• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    RbCl和CsCl水溶液結構的X射線散射及經驗勢結構精修模擬

    2018-05-25 00:58:07周永全曾我良枝山口敏男房艷房春暉
    物理化學學報 2018年5期
    關鍵詞:福岡春暉鹽湖

    周永全,曾我良枝,山口敏男,房艷,房春暉,*

    1中國科學院青海鹽湖研究所,青海 西寧 810008

    2福岡大學理學院化學系,福岡 814-0180,日本

    1 In troduction

    Rubidium and cesium are strategic rare-dispersed element resources in brine. Solvent extraction and adsorption are considered as the most promising technologies for rubidium and cesium separation from salt lake brine1,2. Solvent extraction and adsorption are also designated as the potential ways for radioactive isotopes137Cs elimination from the nuclear waste water1,3. The local hydration structure of Rb+and Cs+is essential for understanding the extraction mechanism of both ions. For example, there are abundant studies on the complexation of alkali metal ions with crown ethers. Although the inchoate theories such as “best-fit theory”4and “maximum contact point theory”5were often used for elaborating the extraction selectivity of crown ethers,researchers6–9have recently stated that the extraction selectivity series is not explained until the ion hydration and the solvent effect are taken into consideration at the molecular level.

    M icroscopic properties such as the ionic hydration and ion pairs of aqueous solutions have attracted researchers’ attention over decades10–13. Numerous X-ray and neutron scattering studies on the microscopic properties of alkali ion hydration and association have been performed, and a comprehensive report summarised the results on the structure and dynamics of hydrated ions until 199314. Cl?is widely studied and characterized by a relatively stable hydration shell14,15. The hydration structure of Li+and Na+w ith small ionic radii in aqueous solutions is well studied and defined as a rigid hydration shell14. On the contrary, the larger size Rb+and Cs+may have weaker tendencies of hydration and more variegated than the smaller ones. Additionally, the distance of the first-neighbor O(W)-O(W) interactions for solvent water is close to the hydration distances of Rb+and Cs+, which makes it difficult to extract the structural information about the hydration of these ions, especially for Rb+. Furthermore, Rb+and Cs+strongly absorb X-rays, and Rb+emits serious fluorescence when a molybdenum anode target is used.Therefore, structural studies on aqueous solutions of rubidium and cesium salts are much less and controversial. Smirnov et al.16summarised the structures of the nearest neighbors of Rb+and Cs+in aqueous solutions of their salts before 2007. Here,some latest results17–25are collected in Table 1.

    According to Table 1, the Rb+–O (H2O) distance in aqueous rubidium salt solutions ranges w ithin 0.280–0.315 nm. The coordination number for Rb+varies in a range of 6.0–8.5. The Cs+–O distance w ithin the hydrated Cs+is in the range of 0.295–0.325 nm w ith the coordination number from 3 to 9.When considering the second hydration shell and the ion association in aqueous solutions of rubidium and cesium salts,there is few detailed information. Although neutron and X-ray scattering and X-ray absorption methods are well known for providing us direct structure information on ion hydration and association26–29, the structural information obtained is limited to one-dimensional, and thus no detailed structure of ion hydration and association is obtained. Developed by Soper et al.30–32, Empirical Potential Structure Refinement (EPSR) has become a versatile methodology to analyze the onedimensional total X-ray and neutron scattering data of liquid and amorphous materials. EPSR has been proved to be very successful in extracting the individual site-site pair correlation functions, coordination number distribution, angle distribution,and spatial density function (SDF, 3D structure), etc. for various liquids and solutions under various conditions33–36.

    In the present work, X-ray diffraction measurements are made on aqueous 1.0 mol·dm?3RbCl and CsCl solutions.EPSR modelling based on the X-ray structure factors obtained is used to estimate all site-site pair correlation functions, the coordination number distributions, and the spatial density functions. The structures about hydrated Cl?, Rb+, Cs+, ion association, as well as solvent water in the solutions, are discussed.

    Table 1 Structural parameters of Rb+ and Cs+ hydration under ambient condition obtained by experimental and theoretical methods.

    2 Experim en tal and theo retical m ethods

    2.1 Sam p les p reparation and analysis

    Commercially available RbCl and CsCl (AR, Sigma Chemicals) were recrystallized from distilled water. Sample solutions were prepared by mass w ith ultrapure water to a required concentration. The density of both solutions was determined w ith a vibrating densitometer DMA48 (Anton Paar)which had been calibrated w ith dried air and distilled water at(298 ± 0.5) K, w ith the reproducibility of 0.01%. The composition and properties of the sample solutions are listed in Table 2.

    Table 2 Com position and properties of the sam p le solutions.

    2.2 X-ray d iffrac tion m easu rem en ts

    X-ray scattering patterns were measured in a reflection geometry for free surface of sample solutions at ambient condition (T = (298 ± 2) K) on an X-ray diffractometer(Empyrean, PANalytical) w ith a GaliPix 3D detector. The X-rays were generated by an Ag anode tube (the wavelength, λ =0.056087 nm for Ag Kα) operated at 60 kV and 30 mA.Rhodium filter was used to strip the Kβ radiation. The scattering angle range spanned 2° ≤ 2θ ≤ 150°, corresponding to a range of the scattering vector Q (Q = 4πsinθ/λ) of 4.292 nm–1≤ Q ≤216.4 nm–1. Divergent and scattering slits of 1/16° and 1/4° for the low angle range of 2° to 50° and 1/2° and 1° for a high angle range of 40° to 150° were employed, respectively. The accumulative counts for each angle were greater than 5 × 104to ensure the statistical counting errors of less than 1%.

    2.3 X-ray data treatm en ts

    A fter absorption correction of the samples, the corrected intensity (Icor) was normalized to an electron unit by comparing the asymptote of the experimental data with the calculated coherent intensity in a large scattering vector range (Q > 150 nm?1). The normalization factor was re-checked by Krogh-Moe and Norman integration methods37,38. The values from both methods agreed w ith each other w ithin 2%. The structure function i(Q) of the solutions was calculated by subtracting the independent scatterings of all atoms in the solution from the normalised intensity as

    Here, K is the normalization factor, I cor(Q) the experimental intensity corrected for polarization, ni the number of the i-th atom in the stoichiometric volume (V) containing one water molecule, fi(Q) expresses the atom ic scattering factor of atom i corrected for the real part of the anomalous dispersion, Δfi" is the imaginary part, taken from the reference39, Iiincoh(Q)denotes the incoherent scattering including the Breit-Dirac recoil factor correction for atom i, which was cited from Hubbell’s papers40. The Q-weighted structure function was Fourier-transformed to the radial distribution function (RDF).

