• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized Hirsh feld Partitioning w ith Orien ted and Prom o ted Proatom s

    2018-05-25 00:57:04HEIDARZADEHFarnazAYERSPaul
    物理化學(xué)學(xué)報 2018年5期

    HEIDAR-ZADEH Farnaz, AYERS Paul W.

    1 Department of Chem istry & Chem ical Biology; M cMaster University; Ham ilton, Ontario, L8P 4Z2, Canada.

    2 Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Gent, Belgium.

    3 Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zw ijnaarde, Belgium.

    1 Motivation

    Within the conceptual density functional theory (conceptual DFT) framework, chemical reactivity indicators are commonly defined as the derivatives of the ground-state energy and the grand potential w ith respect to the number of electrons,chem ical potential and external potential1–6. These global, local and nonlocal functions measure the sensitivity of a molecule to electron transfer and electrostatic interactions7–14. However, to pinpoint the molecule’s preferred reactive site in an electrophilic or a nucleophilic attack, it is common to partition the (non)local indictors among the constituent atoms and define the corresponding condensed reactivity indicators15–27. As atoms-in-molecules are not uniquely defined w ithin quantum mechanics, this requires selecting a method to decompose a molecule into atomic subsystems by distributing either the molecular orbitals28–35or the molecular electron density36–41.Here, we are interested in generalizing the Hirshfeld partitioning approaches to utilize non-spherical reference proatom densities.

    In 1977, Hirshfeld proposed an approach for identifying atoms in a molecule based on the stockholder perspective40.Specifically, given the spherically-averaged densities of the isolated neutral reference atoms,, let the density of an atom in a molecule, ρA(r), be determ ined by the fraction of the molecular electron density, ρmol(r), that was “invested” by that reference atom, defined intuitively as

    The density of the atom in a molecule (AIM) is then

    and obviously the sum of the AIM densities is the molecular density, guaranteeing an exhaustive partitioning,

    The reference-atom densities in Eq.(1) are commonly referred to as the proatom densities, and their sum is called the promolecular density,

    While Hirshfeld presented the partitioning in Eq.(1) as a heuristic, Nalewajski and Parr provided a mathematical interpretation for it42–44. Their motivation was to define AIM to be as close as possible to isolated neutral atoms, and to maxim ize that closeness by m inim izing the Kullback-Leibler divergence between the density of AIM and the reference atoms,subject to the constraint in Eq.(3). The result of the Nalewajski-Parr variational formulation,

    is the Hirshfeld AIM density, Eqs.(1)–(2). Once one realizes that the Hirshfeld partitioning tries to maxim ize the sim ilarity between the AIM densities and those of the neutral reference atoms in an information-theoretic sense, it is not surprising that Hirshfeld partitioning tends to systematically underestimate the magnitude of AIM charges (relative to other approaches like electrostatic potential fitting and natural population analysis)45.

    To “improve” the Hirshfeld partitioning, one can use a different method to measure the dissim ilarity between the AIM density and the proatom density or one can use a different definition for the proatom46. Both techniques have been explored in the literature. There is a very broad class of dissim ilarity measures that retain the partitioning in Eq.(1)47–52,but the Kullback-Leibler divergence in particular has appealing mathematical properties53,54. It seems most effective, then, to change the definition of the proatom density. There are many attempts to do this in the literature, most (but not all55) of which are restricted to the spherically-symmetric proatom densities53,56–67.

    To understand why aspherical proatoms are not commonly employed, suppose that one had aspherical proatom ic densities denoted by ρ0A;αA,βA,γA(r), where (αA, βA, γA) are the Euler angles controlling the orientation of proatom A. The best orientation for the proatom density is obtained by minim izing the information-theoretic divergence in Eq.(5) w ith respect to Euler angles

    Because of the objective function’s complicated nonlinear dependence on the Euler angles, Eq.(7) is a difficult global optimization problem.

