国产爱豆传媒在线观看 | 在线av久久热| 欧美成人午夜精品| 波多野结衣高清作品| 久久香蕉激情| 色播在线永久视频| 一a级毛片在线观看| 免费看十八禁软件| 99国产精品99久久久久| avwww免费| 18美女黄网站色大片免费观看| 制服人妻中文乱码| 妹子高潮喷水视频| 免费观看人在逋| 成熟少妇高潮喷水视频| 色哟哟哟哟哟哟| av有码第一页| svipshipincom国产片| 亚洲成人免费电影在线观看| 国产精品九九99| e午夜精品久久久久久久| 免费在线观看视频国产中文字幕亚洲| 欧美午夜高清在线| 后天国语完整版免费观看| 在线国产一区二区在线| 18禁黄网站禁片免费观看直播| 免费搜索国产男女视频| 亚洲欧美日韩高清在线视频| 国产一区在线观看成人免费| 国产色视频综合| 国产激情欧美一区二区| 久久亚洲精品不卡| 日韩有码中文字幕| 国产精品一区二区精品视频观看| 亚洲片人在线观看| 亚洲av熟女| 欧美国产日韩亚洲一区| 久久欧美精品欧美久久欧美| 麻豆av在线久日| 看免费av毛片| 搡老岳熟女国产| 最近最新免费中文字幕在线| 真人做人爱边吃奶动态| 丰满的人妻完整版| aaaaa片日本免费| 757午夜福利合集在线观看| 91麻豆精品激情在线观看国产| 久久午夜亚洲精品久久| 超碰成人久久| 欧美在线黄色| 国产亚洲av嫩草精品影院| 免费在线观看日本一区| 最好的美女福利视频网| 母亲3免费完整高清在线观看| 正在播放国产对白刺激| 亚洲自拍偷在线| 久久天躁狠狠躁夜夜2o2o| 男女那种视频在线观看| 亚洲人成网站在线播放欧美日韩| 国内揄拍国产精品人妻在线 | 成年免费大片在线观看| 中文字幕最新亚洲高清| 精品一区二区三区av网在线观看| 色尼玛亚洲综合影院| 黑人操中国人逼视频| 成人av一区二区三区在线看| 久久中文看片网| 色播亚洲综合网| 少妇的丰满在线观看| 亚洲av成人一区二区三| 国产爱豆传媒在线观看 | 俄罗斯特黄特色一大片| 亚洲人成电影免费在线| xxx96com| 神马国产精品三级电影在线观看 | 高清在线国产一区| 久久久国产欧美日韩av| 国产欧美日韩一区二区精品| 色婷婷久久久亚洲欧美| 国产一区二区在线av高清观看| aaaaa片日本免费| 少妇 在线观看| 国产一区二区在线av高清观看| 特大巨黑吊av在线直播 | 久久久国产成人精品二区| 国产精品99久久99久久久不卡| 19禁男女啪啪无遮挡网站| 午夜福利成人在线免费观看| 日韩欧美 国产精品| 久久中文字幕人妻熟女| 男女那种视频在线观看| 在线观看一区二区三区| 亚洲成a人片在线一区二区| 国产乱人伦免费视频| 亚洲av成人av| 亚洲第一欧美日韩一区二区三区| 999久久久精品免费观看国产| 国产精品自产拍在线观看55亚洲| 日本一本二区三区精品| 免费看a级黄色片| 麻豆av在线久日| netflix在线观看网站| 草草在线视频免费看| 欧美色视频一区免费| 亚洲午夜理论影院| 国产av不卡久久| 精品久久蜜臀av无| 一区二区三区激情视频| 亚洲精品中文字幕一二三四区| 久久国产精品人妻蜜桃| 日本 av在线| 热99re8久久精品国产| 美女国产高潮福利片在线看| or卡值多少钱| 法律面前人人平等表现在哪些方面| 男人舔女人的私密视频| 亚洲成av人片免费观看| 国产精品98久久久久久宅男小说| 天天添夜夜摸| 久久 成人 亚洲| 国产精品久久久人人做人人爽| 一夜夜www| 黄色a级毛片大全视频| 日韩成人在线观看一区二区三区| 好男人在线观看高清免费视频 | 在线观看午夜福利视频| 午夜日韩欧美国产| 欧美激情 高清一区二区三区| 无人区码免费观看不卡| 亚洲国产高清在线一区二区三 | 真人做人爱边吃奶动态| 