    The ripples observed at distances less than 0.1 nm were removed by calculating the theoretical peak of the intramolecular interactions w ithin a water molecule and performing Fourier inverse transformation in a usual manner41.Then, the coherent scattering intensity (Icoh(Q)) can be gotten as Eq.(2)

    All the corrections and treatments were performed w ith the program KURVLR42. More details about the X-ray data analysis can be found elsewhere28,43.

    2.4 Em p irical po ten tial struc tu re re finem en t m odelling

    EPSR utilises a Monte Carlo style methodology to minim ise the diあerence between experimental total structure factors and those generated from the simulation of a sample solution. The experimental total normalised structure factor used in EPSR is defined as Eq.(3)

    where Fsim(Q) is the total structure factor, ci and cj are the atomic fractions of atom types i and j, fi(Q) and fj(Q) are the Q dependent atomic scattering factors of atom types i and j, δij is the Kronecker function to avoid double counting pairs of atoms of the same type, Aij(Q) is the Faber-Ziman partial structure factor, gij(r) is the site-site pair correlation function for all of the atoms present in the sample.

    The total radial distribution functions (G(r)) is calculated as Eq.(6).

    Initial structures for an EPSR simulation are generated by placing the appropriate number of ions and molecules into a box to give the required density. The potential energy of the simulation box is calculated as Eqs.(7) and (8),

    where U intra is described by using a series of harmonic potentials, εij and σij are the Lennard-Jones parameters for the potential well depth and eあective atom size, respectively, ε0is the vacuum permittivity, rijis the interatom ic spacing, qiis the atomic charge, U EP is the empirical potential which is generated in EPSR30–32.

    The EPSR simulation boxes were set up by using a cubic box containing 1000 water molecules for pure water, 1000 water molecules, 18 Cl?and 18 Rb+or 18 Cs+for the 1.0 mol?dm?3RbCl and CsCl aqueous solutions, corresponding to the experimental salt concentration, respectively. The potential parameters44,45used in the EPSR modelling are listed in Table 3.

    Then, Monte Carlo (MC) simulations in EPSR were done in the traditional way. The diあerence between EPSR and the conventional MC is that the potential energy function used in EPSR (Eq.(7)) has an additional perturbation term (U EP)derived purely from the fit of the simulation to the experimental scattering data. This empirical potential energy term serves to drive the simulated structure factor as close as possible to the experimental scattering data w ithout violating the constraints imposed on the atomic overlap, van der Waals forces, and hydrogen bonding30–32. Fig.1 illustrates the calculation flow of EPSR.

    Table 3 Reference potential parameters used in EPSR modelling.

    Fig.1 Scheme for the calculation flow of EPSR.

    Fig.2 Experim entally determ ined (points) and EPSR simu lated (solid lines) F(Q) and G(r) for the 1.0 mol·dm–3 aqueous RbCl and CsCl solutions.

    3 Resu lts and d iscussion

    Experimentally determined and EPSR simulated F(Q) and G(r) for the sample solutions are shown in Fig.2. There are good agreements between the experimental data and the EPSR fi ts in F(Q) above ~10 nm?1and above ~0.2 nm in G(r), which indicates that reasonable structures were elucidated.

    3.1 Hyd ration of C l?, Rb+ and Cs+

    The hydration of Cl?is characterized from gCl-O(W)(r) of the aqueous RbCl and CsCl solutions (Fig.3a). The Cl-O(W) pair correlation functions are very analogous to each other, with the same hydration distance of 0.321 nm, and with a tiny difference in the peak intensity. The coordination number CN of j-th ion is calculated by Eq.(9).

    Here, ρj is the number density of atom j, r m in and r max denote the minimum and maximum distance, respectively, to define the hydration shell of the ion.

    The hydration numbers of Cl-are 5.9 ± 1.1 and 6.0 ± 1.1 in the RbCl and CsCl, respectively (Fig.3b and Table 3). This tiny difference in the intensity of the first peak might indicate a relatively stronger ion association in the aqueous RbCl solution than in the aqueous CsCl solution as discussed in subsequent Section 3.3.

    Fig.3 The pair correlation functions (a) and the coordination num ber distributions (b) of Cl-O(W) in the 1.0 m ol·dm?3 aqueous RbCl and CsCl solutions from EPSR m odelling.

    Fig.4 The pair correlation functions (a) and the coordination number distributions (b) of Rb–O(W) and Cs-O(W) in 1.0 mol·dm–3 aqueous RbCl and CsCl solutions from EPSR modelling.

    Fig.5 Hyd ration structures of Cl? (a), Rb+ (b) and Cs+ (c) extracted from a random snapshot of EPSR m odeling.

    The hydration shells for Rb+and Cs+are seen as the first peaks at 0.297 and 0.312 nm in gRb-O(W)(r) and gCs-O(W)(r) due to Rb+–O(W) and Cs+–O(W) distances, respectively (Fig.4a).Here, we should note that their coordination numbers are sensitive to the cutoff distance (r m in and r max) in Eq.(9). In this work, the integration range was chosen up to the first minimum of g(r) as 0.261–0.378 nm for Rb+and 0.285–0.413 nm for Cs+.The coordination numbers thus obtained are given in Table 3.The Rb+is surrounded by 7.3 ± 1.4 water molecules, and 8.4 ±1.6 water molecules hydrate Cs+. Schematic pictures of the hydration structures of Cl?, Rb+and Cs+were extracted from the snapshots of EPSR modelling boxes and are shown in Fig.5.

    Both Rb+and Cs+are the typical large ionic-radius monovalent ions w ith a low surface charge density and are classified as weakly hydrated ions in contrast to Li+and Na+.Such an evidence is seen in the second coordination sphere. As is seen in g Cs-O(W)(r) in Fig.4a, Cs+does not form the second hydration sphere. Available data on the second hydration sphere of Rb+are ambiguous and controversial in the literature.Angelo et al.46stated that Rb+does not form the second hydration sphere, whereas Sm irnov’s study47showed the formation of the stable second coordination sphere. In the present work, the EPSR modelling results show that Rb+shows stronger hydration ability than Cs+since the second hydration sphere is observed in gRb-O(W)(r) in Fig.4a. However, its second hydration sphere diffuses from 0.378 to 0.591 nm, and the coordination number corresponds to 15 to 25 according to Fig.4b. The average coordination number of the second shell of Rb+is 18.7 ± 2.4 w ith large uncertainties (Table 4), which means a relaxed second hydration sphere.