    Moreover, it is not clear how one should choose the non-spherical densities. For example, for the sulfur atom,should one use a non-spherical density corresponding to the Cartesian p-orbitals, {pm}m=x,y,zor the ones defined by the(complex) spherical Harmonics, {Y1m}m=?1,0,+1? The answer almost certainly depends on the molecule that one is considering: one would expect to prefer a different representation for MgS (perhaps the spherical harmonics) and SO2(perhaps the Cartesian orbitals). In some molecules(perhaps SF6), the spherically averaged sulfur proatom density m ight be preferable.

    In the next section, we w ill propose a method that avoids the problem of choosing an optimal orientation for the aspherical atomic densities. However the problem of global optimization,while perhaps somewhat reduced, w ill remain.

    2 Orien ted p roatom s

    2.1 Orien ted p roatom s in degenerate g round states

    For simplicity, we w ill start by restricting ourselves to neutral proatoms, as in traditional Hirshfeld partitioning. The neutral atoms that can have non-spherical ground-state electron densities always have degenerate ground states. Let {Ψgdenote an orthonormal basis for the G-dimensional manifold of ground-state wave-functions defined by

    The electron densities associated w ith pure (as opposed to mixed) ground states of this system have the form

    where in the second line we have, for convenience, introduced the field operators.

    In analogy to Eq.(7), we can consider the density expression of Eq.(10) as the proatom density and m inim ize the information loss w ith respect to the wave-function coefficients of each atom,

    Both the objective function and the constraints are nonlinear in the wave-function coefficients, so this is again a (difficult)global optim ization problem. In addition, spherical proatom densities (which are not pure-state v-representable68,69) are excluded from Eq.(13).

    Notice that an objective functions of the form

    is positive definite. This motivates us to choose a new set of variables,

    These constraints follow directly from the definition (16) and the normalization constraint on the wave-function, Eq.(9)70,71.The last constraint in Eq.(18) is especially important: w ithout this constraint the electron density in Eq.(17) can become negative.

    To relax the requirement that the electron density corresponds to a pure state, we can relax the final equality in Eq.(18)70,71,

    We can now rew rite Eq.(13) as the optim ization of a convex objective function subject to some constraints,

    has negative eigenvalues. The constrained optim ization problem in Eq.(20), therefore, typically has many local m inima.Nonetheless, solution of Eq.(20) allows one to choose the best proatom density among the set of ensemble-state-representable ground state proatom densities.

    2.2 Prom o ted p roatom s in quasi-degenerate g round states

    To make contact w ith the valence-bond picture,it would be desirable to include promoted and ionized states of the reference proatoms. This is easily achieved using the previous approach because non-ground-state wave-functions can be included in Eq.(8),

    Equation (20) still holds in this case, and a complete (but chemically unreasonable and computationally intractable)description would be obtained by including all possible wave-functions in Eq.(23). Sensible truncations are clearly required, perhaps by using sim ilar strategies to those one uses to select dom inant resonance structures in valence-bond approaches.

    Notice that the optimization in Eq.(20) becomes tractable if all the transition densities are zero. i.e.,

    If the wave-functions are Slater determ inants, this is true for double-excitations. For exact eigenfunctions of the atoms, this is true when ΨfandΨgcorrespond to eigenstates of the number of electrons, the spin, or the spin-projection. (i.e.,different eigenfunctions of N?, S?2, or S?z) If we restrict ourselves to those eigenstates, then we can rew rite Eq.(20) as a convex optim ization problem w ith respect to linear constraints,

    This formulation allows promoted proatoms, however because it does not allow one to adjust the orientation of the proatoms, the densities that are used in Eq.(25) should be spherically averaged. Nevertheless, Eq.(25) is a tractable convex optim ization, which can be solved using the same iterative strategies employed by the m inimal basis iterative stockholder analysis53.