天堂动漫精品| 欧洲精品卡2卡3卡4卡5卡区| 人人妻,人人澡人人爽秒播| 久久亚洲真实| 一级毛片高清免费大全| 久久中文看片网| 久久精品国产99精品国产亚洲性色| 欧美亚洲日本最大视频资源| 69av精品久久久久久| 色综合婷婷激情| 精品国产美女av久久久久小说| 美女 人体艺术 gogo| 侵犯人妻中文字幕一二三四区| 99在线人妻在线中文字幕| 色av中文字幕| 村上凉子中文字幕在线| 一本一本综合久久| 亚洲五月色婷婷综合| 天天添夜夜摸| 亚洲欧美日韩高清在线视频| 黄片小视频在线播放| 久久久久国产一级毛片高清牌| 免费在线观看影片大全网站| 国产亚洲av嫩草精品影院| 少妇熟女aⅴ在线视频| 亚洲av日韩精品久久久久久密| 成人18禁在线播放| 国产又色又爽无遮挡免费看| 18禁黄网站禁片午夜丰满| 久久香蕉精品热| 男女之事视频高清在线观看| 精品高清国产在线一区| 久久久久久久久久黄片| 制服人妻中文乱码| 少妇被粗大的猛进出69影院| 老司机福利观看| 久久久久亚洲av毛片大全| 桃红色精品国产亚洲av| 黑人巨大精品欧美一区二区mp4| 欧美日韩乱码在线| 搡老熟女国产l中国老女人| 欧美黑人欧美精品刺激| 国产aⅴ精品一区二区三区波| 在线视频色国产色| 国内精品久久久久久久电影| 日本免费一区二区三区高清不卡| 制服诱惑二区| 亚洲人成网站在线播放欧美日韩| 18美女黄网站色大片免费观看| 免费在线观看视频国产中文字幕亚洲| 欧美日韩亚洲综合一区二区三区_| 怎么达到女性高潮| 88av欧美| 人人澡人人妻人| 午夜a级毛片| xxxwww97欧美| 人人妻,人人澡人人爽秒播| 国产熟女午夜一区二区三区| 欧美精品亚洲一区二区| 欧美黑人巨大hd| 国产成+人综合+亚洲专区| 久久久久久久午夜电影| 真人做人爱边吃奶动态| 美女高潮到喷水免费观看| 黄色丝袜av网址大全| www日本黄色视频网| 操出白浆在线播放| 日韩免费av在线播放| 亚洲五月婷婷丁香| 国语自产精品视频在线第100页| 亚洲性夜色夜夜综合| 国产精品一区二区免费欧美| 国产91精品成人一区二区三区| 法律面前人人平等表现在哪些方面| 波多野结衣av一区二区av| 国产国语露脸激情在线看| 日本黄色视频三级网站网址| 午夜免费激情av| 女性被躁到高潮视频| 亚洲狠狠婷婷综合久久图片| 一区二区三区国产精品乱码| 成人免费观看视频高清| 国产成人精品久久二区二区免费| 国产一区二区激情短视频| 九色国产91popny在线| 久久精品aⅴ一区二区三区四区| 久久久国产成人精品二区| 99国产极品粉嫩在线观看| 免费在线观看黄色视频的| 黄网站色视频无遮挡免费观看| 国产精品久久视频播放| 在线观看免费视频日本深夜| 亚洲国产欧美一区二区综合| 午夜激情av网站| 欧美在线一区亚洲| 日韩精品中文字幕看吧| 久久亚洲真实| 少妇 在线观看| 一级片免费观看大全| 国产精品乱码一区二三区的特点| 两个人视频免费观看高清| 久久久久免费精品人妻一区二区 | 日本一本二区三区精品| 国产精品一区二区三区四区久久 | 久久狼人影院| 成熟少妇高潮喷水视频| 亚洲片人在线观看| 久久久久精品国产欧美久久久| 中文字幕人成人乱码亚洲影| 亚洲国产中文字幕在线视频| 男女下面进入的视频免费午夜 | 欧美日本亚洲视频在线播放| 97超级碰碰碰精品色视频在线观看| 自线自在国产av| 国产成人av教育| 大型黄色视频在线免费观看| 国产成人av教育| 大型黄色视频在线免费观看| 日韩一卡2卡3卡4卡2021年| 999久久久国产精品视频| 欧美日韩一级在线毛片| 此物有八面人人有两片| 老司机午夜十八禁免费视频| 精品久久久久久,| 国产区一区二久久| 日本五十路高清| 午夜老司机福利片| 