• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fukui函數(shù)和局域軟度應(yīng)用于親電加成反應(yīng)的區(qū)位選擇性的研究

    2018-05-25 00:57:20朱尊偉楊巧鳳徐珍珍趙東霞樊紅軍楊忠志
    物理化學(xué)學(xué)報(bào) 2018年5期
    關(guān)鍵詞:化工學(xué)院遼寧化學(xué)

    朱尊偉,楊巧鳳,徐珍珍,,*,趙東霞,*,樊紅軍,楊忠志

    1遼寧師范大學(xué)化學(xué)化工學(xué)院,遼寧 大連 116029

    2中國(guó)科學(xué)院大連化學(xué)物理研究所,遼寧 大連 116029

    1 In troduction

    Electrophilic addition of an electrophile to alkenes is one of the most w idely studied electrophilic reactions1–9, as shown in Fig.1. The analysis of this sort of reactions has attracted great concern of both experimental and theoretical studies.Regioselectivity for the electrophilic addition has been shown tofollow the empirical Markovnikov’s rules10, the addition of an acidic proton to a double bond of an alkene yields a product where the proton is bound to the carbon atom bearing the largest number of hydrogen atoms when the substituent of alkene is electron-donating group. And when the substituent is electron-accepting group, the proton of acid favors to attack the carbon atom bearing the smallest number of hydrogen atoms,which calls the anti-Markovnikov’s rule. Many theoretical1–4,8and experimental5–7,9studies have focused on the regioselectivity of electrophilic addition to alkene all the while,such as, frontier molecular orbital (FMO) theory is sometimes used for explaining the regioselectivity of reaction8. Suresh and his coworkers have employed the molecular electrostatic potential to confirm the regioselectivity of Markovnikov reaction2. Recently, Yang, Ding and Zhao1have performed to use the frontier electron density of initial-state carbon atoms in molecular face theory (MFT) to estimate its regioselectivity: if the frontier electron density encoded on the Markovnikov carbon atom is larger than that of anti-Markovnikov, the reaction may be predicted to proceed on the Markovnikov route, and otherw ise it may prefer the anti-Markovnikov route.

    The local hard-soft and acids-bases (HSAB) principle is an efficient method in conceptual density functional theory(CDFT) to predict the regio- and stereoselectivities of reactions, especially the corresponding softness matching in a local approach11–17for two or four or much more reactive points between two reactants. Li-Evans18proposed that for a hard reaction the site of m inimal Fukui function (FF) is preferred and for a soft reaction the site of maximal Fukui function is preferred. Gazquez and Mendez19stated that the reaction between two chemical species w ill not necessarily occur through their softest atoms, but through those sites whose local softness are close to each other. In this respect, Geerlings,Proft and Langenacker20suggested that local softness should be used as an intermolecular reactivity descriptor, whereas the FF is as an intramolecular one. Thus, the comparisons of the FF or condensed FF values for different systems are meaningless because they represent only the relative reactivity among different sites w ithin a molecule. Therefore, in order to rationalize the intermolecular reactivity, we have proposed a series of generalized reactivity descriptors21, including generalized Fukui function (GFF) and generalized local softness (GLS)22.

    Recently,based on the generalized reactivity descriptors we have been successful to predict and to explain the regio-/stereoselectivities of Diels-Alder reactions22and the enzymatic catalyzed reactions of biological system21and to correlate their intermolecular reactivities of all reactions in terms of the atom-bond electronegativity equalization method(ABEEMσπ) model w ith the local HSAB principle at its generalized version. And we have obtained the results in good agreement w ith the experimentally observed outcomes.

    In this paper, we w ill use the usual reactivity descriptors and the generalized one combined w ith the local HSAB principle to investigate the regioselectivities of the electrophilic additions of alkene including the hydrogen chloride and benzeneselenyl w ith unsymmetrical alkene and to rationalize their order of reaction rate constants by the ab initio method at the level of MP2/6-311++G(d,p) w ith the finite difference approximation(FDA) method and the ABEEMσπ model. It should be noted that the FDA method involves the three systems of N, N + 1,and N ? 1 electrons, but ABEEMσπ model only involves one system of N electron.

    Fig.1 The regioselectivities of electrophilic additions of hyd rogen ch loride to the substituted ethenes (R3 = H) and benzeneselenenyl brom ide to substituted styrenes (R1 = R2 = H), including M arkovnikov and anti-M arkovnikov p roducts.

    2 Theo ry backg round

    2.1 The reac tivity descrip to rs

    Fukui function (FF) is one of the important reactivity descriptors in predicting the intramolecular reactivity in CDFT23,24. Parr and Yang defined the FF ()f r→ and local softness ()s r→25,26as:

    whereis the electron density at, N is the number of electrons for a molecular system, μ is the chem ical potential,the negative of the electronegativity,is the external potential generated by the nuclei, S is the global softness.

    2.2 The finite d ifference app roxim ation (FDA)

    In the FDA method, according to the Eq.(1), the condensed FF of nucleophilic attack for systems w ith electron gain can be w ritten as

    and the condensed FF of electrophilic attack for systems w ith electron donation can be expressed as

    where qk(N + 1), qk(N), and qk(N ? 1) stand for the partial charges on atom k in a molecule w ith N + 1, N, and N ? 1 electrons at the same geometry stru→cture, respectively27.

    A local softness descriptor s( r) is related to the FF via Eq.(2), so the condensed local softness is related to the condensed FF26through

    where,andimply how global softness is redistributed among various atoms of the molecule by the condensed Fukui function. The global softness, S, can be given as24S = 1/I ? A where I and A are the ionization potential and electron affinity,respectively. The first ionization potential I can be obtained by I = EN?1? ENand the electron affinity A by A = EN+1? ENw ith EN?1, EN, and EN+1denoting the total energies of the systems w ith N ? 1, N, and N + 1 electrons, respectively. The quantities involved can be calculated by an ab initio method at high level of theory.

    2.3 ABEEMσπ m odel

    Based on the DFT and electronegativity equalization method(EEM)28–34, Yang and his coworkers have developed ABEEMσπ model35–45, which explicitly partitions a molecule into atom, chemical bond, and lone pair (lp) regions. In this model, the single bond consists of one σ region, where the center of the charge for σ bond is located on the position of the ratio of the covalent atomic radii of two bonded atom; the double bond consists of one σ region and four π regions, where center of the σ bond charge is sim ilar w ith the σ region of single bond and the π bond partial charges are placed above and below the double-bonded atoms at the covalent radii of the this double-bonded atoms perpendicular to the plane formed by the σ bond; and the center of charge and its orientation for the lp region is determ ined in terms of the chem ical surrounding.

    In terms of the definition of electronegativity based on DFT,the effective electronegativity of a region a, χa, can be expressed as:

    whereandare valence-state electronegativity and hardness of the region a, respectively. a and b denote two regions, including the atom or single bond σ or double bond σ and π or lone pairs regions. qa and qb are the partial charges of regions a and b, Ra,b denotes the distance between regions a and b, and k, 0.57, is an overall correction coefficient in this formalism22,35–47. The electronegativity equalization principle demands that the effective electronegativity of every region is equal to the overall electronegativity of the molecule, χmol:

    For an arbitrary molecule partitioned into m regions, solving the Eq.(8) w ith the constraint Eq.(9) on its net charge, qmol, if the parametersandare known, we can obtain the charge of every region.