    3.2 Bu lk w ater

    The pair correlation functions of O(W)-O(W) in aqueous 1.0 mol·dm?3RbCl and CsCl solutions and pure water are shown in Fig.6a. The first-neighbor O(W)-O(W) peak in pure water is observed around 0.279 nm in the present work,which is well consistent w ith the literature33,48. According to the g O(W)-O(W)(r) of the RbCl and CsCl solutions, the first O(W)-O(W, I) peak sharpens, and the peak position shifts to 0.273 nm, which indicates the tetrahedral structure intensifies in the bulk water. This behavior is sim ilar to that in pure water under pressure, which has been observed by many other researchers33. The averaged coordination number of O(W)-O(W, I) decreases from 4.9 ± 1.1 in pure water to 3.8 ± 0.9 in the RbCl and CsCl solutions (Table 4).In addition, the second peak in the gO(W)-O(W)(r) shifts to the shorter distance (Fig.6a).

    The spatial density functions were calculated, which shows the location of molecules or portions of molecules relative to one another49. By averaging over the orientation of the neighbouring molecules which is derived from a spherical harmonic expansion of the pair correlation function from the modelling box, a three-dimensional view of the liquid structure is provided. The SDFs of the neighboring water molecule around a central water molecule are shown in Fig.7. The range for each shell was fixed to the local m inimum of gO(W)-O(W)(r) of pure water to view a change in the SDFs in the different solutions at the same length scales.

    Table 4 The positions and average coordination num ber of the atom pairs in the samp le solutions.

    Fig.6 The pair correlation functions (a) and the coordination number distributions (b) of O(W)-O(W) in the 1.0 mol·dm?3 RbCl and CsCl solutions and pure water from EPSR modelling.

    Fig.7 Spatial density distribution functions of the neighboring water m olecules around a central water m olecule. The pure water(top),1.0 m ol·dm?3 aqueous RbCl solution(m idd le)and 1.0 m ol·dm?3 aqueous CsCl solutions (bottom).

    The dark blue lobes represent the fi rst sphere at a contour level of 25% of the water molecules w ithin the distance lim its of 0.10–0.336 nm, and the greyish blue and sem itransparent ones do the second sphere (0.339–0.567 nm). The red and white balls in the centre represent O and H atoms of H2O, respectively. Top views are for pure water, the m iddle one for the 1.0 mol?dm?3RbCl aqueous solution, and the bottom views for the 1.0 mol?dm?3CsCl aqueous solution.

    As is seen in Fig.7, the fi rst shell keeps the tetrahedral coordination w ith the slight decrease in the diffusion range for the RbCl and CsCl solutions, which indicates the tetrahedral structure of the first sphere intensified in the electrolyte solutions. On the other hand, the greyish blue and sem itransparent lobes (the second sphere) diffuse in a larger range zone compared w ith pure water. This indicates the tetrahedral ordering of the second shell becomes more disordered for the electrolyte solutions. It is worth noting that all the Cl?, Rb+and Cs+are classified as the typical“structure breaking” ions in aqueous solutions50. On the microscopic level, we can draw out the conclusion that this so-called “breaking” mainly affects the second sphere around the central water molecule.

    Fig.8 The pair correction functions (a) and the coordination number distributions (b) of Rb-Cl and Cs-Cl in1.0 m ol·dm?3 aqueous RbCl and CsCl solutions from EPSR m odelling.

    Fig.9 Local structure of the contact ion pairs in 1.0 m ol·dm?3 aqueous RbCl (a) and CsCl (b) solutions extracted from snapshot of EPSR modelling.

    3.3 Ion assoc iation

    When considering the ionic association, we should note that the preferential formation of ion pairs w ith counter ions in aqueous RbCl and CsCl solutions is typical16,51. Ion association information about Rb+/Cs+and Cl?ion pairs can be seen from the ion-Cl pair correlation functions g ion-Cl(r)shown in Fig.8a. In gion-Cl(r), we can find a peak around 0.324 and 0.336 nm in the aqueous RbCl and CsCl solutions,respectively, which can be attributed to the Rb+–Cl?and Cs+–Cl?characteristic distances of direct contact ion pairs in the solution. Fig.8b shows the coordination number distributions of the Rb+-Cl?and Cs+-Cl?contact ion pairs which range zero to less than 2 w ith the average coordination number of 0.4 ± 0.4 and 0.3 ± 0.4 in the 1.0 mol?dm?3RbCl and CsCl solutions, respectively. The large uncertainties reflect relatively loosened contact Rb+-Cl?and Cs+-Cl?and ion pairs in the 1.0 mol?dm?3solutions. In fact, more than 60% of Cs+and Rb+are present as the aqua ions.

    The formation of cation-anion contact ion pairs should be concentration dependent. Extended studies on aqueous RbCl and CsCl solutions of different salt concentrations are in progress.

    There is a very broad peak from 0.45 to 0.65 nm in g Cs-Cl(r), which indicates that the solvent separated ion pairs may coexist in the CsCl solution. On the other hand, this broad peak is very ambiguous in gRb-Cl(r). Comparing w ith Cs+, Rb+seems to prefer toform direct contact ion pairs and shows a stronger ion association ability. Fig.9 shows the schematic views for the contact ion pairs in 1.0 mol?dm?3aqueous RbCl and CsCl solutions extracted from a random snapshots of EPSR modelling.

    4 Conc lusions

    The structure of 1.0 mol?dm?3aqueous RbCl and CsCl solutions under the ambient condition is studied by X-ray diffraction measurements. The experimental structure factors are subjected to empirical potential structure refinement modelling to reveal the details of ion hydration and association in the solutions.

    (1) In aqueous RbCl and CsCl solutions, the Cl?–H2O distance is almost the same as 0.321 nm w ith very similar coordination numbers of 5.9 ± 1.1 and 6.0 ± 1.1,respectively.

    (2) Rb+is surrounded on the average by 7.3 ± 1.4 water molecules w ith the Rb+–H2O distance of 0.297 nm. A relatively obvious second hydration sphere can be assigned w ith the Rb+–H2O(II) distance of 0.489 nm and the coordination number of 18.7 ± 2.4.