午夜影院日韩av| 亚洲免费av在线视频| 波多野结衣高清无吗| 国产成人一区二区三区免费视频网站| 女人高潮潮喷娇喘18禁视频| 可以免费在线观看a视频的电影网站| 午夜免费成人在线视频| 两人在一起打扑克的视频| 久久久久亚洲av毛片大全| 免费在线观看亚洲国产| 国产野战对白在线观看| 久久久久久亚洲精品国产蜜桃av| 无遮挡黄片免费观看| 老司机午夜福利在线观看视频| 国产在线观看jvid| 午夜久久久在线观看| 久久狼人影院| 午夜成年电影在线免费观看| 国产精品,欧美在线| 天堂影院成人在线观看| 99热只有精品国产| 亚洲精品av麻豆狂野| 国产三级黄色录像| 在线观看舔阴道视频| 久久中文字幕人妻熟女| 日韩精品中文字幕看吧| 一边摸一边抽搐一进一小说| 精品一区二区三区视频在线观看免费| 欧美日韩福利视频一区二区| 日韩精品青青久久久久久| 亚洲人成伊人成综合网2020| 美女大奶头视频| 老司机福利观看| 国产主播在线观看一区二区| 九色国产91popny在线| 亚洲国产欧洲综合997久久, | 制服丝袜大香蕉在线| 欧美性长视频在线观看| 最近最新免费中文字幕在线| 国产午夜福利久久久久久| 久9热在线精品视频| 亚洲国产欧美日韩在线播放| bbb黄色大片| 伊人久久大香线蕉亚洲五| 在线看三级毛片| av天堂在线播放| 国产国语露脸激情在线看| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产清高在天天线| 国产视频内射| 午夜视频精品福利| 成人午夜高清在线视频 | 欧美日韩中文字幕国产精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美国产一区二区入口| 国产亚洲av嫩草精品影院| 亚洲午夜理论影院| 国产精品一区二区三区四区久久 | 国产精品98久久久久久宅男小说| 精品国产乱码久久久久久男人| 久久久久国产一级毛片高清牌| 女人被狂操c到高潮| 天天一区二区日本电影三级| 黄片小视频在线播放| 99热这里只有精品一区 | 一级片免费观看大全| 亚洲最大成人中文| 一个人免费在线观看的高清视频| 国产在线精品亚洲第一网站| 欧美黑人精品巨大| 色综合亚洲欧美另类图片| 高清毛片免费观看视频网站| 成人精品一区二区免费| 欧美黑人欧美精品刺激| 夜夜夜夜夜久久久久| 午夜福利高清视频| 香蕉国产在线看| 精品不卡国产一区二区三区| 国产成人精品久久二区二区91| 看黄色毛片网站| 免费高清视频大片| 亚洲天堂国产精品一区在线| 搡老岳熟女国产| 桃色一区二区三区在线观看| 欧美+亚洲+日韩+国产| 真人一进一出gif抽搐免费| 亚洲精品一卡2卡三卡4卡5卡| 性色av乱码一区二区三区2| 久久 成人 亚洲| 亚洲精品美女久久久久99蜜臀| 伦理电影免费视频| 精品国产一区二区三区四区第35| 桃色一区二区三区在线观看| 伊人久久大香线蕉亚洲五| 高清毛片免费观看视频网站| 亚洲色图av天堂| 日韩av在线大香蕉| 国产伦在线观看视频一区| 国产精品爽爽va在线观看网站 | 美女免费视频网站| 久久人妻av系列| 女性生殖器流出的白浆| 亚洲最大成人中文| 给我免费播放毛片高清在线观看| 自线自在国产av| 精品午夜福利视频在线观看一区| 久久天堂一区二区三区四区| 波多野结衣巨乳人妻| 搡老妇女老女人老熟妇| 亚洲熟女毛片儿| 中文字幕人妻熟女乱码| 美女免费视频网站| 91老司机精品| 国产精品自产拍在线观看55亚洲| 亚洲精品一卡2卡三卡4卡5卡| 国产欧美日韩一区二区精品| 亚洲国产精品sss在线观看| 伦理电影免费视频| 久久久久久大精品| 国产黄片美女视频| av福利片在线| 国产不卡一卡二| 最新美女视频免费是黄的| videosex国产| 亚洲国产精品合色在线| 国产精华一区二区三区| 波多野结衣高清无吗| www.