    On the basis of the definition of the FF, we can express the FF of region a in our ABEEMσπ model as:

    Hardness expressions for all the regions in a molecule like Eq.(11), altogether w ith the normalization condition of the FF, ∫f( r) dr = 1, can be also solved to directly and quickly give the molecular hardness, 2ηmol, and in particular, the condensed FF faof each region in the molecule if all parameters 2η*in Eq.(11) have been calibrated.

    2.4 The generalized reac tivity desc rip to rs

    The generalized Fukui function (GFF) fG(r) and the generalized local softness (GLS) sGhave been proposed and their definitions22are expressed as Eqs.(12) and (13):

    where, the f(and s→) are local Fukui function (FF) and local softness, the usual reactivity descriptors, NMis the number of atoms for a molecular system, and S is the global softness. Obviously, according →to Eq.(12), the GFF fG(r→) is normalized to NMbecause f( r) is normalized to 1 for a molecule. And sG( r→) is normalized to NMS rather than S,which means that the global softness is the average of the generalized local softness sG( r→). Based on the definition of fG( r→), the reactivity descriptor→ of the site is not only dependant on its charge and f( r), but also related to the number of the atoms in the molecule, NM, where the detailed ratiocination has been represented in Ref. 22.

    3 Com pu tational details

    We investigated the electrophilic additions of hydrogen chloride to asymmetric alkenes and benzeneselenenyl bromide to substituted styrenes, as shown in Fig.1. The geometries of all reactants were optimized and obtained by the B3LYP/6-311+G(d,p) level of theory in Gaussian-0348. All optimized reactants were stationary points of potential energy surface after checking the frequencies at the same level of theory.

    3.1 Calib ration of param eters χ* and 2η* fo r ABEEMσπ Model

    According to Eq.(7) and Eq.(11), we have calibrated the parameters χ*and 2η*, through a regression and least-squares optimization procedure by dealing with some model molecules35.For all model molecules, ab initio Hartree-Fock MO calculations were performed w ith STO-3G basis sets in Gaussian 0348and then the partial charges of all the model molecules were obtained by the Mulliken population analysis.Then the charge distributions obtained for the model molecules were brought into Eqs.(7–9) in order to determine the parameters χ*and 2η*through a regression and least-squares optimization procedure22,35–38,46,47. The old types of parameters were obtained from our previous work37, and the new added types and parameters of χ*and 2η*are listed in Table 1.

    For the calibration, the reason why we use the minimum STO-3G basis set is not due to its time-consuming but more importantly due to its physical significance. Ab initio calculation w ith a higher level of basis set can give more accurate prediction of energy and geometry, but can not give more suitable partial charges than lower level of basis set for practical use. This phenomenon comes from the fact that a diffuse basis function located on an atom may to some extent cover the regions of the other adjacent atoms leading to a somewhat overestimating population of this atom in the Mulliken population analysis. Derouane and coworkers49showed that the formal charges calculated w ith the 6-21 basis set are higher than those computed w ith the STO-3G basis set,and thus suggested STO-3G charges may be more reliable.W ilson and Ichikawa50and Torrent-Sucarrat and their coworkers51pointed out that the charge transfer between atoms in a molecule is overestimated when the polarization basis sets are used. Huzinaka et al.52and Jakalian et al.53, as well as our group47, had experienced that the use of higher level of basis sets overestimates the overlapping between their respective basis functions belonging to two atoms in a molecule. For example, if the 6-31G* basis set is used, the polarity of a molecule calculated by the partial charges is overestimated by 10%–15% than if the STO-3G basis set is used53. Therefore, in the calibration process of the parameters, STO-3G basis set has been used in the ab initio calculations for all the model molecules to obtain the partial charges from Mulliken population analysis.

    Tab le 1 Parameters χ* and 2η* in ABEEMσπ M odel.

    3.2 Calcu lation of Fukui func tion and local softness

    Geerlings, Proft and Langenacker20suggested that local softness should be used as an intermolecular reactivity descriptor, whereas the FF is as an intramolecular one. Under the FDA method, via S = 1/(I ? A), the global softness were obtained, where the first ionization potential I and the electron affinity A were calculated by ab initio method at MP2/6-311++G(d,p) level of theory. In terms of Eqs.(3) and(4), the condensed FFs of center atoms were calculated using the natural population analysis (NPA) at the MP2/6-311++G(d,p) level of theory, then obtained their local softness via Eqs.(5) and (6).

    In the ABEEMσπ model, the FFs of center atoms were calculated by Eq.(11), then their GFFs were calculated by Eq.(12). Their global softness was obtained by Eq.(11) because of it being the inverse of the hardness, hence the local softness and the GLS were calculated by Eqs.(2) and (13), respectively.

    3.3 Exp ression of the local HSAB p rincip le under the finite d ifference app roach and ABEEMσπ m odel

    The local HSAB principle claimed19that the interaction between two molecules w ill occur not necessarily through their the softest atoms but rather through those atoms of two systems, and their Fukui functions of which are close. Based on this principle, the softness-matching criteria was proposed by Chandea, Nguyen, Geerlings and coworkers for understanding the regioselectivity of cycloaddition reactions11–13,15,16. The softness-matching criterion at a local-local approach in the case of multiple sites of interaction has been cast in the form of the m inim ization of a quadratic form to articulate. In our investigated reactions, because there are two reaction center atoms in electrophilic additions, we w ill use the absolute values of differences between the local softness of the reaction center atoms of two reactants to express.

    Hence, w ithin the FDA method, the expression of the local HSAB principle is w ritten as Eq.(14), where the i is the site of reactivity on molecule A, and the k is the site of reactivity on molecule B, as seen in Fig.1, and theis the condensed local softness of the i th atom in A, which represents that the electrophile H atom in HCl or [PhSe] group in PhSeBr acquires a electron sharing from the π-bond of substituted ethene and theis the condensed local softness of the k th atom in B, which represents that the reactant B w ill be attacked by H atom or[PhSe] group to donate an electron to be shared. And then,based on the proposed generalized reactivity descriptor, the local HSAB principle can be expressed as the Eq.(15). In this kind of the reaction, the superscript + denotes the reactivity descriptor of the electrophilic H atom, while the superscript –represents the reactivity index of double bond C atom in alkene.

    According to the local HSAB principle, the smaller the Δs or ΔsGis, the easier the reaction is. In this paper, we only consider the state of single reactant, when ΔsMA< ΔsAMor<Δ, the Markovnikov product should be the main; and when ΔsMA> ΔsAMorA>, the anti-Markovnikov product should be favored. And the generalized reactivity descriptor can be further used to rationalize the reaction rate constants,i.e., the greater theis, the greater the reactivity is, and the easier the reaction is.

    Tab le 2 The difference values, Δs MA, Δs AM, Δ and Δ, for HCl w ith alkene in term s of MP2/6-311++G(d,p) level under thefinite difference approximation, and our ABEEMσπ model.

    Tab le 2 The difference values, Δs MA, Δs AM, Δ and Δ, for HCl w ith alkene in term s of MP2/6-311++G(d,p) level under thefinite difference approximation, and our ABEEMσπ model.