    3 Summ ary

    We have developed a variational procedure, Eq.(20), which determines the optimal ground state proatom density in Hirshfeld partitioning. This procedure includes the traditional spherically-averaged neutral proatoms as a special case, but allows oriented and polarized proatoms to be used when that would allow the molecular electron density to be more closely approximated by the promolecular density. Unfortunately, the variational procedure is a convex optimization that is constrained by a non-convex inequality constraint, and so it w ill generally have many local minima. This procedure, then, is impractical except for very small molecules.

    By including contributions from the wave-functions of excited and ionized states in Eq.(20), one can consider promoted and oriented proatoms. This variational procedure is also intractable in general, except when all the states under consideration have vanishing transition densities, Eq.(24). This condition is achieved if one considers only wave-functions corresponding to different eigenvalues for ?N,2?S, or ?zS,which allows one to generalize the Hirshfeld method to the variational principle in Eq.(25). This extended variational Hirshfeld framework requires the optimization of a convex objective function subject to linear constraints, and thus has a unique solution. We believe that the proatoms used in Eq.(25)provide a very prom ising direction for further generalizing Hirshfeld partitioning.

    Acknow ledgm en t: This paper was motivated by a discussion we had w ith Prof. Randall (Randy) Dumont at McMaster University, and his remarkable ability to ask probing questions (about almost any topic) is appreciated and gratefully acknow ledged. Finally, we w ish to dedicate this paper to the memory of Robert (Bob) Parr: w ithout his inspiring scientific work (esp. Ref. 44) and exemplary scientific temperament, this paper could not have been w ritten.

    References

    (1) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford UP: New York, NY, USA, 1989.

    (2) Yang, W.; Cohen, A. J.; Proft, F. D.; Geerlings, P. J. Chem. Phys.2012, 136 (14), 144110. doi: 10.1063/1.3701562

    (3) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103(5), 1793. doi: 10.1021/cr990029p

    (4) Gázquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.

    (5) Liu, S.-B. Acta Phys. -Chim. Sin. 2009, 25 (3), 590.doi: 10.3866/PKU.WHXB20090332

    (6) Heidar-Zadeh, F.; M iranda-Quintana, R. A.; Verstraelen, T.;Bultinck, P.; Ayers, P. W. J. Chem. Theory Comp. 2016, 12 (12),5777. doi: 10.1021/acs.jctc.6b00494

    (7) Heidar-Zadeh, F.; Richer, M.; Fias, S.; M iranda-Quintana, R. A.;Chan, M.; Franco-Perez, M.; Gonzalez-Espinoza, C. E.; Kim, T. D.;Lanssens, C.; Patel, A. H. G.; et al. Chem. Phys. Lett. 2016, 660, 307.doi: 10.1016/j.cplett.2016.07.039

    (8) Geerlings, P.; De Proft, F. Phys. Chem. Chem. Phys. 2008, 10 (21),3028. doi: 10.1039/B717671F

    (9) Fuentealba, P.; Parr, R. G. J. Chem. Phys. 1991, 94 (8), 5559.doi: 10.1063/1.460491

    (10) Senet, P. J. Chem. Phys. 1996, 105 (15), 6471.doi: 10.1063/1.472498

    (11) Franco-Pérez, M.; Ayers, P. W.; Gázquez, J. L.; Vela, A. J. Chem.Phys. 2015, 143 (24), 244117. doi: 10.1063/1.4938422

    (12) Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101 (5), 520. doi: 10.1002/qua.20307

    (13) Echegaray, E.; Cardenas, C.; Rabi, S.; Rabi, N.; Lee, S.; Zadeh, F. H.;Toro-Labbe, A.; Anderson, J. S. M.; Ayers, P. W. J. Mol. Model.2013, 19 (7), 2779. doi: 10.1007/s00894-012-1637-3

    (14) Echegaray, E.; Rabi, S.; Cardenas, C.; Zadeh, F. H.; Rabi, N.; Lee, S.;Anderson, J. S. M.; Toro-Labbe, A.; Ayers, P. W. J. Mol. Model.2014, 20, 2162. doi: 10.1007/s00894-014-2162-3