精华液| 99在线人妻在线中文字幕| 又黄又粗又硬又大视频| 又大又爽又粗| 神马国产精品三级电影在线观看 | 变态另类成人亚洲欧美熟女| 一进一出抽搐动态| 国产一区在线观看成人免费| 一级毛片女人18水好多| 亚洲七黄色美女视频| 在线观看www视频免费| 国产日本99.免费观看| 久久精品夜夜夜夜夜久久蜜豆 | 国产成+人综合+亚洲专区| 国产精品久久视频播放| www.自偷自拍.com| av片东京热男人的天堂| 亚洲国产精品999在线| 九色国产91popny在线| 天天添夜夜摸| 一边摸一边做爽爽视频免费| 无人区码免费观看不卡| 午夜福利一区二区在线看| 国产激情偷乱视频一区二区| 国产精品久久久久久人妻精品电影| 精华霜和精华液先用哪个| 日韩欧美国产在线观看| 成人亚洲精品一区在线观看| 黄色成人免费大全| 99热6这里只有精品| 国产av一区二区精品久久| 日日摸夜夜添夜夜添小说| 69av精品久久久久久| 日韩欧美 国产精品| 欧美成人免费av一区二区三区| 免费在线观看完整版高清| 久久久久久久久中文| 久久精品91无色码中文字幕| 久久久久亚洲av毛片大全| 高清在线国产一区| 精品久久久久久久毛片微露脸| 亚洲专区国产一区二区| 亚洲欧美激情综合另类| 亚洲成人国产一区在线观看| 国产伦一二天堂av在线观看| 桃红色精品国产亚洲av| 在线视频色国产色| 啦啦啦观看免费观看视频高清| а√天堂www在线а√下载| 黄色 视频免费看| 熟女少妇亚洲综合色aaa.| 美女高潮到喷水免费观看| 国语自产精品视频在线第100页| 国产成人av教育| 国产精品久久久久久精品电影 | 中国美女看黄片| 国产精品久久久久久亚洲av鲁大| 午夜久久久久精精品| 国产精品av久久久久免费| 久久香蕉精品热| 在线av久久热| 老汉色av国产亚洲站长工具| 欧美不卡视频在线免费观看 | 看黄色毛片网站| 免费看十八禁软件| 午夜福利18| 怎么达到女性高潮| 99久久无色码亚洲精品果冻| 男人舔奶头视频| 高清在线国产一区| 亚洲九九香蕉| 免费在线观看影片大全网站| 亚洲国产中文字幕在线视频| 国产一区二区三区在线臀色熟女| 日韩中文字幕欧美一区二区| 在线av久久热| 99在线人妻在线中文字幕| 欧美日韩精品网址| aaaaa片日本免费| 美女高潮喷水抽搐中文字幕| 亚洲自偷自拍图片 自拍| 亚洲一卡2卡3卡4卡5卡精品中文| 久久狼人影院| 亚洲国产欧美网| 亚洲精华国产精华精| 亚洲精品一区av在线观看| 淫妇啪啪啪对白视频| 69av精品久久久久久| 神马国产精品三级电影在线观看 | 999精品在线视频| 亚洲男人的天堂狠狠| 国产精品日韩av在线免费观看| 在线观看免费视频日本深夜| 老司机午夜福利在线观看视频| 久久香蕉国产精品| 在线观看免费视频日本深夜| 可以免费在线观看a视频的电影网站| 欧美激情极品国产一区二区三区| 少妇 在线观看| 少妇的丰满在线观看| 国产三级黄色录像| 熟女电影av网| 老司机福利观看| 亚洲狠狠婷婷综合久久图片| 国产一级毛片七仙女欲春2 | 一进一出好大好爽视频| 无限看片的www在线观看| 欧美日韩福利视频一区二区| avwww免费| 国产精品一区二区免费欧美| av在线天堂中文字幕| 精品少妇一区二区三区视频日本电影| 欧美色视频一区免费| 国产三级在线视频| 在线观看日韩欧美| 人人妻人人澡欧美一区二区| 可以在线观看的亚洲视频| 少妇粗大呻吟视频| 久久久久国产一级毛片高清牌| 国产精品免费视频内射| 好男人在线观看高清免费视频 | 十分钟在线观看高清视频www| 丁香欧美五月|