    Finite difference approximation ABEEMσπ model Δs MA Δs AM Δs G AM Δs G MA 103Δs MA 103Δs G AM 10Δs G MA 10Δs G MA ethene 0.589 0.589 2.647 2.647 0.069 0.069 0.526 0.526 propene 0.533 0.581 6.017 5.579 2.099 9.250 0.739 1.760 1-butene 0.549 0.556 8.863 8.779 2.867 5.727 0.981 2.012 2-methylpropene 0.604 0.627 8.195 7.924 3.008 6.643 0.964 2.122

    Table 3 The values of condensed f(r), f G(r), s(r), and s G(r) for the H atom of electrophile HCl and the C MA and C AM of unsymmetrical alkenes at the level of MP2/6-311++G(d,p) and the ABEEMσπ model.

    4 Resu lts and d iscussion

    4.1 Regioselec tivity of the add ition of HCl to alkene

    For the addition of HCl to unsymmetrical olefin CH2=CR1R2, when the substituent is electron-donating group, such as alkyl, the reactions comply w ith the Markovnikov’s rules to occur. When the substituent is electron-accepting group, such as ―CHO, ―COOH, the reactions comply w ith the anti-Markovnikov’s rules. As seen in Fig.1, these substituents belong to the alkyls, so the regioselectivities of these reactions abide by the Markovnikov’s rules to produce the Markovnikov’s products.

    According to Eqs.(14)–(17), the difference values, Δ sMA,Δ s , Δ sGand Δ sG, for the reactions of HCl w ith CH2=AM MA MA CR1R2were calculated by using the FDA method and the ABEEMσπ model, and listed in Table 2. Table 3 presents the detailed values of FF, GFF, local softness, and GLS of reactive center atoms obtained from these two methods.

    As shown in Table 2, follow ing the FDA method, the values of ΔsMA(0.589), ΔsAM(0.589) and(2.647),(2.647)for the reaction between HCl w ith ethene are equal to each other, respectively, which, of course, indicates that there is no regioselectivity in this reaction. When the olefin is propene, the value of ΔsMA(0.533) is smaller than the relevant(0.581).According to the local HSAB principle, the H atom of HCl favors to attack the Markovnikov’s carbon atom, so this result is in line w ith the experimental regioselectivity. However, the value of6.017) is greater than theM (5.579) by using the generalized local softness, then the regioselectivity of this reaction would be anticipated the anti-Markovnikov’s attacking. But, this result is not in agreement w ith the experimental result. By using the same way to deal w ith the rest two additions of HCl to 1-butene and 2-methylpropene, we also obtain Δs MA < Δs AM and>. Hence, according to the local HSAB principle, w ithin the FDA method, the predicted results obtained from the usual local softness are better than those from the generalized local softness (GLS).

    And then, how about are the results in terms of the ABEEMσπ model? It is clearly seen from Table 3 that the both values of ΔsMAand ΔsAMare 0.069 × 10?3, and both ΔsGMAandare 5.26 when the olefin is ethene, which indicates that the two double-bonded carbon atoms are identical. When R1is H and R2is ―CH3, Δ sMAis 2.099 × 10?3, Δ sAMis 9.250 ×10?3andis 73.9,is 17.60, i.e., Δ sMA< Δ sAMand<. Therefore, on basis of local HSABA AM principle, the Markovnikov’s product should constitute the main product of this reaction, and this result is in agreement w ith the Markovnikov’s rules. In the same way, when alkenes are 1-butene and 2-methylpropene, both Δ sMA< Δ sAMand<, so the results are consistent w ith the Markovnikov’s rules. Consequently, both Δs via usual local softness and Δ sGvia GLS from ABEEMσπ model can explain and forecast the regioselectivities of these reactions well, and the predicted results are better than those of the FDA method.

    It was reported that the rate constants for the addition of HI to ethene, propene, and 2-methylpropene were in the ratio 1:90:7005,6, which indicated that w ith raising the substituents,the reaction rates gradually became greater and greater.Furthermore, experimental activation energies of the additions of HCl to ethene (166.105 kJ·mol?1), to propene (144.348 kJ·mol?1), and to 2-methylpropene (119.244 kJ·mol?1) were reported2,9, which implied when the substituents gradually become larger and larger, the additions of HCl to CH2CR1R2are more and more easy to process. The generalized reactivity descriptors, GFF and GLS themselves, can rationalize the intermolecular reactivity, and especially forecast the order of reaction rate constants for a series of reactions. Hence, we applied the GLS, rather than Δ sGto correlate the order of the reaction rate constants for these investigated additions.

    The investigated electrophilic additions of HCl to alkenes,we have only considered the reactivity descriptors of reactants,which means that the values of GLS for the H atom of HCl are fixed and just the values of GLS for the CMAof alkenes are taken as variables, where the values of GLS for reaction centers by FDA method and ABEEMσπ model are listed in Table 3,i.e., we can disregard the GLS of H atom in HCl and only compare the GLS of CMAin alkenes of the main product. It is clear from our calculations that the values ofobtained from both FDA method and ABEEMσπ model (in Table 3) for alkenes increase w ith the substituents rising. Since the higher FF is, the higher reactivity is, i.e., the softest position of the molecule is, the easiest reactive site occurs. Hence, the addition for HCl to 2-methylpropene is the fastest reaction, the addition for HCl to ethene is the slowest one, and the addition of HCl to 1-butene is in the middle. These conclusions are just in agreement w ith experimental results and the results of usual local softness have not such regularity.

    In a word, both the usual reactivity descriptors and the generalized ones from ABEEMσπ model in combination w ith the local HSAB principle can successfully interpret and forecast the regioselectivities of the additions of HCl to alkenes, which results are in agreement w ith the Markovnikov rule, but the results of FDA method are not good. And then, the values offor the alkenes calculated by both the FDA method and the ABEEMσπ model can further correlate the reaction rate constants. When values ofgradually become big, the studied additions gradually become fast as substituents gradually increasing. But, the usual softness ofcan not do this result. Therefore, we have chosen the other series of electrophilic additions tofurther check the validity and practicability of generalized descriptors again, as seen in Fig.1.

    Table 4 The charges of CMA, CAM obtained from HF/STO-3G andABEEMσπ M odel.

    4.2 The regioselec tivity of add ition fo r benzeneseleny l b rom ide w ith alkene

    The additions of benzeneselenyl bromide to alkenes are usually considered to be the electrophilic addition reactions7.We have chosen four reactions between benzeneselenyl bromide and substituted styrene (X PhCH=CH2), where the substituents Ph X of alkenes are Ph, 3-ClPh, 4-ClPh and 4-CH3Ph, respectively. Here, [PhSe] group in electrophile is considered to be the H atom of HCl and it has the positive charge, which attacks one of the double-bonded carbon atoms of alkenes w ith enriched electron. The Br atomic charges obtained by HF/STO-3G level of theory and ABEEMσπ model are ?0.100 and ?0.140 a.u., respectively. Table 4 lists the charges of CMAand CAM, qMAand qAM, calculated by HF/STO-3G level of theory and ABEEMσπ model,respectively.

    These CMApossess much more negative charge and the CAMpossess a little charge compared w ith CMA, hence, the electrophile [PhSe] group w ill favor to attack the CMA. Here,we could consider the substituents X together w ith benzene(X―Ph―) as a whole to be the electron-donating groups, i.e.these four reactions should obey the Markovnikov’s rules according to the greater attraction between [PhSe] group and CMA, which are just in line w ith the experimental results7. We also can see that the qMAof 3-Cl and 4-Cl are less than that of the others, because the interaction between ―Cl, the electron-w ithdraw ing group, and benzene, the electron-donating group, represents the character of the electron-donating group in nonpolar solution, so leading to that result, if the reactions react in polar solution, the result may be the opposite7, however, the all calculations about these reactions were calculated at the gas state in vacuum. The charges of ABEEMσπ and ab initio method are in agreement by and large.