    (3) Average 8.4 ± 1.6 water molecules hydrate w ith Cs+w ith the Cs+–H2O distance of 0.312 nm. Cs+does not form the second hydration sphere in the present solution. Cs+show s relatively weaker hydration ability than Rb+.

    (4) Dissolution of RbCl and CsCl into water intensifies the tetrahedral structure of the bulk water, which is in a sim ilar fashion as pure water under pressure. Cl?, Rb+and Cs+prevent the second neighbour water molecules around the central one from form ing a tetrahedral sphere.

    (5) Direct contact ion pairs are partially formed in both aqueous RbCl and CsCl solutions, w ith the Rb–Cl and Cs–Cl distances of 0.324 and 0.336 nm, respectively. Rb+shows stronger ion association abilities than Cs+.

    References

    (1) Xu, C.; Wang, J. C.; Chen, J. Solvent Extr. Ion Exc. 2012, 30, 623.doi: 10.1080/07366299.2012.700579

    (2) Lei, H.; Li, S.; Zhai, Q.; Zhang, H.; Jiang, Y.; Hu, M. Acta Phys. -Chim. Sin. 2012, 28, 1599. [雷紅, 李淑妮, 翟全國,張暉英, 蔣育澄, 胡滿成. 物理化學學報, 2012, 28, 1599.]doi: 10.3866/PKU.WHXB201204281

    (3) Zhang, H.; Wang, S.; Wang, R.; Lin, C.; Zhang, X.; Wang, X.Acta Phys. -Chim. Sin. 2000, 16, 952. [張惠源, 王淑蘭, 王榕樹,林燦生, 張先業(yè), 王孝榮. 物理化學學報, 2000, 16, 952.]doi: 10.3866/PKU.WHXB20001016

    (4) Izatt, R. M.; Rytting, J. H.; Nelson, D. P.; Haymore, B. L. Science 1969, 164, 443. doi: 10.1126/science.164.3878.443

    (5) Maleknia, S.; Brodbelt, J. J. Am. Chem. Soc. 1993, 115, 2837.doi: 10.1021/ja00060a034

    (6) Glendening, E. D.; Feller, D.; Thompson, M. A. J. Am. Chem.Soc. 1994, 116, 10657. doi: 10.1021/ja00102a035

    (7) Inokuchi, Y.; Ebata, T.; Rizzo, T. R.; Boyarkin, O. V. J. Am. Chem.Soc. 2014, 136, 1815. doi: 10.1021/ja4086066

    (8) Rodriguez, J. D.; Vaden, T. D.; Lisy, J. M. J. Am. Chem. Soc.2009, 131, 17277. doi: 10.1021/ja906185t

    (9) Inokuchi, Y.; Boyarkin, O. V.; Kusaka, R.; Haino, T.; Ebata, T.;Rizzo, T. R. J. Phys. Chem. A 2012, 116, 4057.doi: 10.1021/jp3011519

    (10) Richens, D. T. The Chemistry of Aqua Ions: Synthesis, Structure and Reactivity: A Tour Through the Periodic Table of the Elements; Wiley: Chichester, UK, 1997; pp. 24–68.

    (11) Fawcett, W. R. Liquids, Solutions, and Interfaces from Classical Macroscopic Descriptions to Modern Microscopic Details;Oxford Univesity Press: New York, USA, 2004; pp. 204–254.

    (12) Hao, L.; Zhao, Y.; Zhao, J.; Jiang, X.; Yang, Z.; Zhao, D. Acta Phys. -Chim. Sin. 2016, 32, 2921. [赫蘭蘭, 郭宇, 趙健, 姜新蕊,楊忠志, 趙東霞. 物理化學學報, 2016, 32, 2921.]doi: 10.3866/PKU.WHXB201609193]

    (13) Galib, M.; Baer, M. D.; Skinner, L. B.; Mundy, C. J.; Huthwelker,T.; Schenter, G. K.; Benmore, C. J.; Govind, N.; Fulton, J. L.J. Chem. Phys. 2017, 146, 084504. doi: 10.1063/1.4975608

    (14) Ohtaki, H.; Radnai, T. Chem. Rev. 1993, 93, 1157.doi: 10.1021/cr00019a014

    (15) Cummings, S.; Enderby, J. E.; Neilson, G. W.; Newsome, J. R.;Howe, R. A.; Howells, W. S.; Soper, A. K. Nature 1980, 287, 714.doi: 10.1038/287714a0

    (16) Sm irnov, P. R.; Trostin, V. N. Russ. J. Gen. Chem. 2007, 77, 2101.doi: 10.1134/S1070363207120043

    (17) Du, H.; Rasaiah, J. C.; M iller, J. D. J. Phys. Chem. B 2007, 111,209. doi: 10.1021/jp064659o

    (18) M ile, V.; Gereben, O.; Kohara, S.; Pusztai, L. J. Phys. Chem. B 2012, 116, 9758. doi: 10.1021/jp301595m

    (19) Ramos, S.; Barnes, A. C.; Neilson, G. W.; Capitan, M. J. Chem.Phys. 2000, 258, 171. doi: 10.1016/S0301-0104(00)00132-4

    (20) Ildikó, H.; László, P. J. Phys.: Condens. Matter 2007, 19, 335208.doi: 10.1088/0953-8984/19/33/335208

    (21) M ile, V.; Pusztai, L.; Dom inguez, H.; Pizio, O. J. Phys. Chem. B 2009, 113, 10760. doi:10.1021/jp900092g

    (22) Buda, A.; A li, S. M. J. Mol. Liq. 2013, 179, 34.doi: doi/abs/10.1021/ic030310t

    (23) Ikeda, T.; Boero, M. J. Chem. Phys. 2012, 137, 041101.doi: 10.1063/1.4742151

    (24) M?hler, J.; Persson, I. Inorg. Chem. 2011, 51, 425.doi: 10.1021/ic2018693

    (25) Ling, L.; Fang, C.; Fang, Y. Salt Lake Res. 2006, 15, 45. [林聯(lián)君,房春暉, 房艷, 秦緒鋒. 鹽湖研究, 2006, 15, 45.]