    (15) Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108 (19), 5708.doi: 10.1021/ja00279a008

    (16) Ayers, P. W.; Morrison, R. C.; Roy, R. K. J. Chem. Phys. 2002, 116(20), 8731. doi: 10.1063/1.1467338

    (17) Bultinck, P.; Fias, S.; Van A lsenoy, C.; Ayers, P. W.; Carbó-Dorca,R. J. Chem. Phys. 2007, 127 (3), 034102. doi: 10.1063/1.2749518

    (18) Echegaray, E.; Toro-Labbe, A.; Dikmenli, K.; Heidar-Zadeh, F.;Rabi, N.; Rabi, S.; Ayers, P. W.; Cardenas, C.; Parr, R. G.; Anderson,J. S. M. In Correlations in Condensed Matter under Extreme Conditions: A Tribute to Renato Pucci on the Occasion of His 70th Birthday; La Magna, A. Ed.; Springer International Publishing:Cham, Sw itzerland, 2017; p. 269.doi: 10.1007/978-3-319-53664-4_19

    (19) Fuentealba, P.; Pérez, P.; Contreras, R. J. Chem. Phys. 2000, 113 (7),2544. doi: 10.1063/1.1305879

    (20) Tiznado, W.; Chamorro, E.; Contreras, R.; Fuentealba, P. J. Phys.Chem. A 2005, 109 (14), 3220. doi: 10.1021/jp0450787

    (21) Zadeh, F. H.; Fuentealba, P.; Cardenas, C.; Ayers, P. W. Phys. Chem.Chem. Phys. 2014, 16 (13), 6019. doi: 10.1039/c3cp52906a

    (22) Rong, C.; Lu, T.; Liu, S. J. Chem. Phys. 2014, 140 (2), 024109.doi: 10.1063/1.4860969

    (23) Morgenstern, A.; W ilson, T. R.; Eberhart, M. E. J. Phys. Chem. A 2017, 121 (22), 4341. doi: 10.1021/acs.jpca.7b00630

    (24) Sablon, N.; Proft, F. D.; Ayers, P. W.; Geerlings, P. J. Chem. Phys.2007, 126 (22), 224108. doi: 10.1063/1.2736698

    (25) Olah, J.; Van A lsenoy, C.; Sannigrahi, A. B. J. Phys. Chem. A 2002,106 (15), 3885. doi: 10.1021/jp014039h

    (26) Liu, S. J. Chem. Phys. 2014, 141 (19), 194109.doi: 10.1063/1.4901898

    (27) Zhou, X.-Y.; Rong, C. Y.; Lu, T.; Liu, S. B. Acta Phys. -Chim. Sin.2014, 30 (11), 2055. doi: 10.3866/PKU.WHXB201409193

    (28) Mulliken, R. S. J. Chem. Phys. 1955, 23 (10), 1833.doi: 10.1063/1.1740588

    (29) Mulliken, R. S. J. Chem. Phys. 1955, 23 (10), 1841.doi: 10.1063/1.1740589

    (30) Mulliken, R. S. J. Chem. Phys. 1955, 23 (12), 2338.doi: 10.1063/1.1741876

    (31) Mulliken, R. S. J. Chem. Phys. 1955, 23 (12), 2343.doi: 10.1063/1.1741877

    (32) L?wdin, P.-O. Adv. Quantum Chem. 1970, 5, 185.doi: 10.1016/S0065-3276(08)60339-1

    (33) Davidson, E. R. J. Chem. Phys. 1967, 46 (9), 3320.doi: 10.1063/1.1841219

    (34) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985,83 (2), 735. doi: 10.1063/1.449486

    (35) Lu, W. C.; Wang, C. Z.; Schmidt, M. W.; Bytautas, L.; Ho, K. M.;Ruedenberg, K. J. Chem. Phys. 2004, 120 (6), 2629.doi: 10.1063/1.1638731

    (36) Bader, R. F. W. Atoms in Molecules: A Quantum Theory;Clarendon: Oxford, UK, 1990.