    Then, we make use of the usual local softness and the generalized one from FDA method and the ABEEMσπ model combination w ith local HSAB principle to estimate the regioselectivities of above four additions, the values of ΔsMA,Δ s , Δ sGand Δ sGfrom these two methods are listed in AM MA AM Table 5, and the ratio of Markovnikov’s product to anti-Markovnikov’s from the experiment7are also listed in Table 5.

    It can be seen from that Table 5 the fourandare all smaller than respective Δ sAMandunder the FDA method. And the values of Δ sMAandfrom ABEEMσπ model are also smaller than their respective Δ sAMand. Therefore, on basis of local HSAB principle, the Markovnikov’s products should constitute the main products of these four reactions by means of FDA method and ABEEMσπ model, which results are in line w ith the experimental regioselectivities.

    Table 5 The values of Δs MA, Δs AM, and for PhSeBr w ith substituted styrene (X-PhCH=CH 2) at the level of MP2/6-311++G(d,p) w ith the finite difference approach and ABEEMσπ model.

    Table 5 The values of Δs MA, Δs AM, and for PhSeBr w ith substituted styrene (X-PhCH=CH 2) at the level of MP2/6-311++G(d,p) w ith the finite difference approach and ABEEMσπ model.

    a Those reactions are reacting in benzene at 25 °C.

    X―PhCH=CH2finite difference approach ABEEMσπ Model aMA: AM Δs MA Δs AM Δs G MA Δs G AM 104Δs MA 104Δs AM 102Δs G MA 102Δs G AM H 0.841 1.457 8.915 18.780 1.666 1.680 4.683 4.711 78:22 3-Cl 0.854 1.413 9.133 18.066 1.636 1.649 4.600 4.629 59:41 4-Cl 0.857 1.442 9.183 18.534 1.644 1.658 4.625 4.652 76:24 4-CH3 0.853 1.517 7.128 19.754 1.579 1.593 6.689 6.721 86:14

    Fig.2 The line charts of the reaction rates (upper), the s G (m idd le) and s G? (lower) of CMA atom s in the four additions of benzeneselenyl brom ide to the substituted styrenes.

    We can obtain two sequences:4-CH3)<(H)<(3-Cl)<(4-Cl) via FDA method and(3-Cl)<(4-Cl)<(H)< ΔsG(4-CH)via ABEEMσπMA 3 model. According to the local HSAB principle, the smaller Δ sGis, the easier reaction is. Luk and his coworkers7gave second-order rate constants, k, its unit being dm3·mol?1·s?1of these reactions which are in order kH(2.58 ± 0.15) × 10?2, k3-Cl(1.57 ± 0.07) × 10?2, k4-Cl(2.20 ± 0.1) × 10?2, and k4-CH3(2.77 ±0.1) × 10?2, as shown in Fig.2 (upper). The order of the experimental reaction rates is k3-Cl< k4-Cl< kH< k4-CH3.Therefore, the intermolecular reactivity predicted by ABEEMσπ model is just in a reverse order compared w ith the experimental rate constants.

    Fig.2 (middle) displays the line chart of the sGobtained from the ABEEMσπ model. And Fig.2 (lower) represents the line charts of the sG?of the CMAatoms calculated by FDA method.It can be found from the Fig.2 that the order ofis4-Cl) <3-Cl) <H) <(4-CH3) (FDA method) and that ofis(3-Cl) <(4-Cl) <(H) <(4-CH3)(ABEEMσπ model). The sequence via ABEEMσπ model is just in accord w ith that of the experimental reaction rates, but that of FDA method is not for the ―Cl substituted additions.

    Therefore, the applications of the generalized reactivity descriptor combined w ith the local HSAB principle on this series of electrophilic additions demonstrate that both the values of Δs and ΔsGfrom ABEEMσπ model can forecast their regioselectivities and only the values of center atoms’generalized local softness of substituted ethenes calculated by ABEEMσπ model can rationalize the reaction rate constants rather than the difference of center atoms’ generalized local softness of the two reactants. However, the results of the finite difference approximation are not well related to the experimental results.

    5 Conc lusions

    For the addition reactions of HCl to the substituted ethenes and benzeneselenyl brom ide to the substituted styrenes,according to the local HSAB principle, the values of the softness differences,sΔ, in terms of ab initio method at the level of MP2/6-311++G(d,p) w ith the finite difference approximation (FDA) method and the ABEEMσπ model have been used to relate to their regioselectivities.

    As the performance of the generalized reactivity descriptor, it is shown that the CMAatoms of all reactions prefer to be attacked in terms of ABEEMσπ model, which is in agreement w ith the experimental results. But, the results of FDA method can not obtain such good indication. However, it is shown that there are two inverse orders, compared w ith the orders of experimental rate constants for these two series of electrophilic additions by using the ΔsGfrom FDA and ABEEMσπ model. In fact, only generalized local softness (GLS) of center atoms can be related to the orders of the experimental reaction rate constants by both the FDA method and the ABEEMσπ model except the results of the FDA method for 3-Cl substituted addition w ith a little flaw.

    Up to now, we have applied the generalized reactivity descriptors to study on several kinds of reactions, such as to predict the regio- and stereoselectivity of Diels-Alder reactions and to correlate their reaction rate constants, to rationalize the intermolecular reactivities and regioselectivities of enzymatic catalyzed nucleophilic reactions, etc. Moreover, we w ill continue to apply the generalized Fukui function and the generalized local softness to investigate other systems and tofurther check their rationality and validity.

    References

    (1) Yang, Z. -Z.; Ding, Y. -L.; Zhao, D. -X. ChemPhysChem 2008, 9,2379. doi: 10.1002/cphc.200800364

    (2) Suresh, C. H.; Koga, N.; Gadre, S. R. J. Org. Chem. 2001, 66, 6883.doi: 10.1021/jo010063f

    (3) Aizman, A.; Contreras, R.; Galvan, M.; Cedillo, A.; Santos, J. C.;Chamorro, E. J. Phys. Chem. A 2002, 106, 7844.doi: 10.1021/jp020214y

    (4) Menendez, M. I.; Suarez, D.; Sorod, J. A.; Sordo, T. L. J. Comput.Chem. 1995, 16, 659. doi: 10.1002/jcc.540160602

    (5) Benson, S. W.; Bose, A. N. J. Chem. Phys. 1963, 39, 3463.doi: 10.1063/1.1734215

    (6) Bose, A. N.; Benson, S. W. J. Chem. Phys. 1963, 38, 878.doi: 10.1063/1.1733776

    (7) Luh, T. -Y.; So, W. -H.; Cheung, K. S.; Tam, S. W. J. Org. Chem. 1985,50, 3051. doi: 10.1021/jo00217a006

    (8) Rauk, A. Orbital Interaction Theory of Organic Chemistry, 2nd ed.;John Wiley & Sons, Inc.: New York, USA, 2001.