    (26) Ansell, S.; Barnes, A. C.; Mason, P. E.; Neilson, G. W.; Ramos, S.Biophys. Chem. 2006, 124, 171. doi: 10.1016/j.bpc.2006.04.018

    (27) Neilson, G. W.; Mason, P. E.; Ramos, S.; Sullivan, D. Philos.Trans. R. Soc. London, Ser. A 2001, 359, 1575.doi: 10.1098/rsta.2001.0866

    (28) Zhou, Y.; Fang, C.; Fang Y.; Zhu, F.; Tao, S.; Xu, S. Russ. J. Phys.Chem. A 2012, 86, 1236. doi: 10.1134/S0036024412060349

    (29) Thorpe, S. J. L.; Thorpe, M. F. Local Structure from Diffraction;K luwer Academ ic Publishers: New York, USA, 2002; pp. 59–85.

    (30) Soper, A. K. Chem. Phys. 1996, 202, 295.doi: 10.1016/0301-0104(95)00357-6

    (31) Soper, A. K. Phys. Rev. B 2005, 72, 104204.doi: 10.1103/PhysRevB.72.104204

    (32) Soper, A. K. Mol. Simul. 2012, 38, 1171.doi: 10.1080/08927022.2012.732222

    (33) Yamaguchi, T.; Fujimura, K.; Uchi, K.; Yoshida, K.; Katayama, Y.J. Mol. Liq. 2012, 176, 44. doi: 10.1016/j.molliq.2012.08.021.

    (34) Shalaev, E.; Soper, A. K. J. Phys. Chem. B 2016, 120, 7289.doi: 10.1021/acs.jpcb.6b06157

    (35) Mancinelli, R.; Botti, A.; Bruni, F.; Ricci, M. A.; Soper, A. K.J. Phys. Chem. B 2007, 111, 13570. doi: 10.1021/jp075913v

    (36) Bow ron, D. T.; Moreno, S. D. Coord. Chem. Rev. 2014, 277, 2.doi: 10.1021/jp202961t

    (37) Krogh-Moe, J. Acta Crystallogr. 1956, 9, 951.doi: 10.1107/S0365110X56002655

    (38) Norman, N. Acta Crystallogr. 1957, 10, 370.doi: 10.1107/S0365110X57001085

    (39) Prince, E. International Tables for Crystallography; Kluwer Academ ic Publishers: London, UK, 2004; pp. 230–235, 255,555–556, 658.

    (40) Hubbell, J. H.; Veigele, W. J.; Briggs, E. A.; Brown, R. T.;Cromer, D. T.; Howerton, R. J. J. Phys. Chem. Ref. Data 1975, 4(3), 471. doi: 10.1063/1.555523

    (41) Kaplow, R.; Strong, S. L.; Averbach, B. L. Phys. Rev. 1965, 138,A1336. doi: 10.1103/PhysRev.138.A1336

    (42) Johansson, G.; Sandstr?m M. Chemica Scripta 1973, 4, 195.doi: 10.1107/S0021889875009594

    (43) Zhou, Y.; Fang, C.; Fang, Y. Acta Phys. -Chim. Sin. 2010, 26,2323. [周永全, 房春暉, 房艷. 物理化學學報, 2010, 26, 2323.]doi: 10.3866/PKU.WHXB20100903

    (44) Yamaguchi, T.; Lee, K.; Yamauchi, M.; Fukuyama, N.; Yoshida,K. Bunseki Kagaku 2015, 64, 295.doi: 10.2116/bunsekikagaku.64.295

    (45) Jensen, K. P.; Jorgensen, W. L. J. Chem. Theory Comput. 2006, 2,1499. doi: 10.1021/ct600252r

    (46) D’Angelo, P.; Persson, I. Inorg. Chem. 2004, 43, 3543.doi: 10.1021/ic030310t

    (47) Sm irnov, P. R.; Grechin, O. V. Russ. J. Coord. Chem. 2013, 39,685. doi: 10.1134/S1070328413090078

    (48) Soper, A. K. Chem. Phys. 2000, 258, 121.doi: 10.1016/S0301-0104(00)00179-8

    (49) Soper, A. K. J. Chem. Phys. 1994, 101, 6888.doi: 10.1063/1.468318

    (50) Marcus, Y. Chem. Rev. 2009, 109, 1346. doi: 10.1021/cr8003828.

    (51) Chen, T.; Hefter, G.; Buchner, R. J. Phys. Chem. A 2003, 107,4025. doi: 10.1021/jp026429p