    (37) Heidarzadeh, F.; Shahbazian, S. Int. J. Quantum Chem. 2010, 111(12), 2788. doi: 10.1002/qua.22629

    (38) Zadeh, F. H.; Shahbazian, S. Theor. Chem. Acc. 2010, 128 (2),175.doi: 10.1007/s00214-010-0811-x

    (39) Morgenstern, A.; Morgenstern, C.; M iorelli, J.; W ilson, T.;Eberhart, M. E. Phys. Chem. Phys. Chem. 2016, 18 (7), 5638.doi: 10.1039/c5cp07852k

    (40) Hirshfeld, F. L. Theor. Chim. Act. 1977, 44, 129.doi: 10.1007/BF00549096

    (41) Guerra, C. F.; Handgraaf, J. W.; Baerends, E. J.; Bickelhaupt, F.M.J. Comput. Chem. 2004, 25 (2), 189. doi: 10.1002/jcc.10351

    (42) Nalewajski, R. F.; Parr, R. G. Proc. Natl. Acad. Sci. 2000, 97,8879. doi: 10.1073/pnas.97.16.8879

    (43) Nalewajski, R. F.; Parr, R. G. J. Phys. Chem. A 2001, 105 (31),7391. doi: 10.1021/jp004414q

    (44) Parr, R. G.; Ayers, P. W.; Nalewajski, R. F. J. Phys. Chem. A 2005, 109 (17), 3957. doi: 10.1021/jp0404596

    (45) Davidson, E. R.; Chakravorty, S. Theor. Chim. Acta 1992, 83 (5–6), 319. doi: 10.1007/bf01113058

    (46) Heidar-Zadeh, F.; Ayers, P. W.; Verstraelen, T.; Vinogradov, I.;Vohringer-Martinez, E.; Bultinck, P. J. Phys. Chem. A subm itted,2017.

    (47) Heidar-Zadeh, F.; Ayers, P. W.; Bultinck, P. J. Chem. Phys. 2014,141, 094103. doi: 10.1063/1.4894228

    (48) Heidar-Zadeh, F.; Ayers, P. W. J. Chem. Phys. 2015, 142 (4),044107. doi: 10.1063/1.4905123

    (49) Heidar-Zadeh, F.; Vinogradov, I.; Ayers, P. W. Theor. Chem. Acc.2017, 136 (4), 54. doi: 10.1007/s00214-017-2077-z

    (50) Ayers, P. W. J. Chem. Phys. 2000, 113 (24), 10886. doi:10.1063/1.1327268

    (51) Ayers, P. W. Theor. Chem. Acc. 2006, 115, 370.doi: 10.1007/s00214-006-0121-5

    (52) Heidar-Zadeh, F.; Ayers, P. W. Theor. Chem. Acc. 2017, 136 (8),92. doi: 10.1007/s00214-017-2114-y

    (53) Verstraelen, T.; Vandenbrande, S.; Heidar-Zadeh, F.;Vanduyfhuys, L.; Van Speybroeck, V.; Waroquier, M.; Ayers, P.W. J. Chem. Theory Comp. 2016, 12 (8), 3894. doi:10.1021/acs.jctc.6b00456

    (54) Heidar-Zadeh, F. Variational Information-Theoretic Atoms-in-Molecules. Ph. D. Dissertation, M cMaster University,Canada, and Ghent University, Belgium, 2017.