    (9) Sathre, J. L.; Thomas, T. D.; Svensson, S. J. J. Chem. Soc., Perkin Trans 2 1997, 28, 749. doi: 10.1002/chin.199730041

    (10) Markovnikov, V. Ann. Chem. Pharm. 1870, 153, 228.doi: 10.1002/jlac.18701530204

    (11) Chandra, A. K.; Nguren, M. T. J. Comput. Chem. 1998, 19, 195.doi: 10.1002/(SICI)1096-987X(19980130)19:2<195::AID-JCC12>3.0.CO;2-H

    (12) Chandra, A. K.; Nguyen, M. T. J. Phys. Chem. A 1998, 102, 6181.doi: 10.1021/jp980949w

    (13) Damoun, S.; Woude, V. D.; Mendez, F.; Geerlings, P. J. Phys. Chem.A 1997, 101, 886. doi: 10.1021/jp9611840

    (14) Geerlings, P.; De Proft, F. Int. J. Quantum Chem. 2000, 80, 227. doi:10.1002/1097-461X(2000)80:2<227::AID-QUA17>3.0.CO;2-N

    (15) Nguyen, L. T.; De Proft, F.; Dao, V. L.; Nguyen, M. T.; Geerlings, P.J. Phys. Orgs. Chem. 2003, 16, 615. doi: 10.1002/poc.653

    (16) Nguyen, L. T.; Le, T. N.; Proft, F. D.; Chandra, A. K.; Langenaeker,W.; Nguyen, M. T.; Geerlings, P. J. Am. Chem. Soc. 1999, 121, 5992.doi: 10.1021/ja983394r

    (17) Sengupta, D.; Chandra, A. K.; Nguren, M. T. J. Org. Chem. 1997, 62,6404. doi: 10.1021/jo970353p

    (18) Li, Y.; Evans, J. N. S. J. Am. Chem. Soc. 1995, 117, 7756.doi: 10.1021/ja00134a021

    (19) Gazquez, J. L.; Mendez, F. J. Phys. Chem. 1994, 98, 4591.doi: 10.1021/j100068a018

    (20) Geerlings, P.; Proft, F. D.; Langenaeker, W. Adv. Quantum Chem.1998, 33, 303. doi: 10.1016/S0065-3276(08)60442-6

    (21) Xu, Z. -Z.; Zhao, D. -X.; Yang, Z. -Z. Chin. Sci. Bull. 2012, 57, 2787.doi: 10.1360/972012-537

    (22) Zhao, D. -X.; Xu, Z. -Z.; Yang, Z. -Z. Int. J. Quantum Chem. 2013,113, 1116. doi: 10.1002/qua.24173

    (23) Geerlings, P.; Proft, F. D.; Langenaeker, W. Chem. Rev. 2003, 103,1793. doi: 10.1021/cr990029p

    (24) Parr, R. G.; Yang, W. Density Functional Theory of Atom and Molecules; Oxford University Press: New York, USA, 1989.

    (25) Parr, R. G.; Yang, W. T. J. Am. Chem. Soc. 1984, 106, 4049.doi: 10.1021/ja00326a036

    (26) Yang, Y.; Parr, R. G. Proc. Natl. Acad. Sci. USA 1985, 82, 6723.doi: 10.1073/pnas.82.20.6723

    (27) Padmanabhan, J.; Parthasarathi, R.; Elango, M.; Subramanian, V.;Krishnamoorthy, B. S.; Gutierrez-Oliva, S.; Toro-Labb, A.; Roy, D. R.;Chattaraj, P. K. J. Phys. Chem. A 2007, 111, 9130.doi: 10.1021/jp0718909

    (28) Baekelandt, B. G.; Janssens, G. O. A.; Toufar, H.; Mortier, W. J.;Schoongeydt, R. A. J. Phys. Chem. 1995, 99, 9784.doi: 10.1021/j100024a020

    (29) Baekelandt, B. G.; Mortier, W. J.; Lievens, J. L.; Schoonheydt, R. A.J. Am. Chem. Soc. 1991, 113, 6730. doi: 10.1021/ja00018a003

    (30) Baekelandt, B. G.; Mortier, W. J.; Schoonheydt, R. A. The EEM Approach to Chemical Hardness in Molecules and Solids:Fundamentals and Applications, Structruce and Bonding; Springer:Berlin Heidelberg, Germany, 1993; Vol. 80, pp. 187–227.

    (31) Bultinck, P.; Langenaeker, W.; Lahorte, P.; De Proft, F.; Geerlings, P.;Waroquier, M.; Tollenaere, J. P. J. Phys. Chem. A 2002, 106, 7887.doi: 10.1021/jp0205463

    (32) Bultinck, P.; Langenaeker, W.; Lahorte, P.; Proft, F. D.; Geerlings, P.;Alsenoy, C. V.; Tollenaere, J. P. J. Phys. Chem. A 2002, 106, 7895.doi: 10.1021/jp020547v

    (33) Janssens, G. O. A.; Toufar, H.; Baekelandt, B. G.; Mortier, W. J.;Schoonheydt, R. A. Stud. Surf. Sci. Cat. 1997, 105, 725.doi: 10.1016/S0167-2991(97)80622-2

    (34) Mortier, W. J.; Ghosh, S. K.; Shankar, S. J. Am. Chem. Soc. 1986, 108,4315. doi: 10.1021/ja00275a013

    (35) Cong, Y.; Yang, Z. Z. Chem. Phys. Lett. 2000, 316, 324.doi: 10.1016/S0009-2614(99)01289-0

    (36) Yang, Z. -Z.; Wang, J. -J.; Zhao, D. -X. J. Comput. Chem. 2014, 35,1690. doi: 10.1002/jcc.23676

    (37) Zhao, D. X.; Liu, C.; Wang, F. F.; Yu, C. Y.; Gong, L. D.; Liu, S. B.;Yang, Z. Z. J. Chem. Theory Comput. 2010, 6, 795.doi: 10.1021/ct9006647

    (38) Liu, C.; Li, Y.; Han, B. -Y.; Gong, L. -D.; Lu, L. -N.; Yang, Z. -Z.;Zhao, D. -X. J. Chem. Theory Comput. 2017, 13, 2098.doi: 10.1021/acs.jctc.6b01206

    (39) Liu, L. -L.; Yang, Z .-Z.; Zhao, D. -X.; Gong, L. -D.; Liu, C. RSC Adv.2014, 4, 52083. doi: 10.1039/c4ra09631b

    (40) Wu, Y.; Yang, Z. Z. J. Phys. Chem. 2004, 108, 7563.doi: 10.1021/jp0493881

    (41) Yang, Z. Z.; Cui, B. Q. J. Chem. Theory Comput. 2007, 3, 1561.doi: 10.1021/ct600379n

    (42) Yang, Z. Z.; Qian, P. J. Chem. Phys. 2006, 125, 064311.doi: 10.1063/1.2210940

    (43) Yang, Z. Z.; Wu, Y.; Zhao, D. X. J. Chem. Phys. 2004, 120, 2541.doi: 10.1063/1.1640345

    (44) Yang, Z. Z.; Zhang, Q. J. Comput. Chem. 2006, 27, 1.doi: 10.1002/jcc.20317

    (45) Zhang, Q.; Yang, Z. Z. Chem. Phys. Lett. 2005, 403, 242.doi: 10.1016/j.cplett.2005.01.011

    (46) Wang, C. S.; Yang, Z. Z. J. Chem. Phys. 1999, 110, 6189.doi: 10.1063/1.478524

    (47) Yang, Z. Z.; Wang, C. S. J. Phys. Chem. A 1997, 101, 6315.doi: 10.1021/jp9711048

    (48) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J. C.; et al. Gaussian 03, Revision C.02; Gaussian, Inc.:Wallingford, CT, USA, 2004.