    猜你喜歡
    福岡春暉鹽湖
    鹽湖為什么色彩斑斕
    水木榮春暉
    中老年保健(2022年2期)2022-08-24 03:20:24
    天空之境——新疆柴窩堡鹽湖
    地理教學(2022年10期)2022-05-23 09:45:06
    春暉
    鴨綠江(2021年17期)2021-11-11 13:03:41
    山西運城:冬日鹽湖色彩斑斕
    科學導報(2020年80期)2020-12-21 11:54:32
    建設生態(tài)宜居美麗湖城背景下的衡水市區(qū)街路美化路徑研究
    誰言寸草心,報得三春暉——唱給父母的贊歌
    如冰如雪,貌美鹽湖
    吳春暉藏石欣賞
    寶藏(2017年11期)2018-01-03 06:45:52
    福岡貓咖啡
    一本一本综合久久| 国产亚洲精品av在线| 网址你懂的国产日韩在线| 亚洲精品乱码久久久久久按摩| 国产精品久久久久久精品电影| 日本爱情动作片www.在线观看| 国产片特级美女逼逼视频| 日日啪夜夜爽| 成年版毛片免费区| 91av网一区二区| 亚洲在线自拍视频| 国产av码专区亚洲av| eeuss影院久久| 深爱激情五月婷婷| 国产麻豆成人av免费视频| 亚洲av电影不卡..在线观看| 国产成人一区二区在线| 国产三级在线视频| 国产亚洲最大av| 一本一本综合久久| 欧美97在线视频| 亚洲欧美日韩东京热| 尾随美女入室| 久久99精品国语久久久| www.色视频.com| 国产精品三级大全| 三级毛片av免费| 国产欧美日韩精品一区二区| 国产黄色免费在线视频| 日韩强制内射视频| 国产单亲对白刺激| 日韩,欧美,国产一区二区三区| 亚洲精品自拍成人| 美女xxoo啪啪120秒动态图| 毛片女人毛片| 午夜久久久久精精品| .国产精品久久| 亚洲美女视频黄频| 大片免费播放器 马上看| 女的被弄到高潮叫床怎么办| 国内精品一区二区在线观看| 精品国产三级普通话版| 欧美成人一区二区免费高清观看| av在线老鸭窝| 国产爱豆传媒在线观看| 色综合站精品国产| 成人鲁丝片一二三区免费| 国产在线男女| 午夜福利在线观看免费完整高清在| 亚洲av男天堂| 最后的刺客免费高清国语| 伊人久久国产一区二区| 国产av码专区亚洲av| 我的女老师完整版在线观看| 91久久精品国产一区二区三区| 成人性生交大片免费视频hd| 国产亚洲精品av在线| 汤姆久久久久久久影院中文字幕 | 亚洲欧美日韩卡通动漫| av线在线观看网站| 三级国产精品欧美在线观看| 一边亲一边摸免费视频| 在线免费观看不下载黄p国产| av专区在线播放| 亚洲欧美一区二区三区黑人 | 国产色爽女视频免费观看| 国产精品1区2区在线观看.| 日韩伦理黄色片| 免费观看无遮挡的男女| 午夜久久久久精精品| 国产av码专区亚洲av| av免费在线看不卡| 老司机影院成人| 黄色欧美视频在线观看| 男人舔奶头视频| 国产精品爽爽va在线观看网站| 国产中年淑女户外野战色| av专区在线播放| 久久久亚洲精品成人影院| 国产一区二区亚洲精品在线观看| 超碰97精品在线观看| 国产探花极品一区二区| 又大又黄又爽视频免费| 国产亚洲精品久久久com| 又黄又爽又刺激的免费视频.| www.av在线官网国产| 美女主播在线视频| 亚洲va在线va天堂va国产| videos熟女内射| 亚洲电影在线观看av| 亚洲av免费在线观看| 国产精品熟女久久久久浪| 青春草视频在线免费观看| 日韩欧美 国产精品| 美女黄网站色视频| 久久久久九九精品影院| 一级毛片aaaaaa免费看小| 纵有疾风起免费观看全集完整版 | videos熟女内射| 亚洲第一区二区三区不卡| 中文精品一卡2卡3卡4更新| 日本一二三区视频观看| 小蜜桃在线观看免费完整版高清| 国产亚洲5aaaaa淫片| 免费看美女性在线毛片视频| 亚洲不卡免费看| 国产老妇女一区| 国产欧美另类精品又又久久亚洲欧美| 韩国av在线不卡| 99re6热这里在线精品视频| 哪个播放器可以免费观看大片| 国产综合精华液| 99久国产av精品| 99久久九九国产精品国产免费| 亚洲伊人久久精品综合| 最近手机中文字幕大全| 国产又色又爽无遮挡免| 欧美日韩精品成人综合77777| 91精品伊人久久大香线蕉| 尤物成人国产欧美一区二区三区| 国产一级毛片七仙女欲春2| 国产成人福利小说| 国产一级毛片在线| 欧美最新免费一区二区三区| 国产一区二区亚洲精品在线观看| 亚洲av不卡在线观看| 久久久久国产网址| 免费不卡的大黄色大毛片视频在线观看 | 国产精品蜜桃在线观看| 人妻制服诱惑在线中文字幕| 久久久久久久久久黄片| 非洲黑人性xxxx精品又粗又长| 国产又色又爽无遮挡免| 日韩制服骚丝袜av| 国产麻豆成人av免费视频| 亚洲性久久影院| 国内揄拍国产精品人妻在线| 国产成人aa在线观看| 国产伦一二天堂av在线观看| 国产中年淑女户外野战色| 日韩欧美国产在线观看| 日韩一本色道免费dvd| 国产精品精品国产色婷婷| 欧美 日韩 精品 国产| av福利片在线观看| av一本久久久久| 嘟嘟电影网在线观看| 国产精品一区二区在线观看99 | 亚洲成人一二三区av| 少妇高潮的动态图| 国产国拍精品亚洲av在线观看| 最近2019中文字幕mv第一页| 亚洲成色77777| 黑人高潮一二区| 最近2019中文字幕mv第一页| .