    (55) M isquitta, A. J.; Stone, A. J.; Fazeli, F. J. Chem. Theory Comp.2014, 10 (12), 5405. doi: 10.1021/ct5008444

    (56) Verstraelen, T.; Ayers, P. W.; Van Speybroeck, V.; Waroquier, M.J. Chem. Theory Comp. 2013, 9 (5), 2221. doi:10.1021/ct4000923

    (57) Bultinck, P.; Van Alsenoy, C.; Ayers, P. W.; Carbo-Dorca, R.J. Chem. Phys. 2007, 126 (14), 144111. doi: 10.1063/1.2715563

    (58) Bultinck, P.; Ayers, P. W.; Fias, S.; Tiels, K.; Van Alsenoy, C.Chem. Phys. Lett. 2007, 444 (1?3), 205. doi:10.1016/j.cplett.2007.07.014

    (59) Ghillem ijn, D.; Bultinck, P.; Van Neck, D.; Ayers, P. W. J.Comput. Chem. 2011, 32, 1561. doi: 10.1002/jcc.21734

    (60) Manz, T. A.; Sholl, D. S. J. Chem. Theory Comp. 2010, 6 (8),2455. doi: 10.1021/ct100125x

    (61) Manz, T. A.; Sholl, D. S. J. Chem. Theory Comp. 2012, 8 (8),2844. doi: 10.1021/ct3002199

    (62) Lee, L. P.; Limas, N. G.; Cole, D. J.; Payne, M. C.; Skylaris, C.K.; Manz, T. A. J. Chem. Theory Comp. 2014, 10 (12), 5377.doi: 10.1021/ct500766v

    (63) Limas, N. G.; Manz, T. A. RSC Adv. 2016, 6 (51), 45727.doi: 10.1039/c6ra05507a

    (64) Manz, T. A.; Limas, N. G. RSC Adv. 2016, 6 (53), 47771.doi: 10.1039/c6ra04656h

    (65) Lillestolen, T. C.; Wheatley, R. J. Chem. Commun. 2008, 45,5909. doi: 10.1039/b812691g

    (66) Lillestolen, T. C.; Wheatley, R. J. J. Chem. Phys. 2009, 131,144101. doi: 10.1063/1.3243863

    (67) Verstraelen, T.; Ayers, P. W.; Van Speybroeck, V.; Waroquier, M.Chem. Phys. Lett. 2012, 545, 138. doi:10.1016/j.cplett.2012.07.028

    (68) Levy, M. Phys. Rev. A 1982, 26 (3), 1200.doi: 10.1103/PhysRevA.26.1200

    (69) Lieb, E. H. Int. J. Quantum Chem. 1983, 24 (3), 243.doi: 10.1002/qua.560240302

    (70) Ayers, P. W. Phys. Rev. A 2006, 73, 012513.doi: 10.1103/PhysRevA.73.012513

    (71) Cardenas, C.; Ayers, P. W.; Cedillo, A. J. Chem. Phys. 2011, 134,174103. doi: 10.1063/1.3585610