    (49) Derouane, E. G.; Fripiat, J. G.; Ballmoos, R. V. J. Phys. Chem. 1990,94, 1687. doi: 10.1021/j100367a085

    (50) Wilson, M. S.; Ichikawa, S. J. Phys. Chem. 1989, 93, 3087.doi: 10.1021/j100345a041

    (51) Torrent-Sucarrat, M.; Proft, F. D.; Geerlings, P.; Ayers, P. W. Chem.Eur. J. 2008, 14, 8652. doi: 10.1002/chem.200800570

    (52) Huzinaka, S.; Sakai, Y.; M iyoshi, E.; Narita, S. J. Chem. Phys. 1990,93, 3319. doi: 10.1063/1.458812

    (53) Jakalian, A.; Bush, B.; Jack, D. B.; Bayly, C. I. J. Comput. Chem.2000, 21, 132. doi: 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P

    猜你喜歡
    化工學(xué)院遼寧化學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    遼寧之光
    新少年(2022年3期)2022-03-17 07:06:38
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    讀遼寧 愛(ài)遼寧
    遼寧艦
    學(xué)與玩(2018年5期)2019-01-21 02:13:08
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    丝袜喷水一区| 精品少妇久久久久久888优播| 亚洲三级黄色毛片| 小蜜桃在线观看免费完整版高清| 人妻一区二区av| kizo精华| 国产精品不卡视频一区二区| 久久毛片免费看一区二区三区| 在线观看免费视频网站a站| 成人午夜精彩视频在线观看| 80岁老熟妇乱子伦牲交| 99re6热这里在线精品视频| 欧美激情国产日韩精品一区| 国产精品久久久久久久电影| 熟女电影av网| 亚洲国产高清在线一区二区三| 亚洲精品aⅴ在线观看| 久久精品久久久久久噜噜老黄| 亚洲伊人久久精品综合| 亚洲欧洲日产国产| 亚洲自偷自拍三级| 大码成人一级视频| 99九九线精品视频在线观看视频| 卡戴珊不雅视频在线播放| 国产片特级美女逼逼视频| 国产69精品久久久久777片| 精品亚洲成a人片在线观看 | 美女主播在线视频| 国产精品人妻久久久影院| 18禁在线播放成人免费| 天美传媒精品一区二区| 18禁在线无遮挡免费观看视频| 国产乱来视频区| 青春草国产在线视频| 乱码一卡2卡4卡精品| 午夜免费男女啪啪视频观看| 欧美日韩一区二区视频在线观看视频在线| 国产精品福利在线免费观看| 亚洲精品乱久久久久久| 欧美精品国产亚洲| 国产精品一区二区在线不卡| 最近手机中文字幕大全| 久久久色成人| 成年人午夜在线观看视频| 国产精品蜜桃在线观看| 干丝袜人妻中文字幕| 中文字幕制服av| 久久久久久久国产电影| 夜夜爽夜夜爽视频| av视频免费观看在线观看| 国产精品.久久久| 久久精品人妻少妇| 国产午夜精品久久久久久一区二区三区| 男女下面进入的视频免费午夜| 少妇被粗大猛烈的视频| 国产成人91sexporn| 高清av免费在线| 青春草亚洲视频在线观看| 26uuu在线亚洲综合色| 大又大粗又爽又黄少妇毛片口| 91精品国产国语对白视频| 天天躁日日操中文字幕| 少妇猛男粗大的猛烈进出视频| 精品国产一区二区三区久久久樱花 | 久久久成人免费电影| 最近中文字幕2019免费版| 人人妻人人澡人人爽人人夜夜| 在线播放无遮挡| 91狼人影院| 欧美老熟妇乱子伦牲交| h视频一区二区三区| 国产成人精品一,二区| 欧美3d第一页| 男人狂女人下面高潮的视频| 丝瓜视频免费看黄片| 国产精品久久久久久久久免| 91精品国产九色| 九九爱精品视频在线观看| 国产成人午夜福利电影在线观看| 久久97久久精品| 中国国产av一级| 校园人妻丝袜中文字幕| 久久影院123| 成人影院久久| av国产免费在线观看| 久久精品人妻少妇| 国产精品无大码| 欧美日韩视频精品一区| 国产成人精品久久久久久| 免费观看在线日韩| 高清黄色对白视频在线免费看 | 久久久精品免费免费高清| videos熟女内射| 亚洲国产精品999| 国产成人freesex在线| 国产欧美日韩一区二区三区在线 | 成年美女黄网站色视频大全免费 | 免费观看的影片在线观看| 日本av手机在线免费观看| 91久久精品国产一区二区成人| 丰满少妇做爰视频| 青青草视频在线视频观看| 久久久久久久精品精品| 一本久久精品| 在线免费十八禁| 欧美高清性xxxxhd video| 免费人成在线观看视频色| 人人妻人人爽人人添夜夜欢视频 | 日韩 亚洲 欧美在线| 免费观看的影片在线观看| 免费久久久久久久精品成人欧美视频 | 日日啪夜夜撸| 亚洲国产精品999| 秋霞伦理黄片| 日日啪夜夜爽| 国产免费又黄又爽又色| 亚洲色图av天堂| 国产av精品麻豆| 久久99蜜桃精品久久| 亚洲国产精品专区欧美| 精品午夜福利在线看| 欧美一区二区亚洲| 校园人妻丝袜中文字幕| 国产亚洲精品久久久com| 中文字幕亚洲精品专区| 久久久精品免费免费高清| 久久久久久久久久久免费av| 国产 一区精品| 国产精品一及| 91久久精品国产一区二区三区| 精品一区在线观看国产| 一区二区三区乱码不卡18| 久久久久网色| 国产精品久久久久久精品古装| 最近的中文字幕免费完整| 久久精品久久久久久久性| 免费人成在线观看视频色| 成人亚洲欧美一区二区av| freevideosex欧美| 97在线视频观看| 国产中年淑女户外野战色| 婷婷色av中文字幕| 大又大粗又爽又黄少妇毛片口| 亚洲第一区二区三区不卡| 亚洲怡红院男人天堂| 国产精品女同一区二区软件| 久久97久久精品| 亚洲综合精品二区| 男人狂女人下面高潮的视频| 一个人免费看片子| 亚洲三级黄色毛片| 亚洲性久久影院| 日产精品乱码卡一卡2卡三| 最黄视频免费看| 在线观看国产h片| 成人无遮挡网站| 99热全是精品| 