国产精品久久| av又黄又爽大尺度在线免费看| 成人性生交大片免费视频hd| 亚洲经典国产精华液单| av免费在线看不卡| 欧美丝袜亚洲另类| 亚洲成人av在线免费| 亚洲国产欧美在线一区| 91精品国产九色| 最近中文字幕2019免费版| 高清av免费在线| 三级国产精品片| 色综合色国产| a级毛片免费高清观看在线播放| 91精品国产九色| 插逼视频在线观看| 深爱激情五月婷婷| 夜夜爽夜夜爽视频| 久久精品久久久久久噜噜老黄| 午夜免费激情av| 18+在线观看网站| 热99在线观看视频| 三级国产精品片| 亚洲经典国产精华液单| 青春草亚洲视频在线观看| 女人被狂操c到高潮| 亚洲成色77777| 色哟哟·www| 一级av片app| 精品国产一区二区三区久久久樱花 | 免费少妇av软件| 神马国产精品三级电影在线观看| 日韩欧美精品免费久久| 欧美激情国产日韩精品一区| 九色成人免费人妻av| 免费看av在线观看网站| 人体艺术视频欧美日本| 天美传媒精品一区二区| a级一级毛片免费在线观看| 亚洲欧美精品专区久久| 久久久久精品性色| 老司机影院毛片| 一级毛片电影观看| 老师上课跳d突然被开到最大视频| 91午夜精品亚洲一区二区三区| 日日干狠狠操夜夜爽| 日本一本二区三区精品| 免费观看a级毛片全部| 美女cb高潮喷水在线观看| 亚洲精华国产精华液的使用体验| 在线免费观看的www视频| 少妇熟女欧美另类| 寂寞人妻少妇视频99o| 青青草视频在线视频观看| videos熟女内射| 亚洲真实伦在线观看| 一级毛片我不卡| 亚洲精华国产精华液的使用体验| 国产精品人妻久久久影院| 亚洲成人一二三区av| 日本-黄色视频高清免费观看| 成人漫画全彩无遮挡| 国产在视频线在精品| 亚洲精品久久久久久婷婷小说| 国产精品久久视频播放| 亚洲性久久影院| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品乱码久久久v下载方式| 国产精品综合久久久久久久免费| 成人无遮挡网站| 欧美高清成人免费视频www| 国产精品av视频在线免费观看| 中文乱码字字幕精品一区二区三区 | 国产精品三级大全| 丝袜喷水一区| 日韩精品有码人妻一区| 啦啦啦啦在线视频资源| 国产爱豆传媒在线观看| 国内精品宾馆在线| 不卡视频在线观看欧美| 激情 狠狠 欧美| 观看免费一级毛片| 黄片wwwwww| 成人性生交大片免费视频hd| 欧美三级亚洲精品| 性插视频无遮挡在线免费观看| 一级毛片aaaaaa免费看小| 免费播放大片免费观看视频在线观看| 狂野欧美白嫩少妇大欣赏| 精品不卡国产一区二区三区| 亚洲国产精品成人综合色| 欧美潮喷喷水| 日韩三级伦理在线观看| 尤物成人国产欧美一区二区三区| 久久精品国产自在天天线| 水蜜桃什么品种好| 免费观看av网站的网址| 嫩草影院入口| 十八禁网站网址无遮挡 | 久久久久久久久中文| 国产精品一及| 熟妇人妻不卡中文字幕| 日产精品乱码卡一卡2卡三| 国产亚洲精品久久久com| 黄色配什么色好看| 听说在线观看完整版免费高清| 中文字幕人妻熟人妻熟丝袜美| 久久99蜜桃精品久久| 亚洲最大成人手机在线| 国产一区二区三区综合在线观看 | 久久99热这里只有精品18| 日韩一区二区三区影片| 在线观看av片永久免费下载| 国产老妇伦熟女老妇高清| 少妇高潮的动态图| 欧美最新免费一区二区三区| 激情 狠狠 欧美| 免费少妇av软件| 亚洲欧美成人综合另类久久久| 韩国av在线不卡| 大话2 男鬼变身卡| 天天躁日日操中文字幕| 久久精品国产亚洲av涩爱| 亚洲国产欧美人成| 天堂网av新在线| 日韩伦理黄色片| 三级国产精品片| 边亲边吃奶的免费视频| 春色校园在线视频观看| kizo精华| av免费在线看不卡| 亚洲国产精品国产精品| 在线观看一区二区三区| 青春草国产在线视频| 永久网站在线| 亚洲国产精品成人综合色| 亚洲人成网站在线观看播放| 777米奇影视久久| av线在线观看网站| 国产亚洲5aaaaa淫片| 狂野欧美激情性xxxx在线观看| 三级国产精品片| 国产精品不卡视频一区二区| 草草在线视频免费看| 亚洲一区高清亚洲精品| av在线观看视频网站免费| 成年人午夜在线观看视频 | 嫩草影院精品99| 国产色婷婷99| 国产成年人精品一区二区| 亚洲美女搞黄在线观看| 亚洲欧美精品专区久久| 国产亚洲一区二区精品| 亚洲av中文av极速乱| 国产老妇伦熟女老妇高清| 人体艺术视频欧美日本| 一级毛片我不卡| 白带黄色成豆腐渣| 午夜福利高清视频| 国产在视频线精品| 你懂的网址亚洲精品在线观看| 久久韩国三级中文字幕| 国产毛片a区久久久久| 国产高清国产精品国产三级 | 国产乱人偷精品视频| 91av网一区二区| 国产精品国产三级国产专区5o| 人妻夜夜爽99麻豆av| 午夜免费激情av| .国产精品久久| 欧美激情在线99| kizo精华| 欧美性猛交╳xxx乱大交人| 秋霞伦理黄片| 国产亚洲午夜精品一区二区久久 | 日本黄大片高清| 最后的刺客免费高清国语| 免费无遮挡裸体视频| 国产黄片视频在线免费观看| 国产成人freesex在线| 国产精品精品国产色婷婷| 精品久久久久久久人妻蜜臀av| 欧美精品国产亚洲| 欧美一级a爱片免费观看看| 日日撸夜夜添| 国产高清三级在线| 亚洲18禁久久av| 亚洲天堂国产精品一区在线| 美女黄网站色视频| 国产成人a区在线观看| 国产 亚洲一区二区三区 | 青春草国产在线视频| 日韩av不卡免费在线播放| 亚洲国产色片| 男的添女的下面高潮视频| 国产精品嫩草影院av在线观看| 三级男女做爰猛烈吃奶摸视频| 91久久精品国产一区二区成人| 日本熟妇午夜| 亚洲aⅴ乱码一区二区在线播放| 亚洲最大成人中文| 免费观看性生交大片5| 国产伦理片在线播放av一区| 观看美女的网站| 欧美日本视频| 视频中文字幕在线观看| 欧美+日韩+精品| 成人漫画全彩无遮挡| 91精品一卡2卡3卡4卡| 搡老乐熟女国产| 小蜜桃在线观看免费完整版高清| 中国国产av一级| 久久亚洲国产成人精品v| 综合色av麻豆| 国产伦在线观看视频一区| 欧美性感艳星| 日本熟妇午夜| 一个人观看的视频www高清免费观看| 日韩,欧美,国产一区二区三区| 一夜夜www| 天天一区二区日本电影三级| 亚洲国产精品成人综合色| 少妇高潮的动态图| av卡一久久| 黄色日韩在线| 美女cb高潮喷水在线观看| av.