精品人妻一区二区三区麻豆| h视频一区二区三区| 99视频精品全部免费 在线| 亚洲三级黄色毛片| 看免费成人av毛片| 91久久精品电影网| 夜夜看夜夜爽夜夜摸| 久久久久久久久久人人人人人人| 九九在线视频观看精品| 大话2 男鬼变身卡| 久久人妻熟女aⅴ| 91久久精品电影网| 黄色日韩在线| 只有这里有精品99| 亚洲熟女精品中文字幕| 亚洲精品久久久久久婷婷小说| 国内少妇人妻偷人精品xxx网站| 我要看黄色一级片免费的| 啦啦啦在线观看免费高清www| 精品少妇久久久久久888优播| 国内精品宾馆在线| 少妇 在线观看| 少妇熟女欧美另类| 直男gayav资源| 国产av一区二区精品久久 | 亚洲在久久综合| 欧美激情国产日韩精品一区| 国产av码专区亚洲av| 免费观看av网站的网址| 亚洲国产日韩一区二区| 在线精品无人区一区二区三 | 国产高清三级在线| 国产欧美日韩精品一区二区| 亚洲人成网站高清观看| 涩涩av久久男人的天堂| 伦精品一区二区三区| 在线看a的网站| 久久精品国产自在天天线| 日本wwww免费看| 自拍欧美九色日韩亚洲蝌蚪91 | 内地一区二区视频在线| 超碰97精品在线观看| 尤物成人国产欧美一区二区三区| 美女中出高潮动态图| 在线观看免费视频网站a站| 免费看光身美女| 亚洲成色77777| 欧美老熟妇乱子伦牲交| 尾随美女入室| 国产日韩欧美在线精品| 日韩成人伦理影院| av专区在线播放| 岛国毛片在线播放| 成人亚洲欧美一区二区av| 国产女主播在线喷水免费视频网站| 26uuu在线亚洲综合色| 久久99精品国语久久久| av在线蜜桃| 男女啪啪激烈高潮av片| 22中文网久久字幕| 国产真实伦视频高清在线观看| 深夜a级毛片| 制服丝袜香蕉在线| 看十八女毛片水多多多| 网址你懂的国产日韩在线| 国产av码专区亚洲av| 我的老师免费观看完整版| 在线观看av片永久免费下载| 国产爱豆传媒在线观看| av在线观看视频网站免费| 五月伊人婷婷丁香| 最近最新中文字幕免费大全7| 亚州av有码| 国产精品女同一区二区软件| videossex国产| 能在线免费看毛片的网站| 亚洲精品成人av观看孕妇| 如何舔出高潮| 精品亚洲成a人片在线观看 | 欧美日韩在线观看h| 国产精品秋霞免费鲁丝片| 少妇的逼好多水| 午夜免费鲁丝| 成年人午夜在线观看视频| 亚洲精品成人av观看孕妇| 亚洲图色成人| 国产在线男女| 九草在线视频观看| 91午夜精品亚洲一区二区三区| 欧美精品一区二区免费开放| 亚洲美女视频黄频| 精品午夜福利在线看| 青春草亚洲视频在线观看| 一本久久精品| 最近2019中文字幕mv第一页| 男人狂女人下面高潮的视频| 蜜桃久久精品国产亚洲av| 在线播放无遮挡| 看十八女毛片水多多多| 欧美日韩综合久久久久久| 日日啪夜夜撸| 亚州av有码| 欧美性感艳星| 王馨瑶露胸无遮挡在线观看| 人妻少妇偷人精品九色| 欧美丝袜亚洲另类| 又爽又黄a免费视频| 在线免费十八禁| 99热这里只有是精品在线观看| 国产视频内射| av在线app专区| av专区在线播放| 亚洲最大成人中文| 91久久精品电影网| 色吧在线观看| 亚洲,一卡二卡三卡| 人妻少妇偷人精品九色| 欧美日韩亚洲高清精品| 免费看日本二区| 一区二区av电影网| 成人国产麻豆网| 国产亚洲最大av| 一级毛片我不卡| 国产精品久久久久久久久免| 亚洲美女搞黄在线观看| 在线观看免费视频网站a站| av专区在线播放| 久热这里只有精品99| 免费看光身美女| 美女主播在线视频| 少妇的逼好多水| 天美传媒精品一区二区| 国产精品嫩草影院av在线观看| 亚洲欧美日韩另类电影网站 | 女的被弄到高潮叫床怎么办| 日韩一区二区视频免费看| 亚洲欧美成人精品一区二区| 日韩电影二区| 十八禁网站网址无遮挡 | 超碰97精品在线观看| 麻豆乱淫一区二区| 80岁老熟妇乱子伦牲交| 97超碰精品成人国产| 久久精品熟女亚洲av麻豆精品| 国产精品人妻久久久久久| 色5月婷婷丁香| 久久国产精品大桥未久av | 国产成人a区在线观看| 国产亚洲av片在线观看秒播厂| 午夜激情福利司机影院| 国产成人a∨麻豆精品| 91久久精品国产一区二区成人| 国产精品一区二区在线不卡| 精品一区在线观看国产| 中国国产av一级| 噜噜噜噜噜久久久久久91| 亚洲精品国产色婷婷电影| 一级a做视频免费观看| 观看美女的网站| 国产综合精华液| 天美传媒精品一区二区| 能在线免费看毛片的网站| 免费观看无遮挡的男女| 一区二区三区免费毛片| 狂野欧美激情性bbbbbb| 熟妇人妻不卡中文字幕| 中文在线观看免费www的网站| 国产深夜福利视频在线观看| 久热这里只有精品99| 亚洲av二区三区四区| 天天躁夜夜躁狠狠久久av| 国产精品成人在线| 国产一区亚洲一区在线观看| 丰满乱子伦码专区| 欧美xxxx黑人xx丫x性爽| 2021少妇久久久久久久久久久| 欧美精品亚洲一区二区| 中文字幕制服av| 久久这里有精品视频免费| 欧美人与善性xxx| 欧美最新免费一区二区三区| 一个人看的www免费观看视频| 一区在线观看完整版| 日本wwww免费看| 日本猛色少妇xxxxx猛交久久| 噜噜噜噜噜久久久久久91| 女人十人毛片免费观看3o分钟| 亚洲综合精品二区| 亚洲国产精品成人久久小说| 免费黄色在线免费观看| 欧美极品一区二区三区四区| 国产淫语在线视频| 日韩,欧美,国产一区二区三区| 欧美区成人在线视频| 国产熟女欧美一区二区| 性高湖久久久久久久久免费观看| 亚洲欧美精品自产自拍| 看非洲黑人一级黄片| 免费观看性生交大片5| 国产综合精华液| 少妇裸体淫交视频免费看高清| 有码 亚洲区| 一级毛片久久久久久久久女| 久久97久久精品| 男人和女人高潮做爰伦理| 欧美 日韩 精品 国产| 国产免费又黄又爽又色| 亚洲欧美成人精品一区二区| 欧美日韩综合久久久久久| 日韩欧美 国产精品| 亚洲熟女精品中文字幕| 一区二区三区精品91| av.在线天堂| 黄片wwwwww| 激情五月婷婷亚洲| 麻豆乱淫一区二区| 亚洲国产精品国产精品| 久久久精品免费免费高清| 欧美激情国产日韩精品一区| 国内少妇人妻偷人精品xxx网站| 精华霜和精华液先用哪个| 亚洲一级一片aⅴ在线观看| 亚洲,一卡二卡三卡| 99久国产av精品国产电影| 欧美成人精品欧美一级黄| av线在线观看网站| 日本黄色日本黄色录像| 一个人看的www免费观看视频| 久久av网站| 亚洲精品久久久久久婷婷小说| 五月玫瑰六月丁香| 久久精品久久精品一区二区三区| 成年免费大片在线观看| 国产精品国产av在线观看| 亚洲精品日韩在线中文字幕| 午夜福利高清视频| 久久99热这里只有精品18| 国产免费视频播放在线视频| 久久久久久久大尺度免费视频| 99久久精品一区二区三区| av.