在线天堂| 亚洲四区av| 亚洲av日韩在线播放| 五月天丁香电影| 永久免费av网站大全| 一级毛片我不卡| 全区人妻精品视频| 亚洲欧美清纯卡通| 欧美三级亚洲精品| 一区二区三区乱码不卡18| 少妇高潮的动态图| 最后的刺客免费高清国语| 99视频精品全部免费 在线| 午夜免费激情av| 国产午夜福利久久久久久| 亚洲av免费高清在线观看| av在线蜜桃| 亚洲国产精品成人久久小说| 久久热精品热| 欧美丝袜亚洲另类| 美女主播在线视频| 尤物成人国产欧美一区二区三区| 精品午夜福利在线看| 大又大粗又爽又黄少妇毛片口| 日本猛色少妇xxxxx猛交久久| 欧美变态另类bdsm刘玥| 综合色丁香网| 国产精品一区二区三区四区免费观看| 久久午夜福利片| 国产老妇女一区| 99久久精品国产国产毛片| 亚洲av日韩在线播放| 人妻少妇偷人精品九色| 国产av在哪里看| 女人被狂操c到高潮| 五月伊人婷婷丁香| 精品久久久久久久久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人综合一区亚洲| 97在线视频观看| 免费av观看视频| 听说在线观看完整版免费高清| 99re6热这里在线精品视频| 一区二区三区四区激情视频| 精品酒店卫生间| 国模一区二区三区四区视频| av在线蜜桃| 国产麻豆成人av免费视频| 国产亚洲5aaaaa淫片| 嘟嘟电影网在线观看| 亚洲欧洲国产日韩| 国产精品麻豆人妻色哟哟久久 | 国产伦在线观看视频一区| 久久精品久久精品一区二区三区| 夫妻性生交免费视频一级片| 中文乱码字字幕精品一区二区三区 | 丰满少妇做爰视频| av在线蜜桃| 少妇人妻精品综合一区二区| 深夜a级毛片| 高清毛片免费看| 亚洲综合色惰| 精品一区二区三卡| 欧美性感艳星| .国产精品久久| 午夜精品在线福利| 午夜福利在线在线| 18禁动态无遮挡网站| 国产伦精品一区二区三区视频9| 日韩欧美国产在线观看| 一级a做视频免费观看| 国产精品人妻久久久久久| 日本av手机在线免费观看| 成人亚洲精品一区在线观看 | 免费不卡的大黄色大毛片视频在线观看 | 看非洲黑人一级黄片| 久久久久久久久久久丰满| 日韩欧美三级三区| 赤兔流量卡办理| 一夜夜www| 亚洲成人av在线免费| 中文乱码字字幕精品一区二区三区 | 亚洲综合精品二区| 一区二区三区高清视频在线| 久久这里只有精品中国| 女的被弄到高潮叫床怎么办| 七月丁香在线播放| 最近最新中文字幕大全电影3| 黄片wwwwww| 国产乱来视频区| 欧美日韩在线观看h| 免费黄色在线免费观看| 边亲边吃奶的免费视频| 久久精品久久久久久久性| 又大又黄又爽视频免费| 国产色婷婷99| 欧美一区二区亚洲| 欧美不卡视频在线免费观看| 亚洲四区av| 国产精品国产三级专区第一集| 国产精品久久久久久久久免| 免费观看a级毛片全部| 日韩欧美国产在线观看| 丰满乱子伦码专区| 少妇高潮的动态图| 精品一区二区三区视频在线| 国产真实伦视频高清在线观看| 国产精品久久久久久久久免| 在线免费观看的www视频| 小蜜桃在线观看免费完整版高清| 日本av手机在线免费观看| 99视频精品全部免费 在线| 国产美女午夜福利| 亚洲真实伦在线观看| 欧美极品一区二区三区四区| 中文精品一卡2卡3卡4更新| 联通29元200g的流量卡| 国产精品女同一区二区软件| 国产精品1区2区在线观看.| 亚洲国产色片| 国产av在哪里看| av线在线观看网站| 国产精品日韩av在线免费观看| 精品少妇黑人巨大在线播放| 一级毛片我不卡| 亚洲精品自拍成人| 亚洲精品乱码久久久v下载方式| 又粗又硬又长又爽又黄的视频| 高清视频免费观看一区二区 | 久久久久久九九精品二区国产| 亚洲精品456在线播放app| 亚洲综合色惰| 亚洲精华国产精华液的使用体验| 18禁在线无遮挡免费观看视频| ponron亚洲| 中文字幕制服av| av又黄又爽大尺度在线免费看| 人妻一区二区av| 好男人视频免费观看在线| 在线观看av片永久免费下载| 精品久久久久久成人av| 午夜激情久久久久久久| 一个人看视频在线观看www免费| 亚洲欧美清纯卡通| 国产黄频视频在线观看| videos熟女内射| 嫩草影院精品99| 三级男女做爰猛烈吃奶摸视频| 午夜激情欧美在线| 久久99热这里只有精品18| 国产在线男女| 18禁在线无遮挡免费观看视频| 久久精品人妻少妇| 亚洲人成网站在线播| 亚洲av福利一区| 搞女人的毛片| 亚洲最大成人手机在线| 亚洲国产精品sss在线观看| 九九爱精品视频在线观看| 久久久久久国产a免费观看| 精品酒店卫生间| 能在线免费观看的黄片| 又大又黄又爽视频免费| 精品久久久久久久人妻蜜臀av| 男女视频在线观看网站免费| 91午夜精品亚洲一区二区三区| 国产久久久一区二区三区| av一本久久久久| 在线a可以看的网站| 国产麻豆成人av免费视频| 草草在线视频免费看| 国产在线男女| 亚洲国产最新在线播放| 蜜臀久久99精品久久宅男| videos熟女内射| 免费看美女性在线毛片视频| 国产一级毛片七仙女欲春2| 亚洲精品456在线播放app| 久久人人爽人人爽人人片va| 黄色配什么色好看| 国产成人aa在线观看| 日韩制服骚丝袜av| 中文资源天堂在线| 午夜福利视频1000在线观看| 国产一区二区三区av在线| 精品久久久噜噜| 日韩成人av中文字幕在线观看| 国产免费福利视频在线观看| 成人亚洲精品av一区二区| 国产成人福利小说| 国产精品一区二区在线观看99 | 国产精品一区二区性色av| 成人亚洲精品av一区二区| 97在线视频观看| 国产老妇女一区| 干丝袜人妻中文字幕| 五月玫瑰六月丁香| 国产精品一区二区三区四区免费观看| 国产麻豆成人av免费视频| 国产成人91sexporn| 日韩在线高清观看一区二区三区| 午夜福利视频1000在线观看| 婷婷色综合大香蕉| 午夜免费观看性视频| 亚洲高清免费不卡视频| 国产黄色免费在线视频| 观看免费一级毛片| 91在线精品国自产拍蜜月| ponron亚洲| 高清在线视频一区二区三区| 在线观看美女被高潮喷水网站| 成人毛片60女人毛片免费| 亚洲精品乱码久久久v下载方式| 嫩草影院精品99| 亚洲欧美精品自产自拍| 亚洲av电影不卡..在线观看| 国产亚洲最大av| 免费观看av网站的网址| 午夜福利成人在线免费观看| 综合色av麻豆| 免费观看在线日韩| 久久久久久久大尺度免费视频| 国产精品三级大全| 插逼视频在线观看| 欧美成人精品欧美一级黄| 日本猛色少妇xxxxx猛交久久| 久久久久久久久久人人人人人人| 国产视频内射| 五月玫瑰六月丁香| 网址你懂的国产日韩在线| 色视频www国产| 天堂√8在线中文| 国产高清不卡午夜福利| 亚洲精品456在线播放app|