在线天堂| 一区二区三区精品91| 国产 一区精品| 国产精品爽爽va在线观看网站| 国产成人免费无遮挡视频| 熟女人妻精品中文字幕| 国产日韩欧美亚洲二区| 伦理电影大哥的女人| 国产成人freesex在线| 国产高潮美女av| av网站免费在线观看视频| 九九久久精品国产亚洲av麻豆| 爱豆传媒免费全集在线观看| 久久久精品94久久精品| 亚洲精品456在线播放app| 乱码一卡2卡4卡精品| 在线观看一区二区三区| 97精品久久久久久久久久精品| 大香蕉久久网| 一边亲一边摸免费视频| 亚洲人成网站在线播| 91精品一卡2卡3卡4卡| 国产永久视频网站| 亚洲av福利一区| 国产黄片视频在线免费观看| 欧美成人午夜免费资源| 亚洲色图av天堂| 国产精品成人在线| 青青草视频在线视频观看| 午夜激情福利司机影院| 人人妻人人看人人澡| 夫妻性生交免费视频一级片| 久久久成人免费电影| 91在线精品国自产拍蜜月| 亚洲av综合色区一区| 国产成人a区在线观看| 免费av不卡在线播放| av播播在线观看一区| 少妇丰满av| 国产av国产精品国产| 婷婷色av中文字幕| 日韩成人伦理影院| 日韩av不卡免费在线播放| 日本猛色少妇xxxxx猛交久久| 一本一本综合久久| 狠狠精品人妻久久久久久综合| 高清视频免费观看一区二区| av免费观看日本| 亚洲欧美日韩卡通动漫| 如何舔出高潮| 大香蕉久久网| 99久久精品热视频| 久久国产亚洲av麻豆专区| 熟妇人妻不卡中文字幕| 成年美女黄网站色视频大全免费 | 一本—道久久a久久精品蜜桃钙片| 丝袜脚勾引网站| 久久av网站| 久久精品久久久久久噜噜老黄| 日韩亚洲欧美综合| 人妻一区二区av| 亚洲国产欧美在线一区| 日韩 亚洲 欧美在线| 国产伦精品一区二区三区四那| 日韩av不卡免费在线播放| 偷拍熟女少妇极品色| 国产精品一二三区在线看| 高清视频免费观看一区二区| 只有这里有精品99| 免费观看性生交大片5| 中文字幕免费在线视频6| 欧美日韩一区二区视频在线观看视频在线| 久久久久久久久大av| 深爱激情五月婷婷| 亚洲精品乱码久久久v下载方式| a级一级毛片免费在线观看| 美女国产视频在线观看| av不卡在线播放| 久久精品国产亚洲av涩爱| 国产亚洲欧美精品永久| 国产久久久一区二区三区| 久久热精品热| 最近2019中文字幕mv第一页| 免费看av在线观看网站| 久久久久久久久久人人人人人人| 99热国产这里只有精品6| av一本久久久久| 水蜜桃什么品种好| 免费人成在线观看视频色| 麻豆成人av视频| 亚洲综合色惰| 在现免费观看毛片| 亚洲精品一二三| 日韩中字成人| 午夜福利影视在线免费观看| 夜夜爽夜夜爽视频| 午夜福利网站1000一区二区三区| 我要看日韩黄色一级片| 男人狂女人下面高潮的视频| 国内少妇人妻偷人精品xxx网站| 欧美少妇被猛烈插入视频| 国产欧美日韩一区二区三区在线 | 国产欧美亚洲国产| 久久久国产一区二区| 欧美成人a在线观看| 亚洲美女搞黄在线观看| 国产精品一区二区在线观看99| 国产精品无大码| 免费观看的影片在线观看| 一级爰片在线观看| 身体一侧抽搐| 久久99热这里只频精品6学生| 美女中出高潮动态图| 国产精品成人在线| 精品久久久久久久末码| 日日摸夜夜添夜夜添av毛片| 亚洲av成人精品一二三区| 简卡轻食公司| 亚洲,欧美,日韩| 一级片'在线观看视频| 麻豆精品久久久久久蜜桃| 国产精品一区二区在线观看99| av一本久久久久| 日本欧美视频一区| 亚洲欧美成人综合另类久久久| 一级黄片播放器| 成人毛片60女人毛片免费| 欧美一区二区亚洲| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美日韩无卡精品| 国产免费一区二区三区四区乱码| 亚洲丝袜综合中文字幕| 久久久久精品久久久久真实原创| 少妇 在线观看| 亚洲经典国产精华液单| 自拍欧美九色日韩亚洲蝌蚪91 | 国产亚洲午夜精品一区二区久久| 国产精品久久久久久久久免| 国产永久视频网站| 久久6这里有精品| 男人添女人高潮全过程视频| 2022亚洲国产成人精品| 午夜激情福利司机影院| 久久久久久久久久人人人人人人| 国产免费视频播放在线视频| 久久久欧美国产精品| 精品久久久久久久久亚洲| 亚洲精品日本国产第一区| 国产精品不卡视频一区二区| 亚洲伊人久久精品综合| 热re99久久精品国产66热6| 永久网站在线| 男男h啪啪无遮挡| 99re6热这里在线精品视频| 国产欧美另类精品又又久久亚洲欧美| 久久99热6这里只有精品| 亚洲国产高清在线一区二区三| av国产精品久久久久影院| 成人美女网站在线观看视频| 亚洲美女黄色视频免费看| 久久久久国产精品人妻一区二区| 黄色一级大片看看| 麻豆国产97在线/欧美| 免费看av在线观看网站| 亚洲精品日韩在线中文字幕| 国模一区二区三区四区视频| kizo精华| av一本久久久久| 精品亚洲乱码少妇综合久久| 国产黄色免费在线视频| 欧美xxxx黑人xx丫x性爽| 欧美激情极品国产一区二区三区 | tube8黄色片| 久久久成人免费电影| 免费在线观看成人毛片| 人体艺术视频欧美日本| 色哟哟·www| 男人添女人高潮全过程视频| 26uuu在线亚洲综合色| 国产精品一区www在线观看| 夜夜看夜夜爽夜夜摸| 少妇裸体淫交视频免费看高清| 成人美女网站在线观看视频| 99久久精品热视频| 少妇人妻精品综合一区二区| 黄色配什么色好看| 精品久久国产蜜桃| 夜夜爽夜夜爽视频| 26uuu在线亚洲综合色| 国产 精品1| 亚洲av日韩在线播放| 午夜免费鲁丝| av专区在线播放| 国产亚洲91精品色在线| 亚洲精品国产av蜜桃| 国产黄频视频在线观看| 国产一级毛片在线| 3wmmmm亚洲av在线观看| 午夜精品国产一区二区电影| 精品久久久久久电影网| 婷婷色av中文字幕| 看非洲黑人一级黄片| 在线亚洲精品国产二区图片欧美 | 26uuu在线亚洲综合色| 少妇人妻精品综合一区二区| 日本与韩国留学比较| 国产无遮挡羞羞视频在线观看| 自拍偷自拍亚洲精品老妇| 最近的中文字幕免费完整| 国产乱人视频| 久久人人爽人人片av| 在线天堂最新版资源| 婷婷色综合www| 边亲边吃奶的免费视频| 成年人午夜在线观看视频| 一级毛片黄色毛片免费观看视频| 能在线免费看毛片的网站| 亚洲国产精品一区三区|