    男人爽女人下面视频在线观看| 精品一区在线观看国产| 日韩欧美精品免费久久| 亚洲国产欧美人成| 亚洲熟女精品中文字幕| 国内揄拍国产精品人妻在线| 免费播放大片免费观看视频在线观看| 久久久久久伊人网av| 看非洲黑人一级黄片| 超碰97精品在线观看| 久久精品久久精品一区二区三区| 亚洲内射少妇av| 亚洲国产av新网站| 国产成人免费观看mmmm| 国产欧美另类精品又又久久亚洲欧美| 欧美另类一区| 免费观看性生交大片5| 能在线免费看毛片的网站| 日韩亚洲欧美综合| 日韩亚洲欧美综合| 日本黄色片子视频| 精品99又大又爽又粗少妇毛片| 国产 一区 欧美 日韩| 成人欧美大片| 91精品一卡2卡3卡4卡| 亚洲av中文字字幕乱码综合| 国产熟女欧美一区二区| 中文精品一卡2卡3卡4更新| 日韩欧美精品免费久久| 欧美一级a爱片免费观看看| 精品国产一区二区三区久久久樱花 | 欧美三级亚洲精品| 国产一区亚洲一区在线观看| 久久国内精品自在自线图片| 国产探花在线观看一区二区| 亚洲av国产av综合av卡| 一级毛片久久久久久久久女| 亚洲人成网站在线播| 久久鲁丝午夜福利片| 日本与韩国留学比较| 亚洲国产欧美在线一区| 久久久久精品性色| 夜夜爽夜夜爽视频| 久久热精品热| 最近视频中文字幕2019在线8| 国产精品一区www在线观看| 亚洲三级黄色毛片| 国产乱人视频| 日韩成人av中文字幕在线观看| 99热这里只有是精品在线观看| 99久久精品一区二区三区| 成年女人看的毛片在线观看| 爱豆传媒免费全集在线观看| 老司机影院成人| 亚洲在线自拍视频| 久久精品人妻少妇| 免费大片18禁| 精品人妻熟女av久视频| 日韩在线高清观看一区二区三区| av.在线天堂| 日日啪夜夜撸| 久久久久久久久久黄片| 免费大片18禁| 亚洲精品一区蜜桃| 欧美精品一区二区大全| 听说在线观看完整版免费高清| 麻豆精品久久久久久蜜桃| 亚洲精品一二三| freevideosex欧美| 久久97久久精品| 欧美 日韩 精品 国产| 国产一区二区三区综合在线观看 | 男的添女的下面高潮视频| 神马国产精品三级电影在线观看| 欧美另类一区| 欧美丝袜亚洲另类| 欧美+日韩+精品| 精品人妻视频免费看| 一级毛片久久久久久久久女| 又爽又黄a免费视频| 国产白丝娇喘喷水9色精品| 久久精品久久久久久噜噜老黄| 国精品久久久久久国模美| 成人鲁丝片一二三区免费| 欧美日本视频| 国产精品一区二区三区四区免费观看| 久久久久久久久久人人人人人人| 久久久久国产网址| 亚洲成人av在线免费| 黄色日韩在线| 国产极品天堂在线| 爱豆传媒免费全集在线观看| 日本av手机在线免费观看| 性插视频无遮挡在线免费观看| 精品久久久精品久久久| 熟女人妻精品中文字幕| 亚洲av电影不卡..在线观看| 国产成人a区在线观看| 人妻制服诱惑在线中文字幕| 中文字幕av成人在线电影| 日本色播在线视频| 99热这里只有是精品在线观看| 我要看日韩黄色一级片| 国国产精品蜜臀av免费| 毛片一级片免费看久久久久| 国产美女午夜福利| av在线老鸭窝| 国产成人精品福利久久| 人妻夜夜爽99麻豆av| 国产成人免费观看mmmm| 日日摸夜夜添夜夜爱| 欧美xxxx性猛交bbbb| 亚洲人成网站高清观看| 大香蕉久久网| 精华霜和精华液先用哪个| 国国产精品蜜臀av免费| 久久国内精品自在自线图片| 成人无遮挡网站| 亚洲人与动物交配视频| av黄色大香蕉| 国产精品99久久久久久久久| 亚洲欧美精品自产自拍| 自拍偷自拍亚洲精品老妇| 国产成人91sexporn| 国产精品女同一区二区软件| 午夜精品在线福利| 中文字幕免费在线视频6| 欧美变态另类bdsm刘玥| 国产熟女欧美一区二区| eeuss影院久久| 国产高清国产精品国产三级 | 亚洲最大成人中文| 午夜日本视频在线| 汤姆久久久久久久影院中文字幕 | 99热这里只有是精品在线观看| 久99久视频精品免费| 免费黄网站久久成人精品| 免费看不卡的av| 精品熟女少妇av免费看| 97人妻精品一区二区三区麻豆| 激情五月婷婷亚洲| 春色校园在线视频观看| 99久国产av精品| a级一级毛片免费在线观看| 最近中文字幕2019免费版| 亚洲欧美日韩无卡精品| 一级片'在线观看视频| 午夜福利在线观看吧| 国产精品伦人一区二区| 欧美潮喷喷水| 国产精品福利在线免费观看| 男插女下体视频免费在线播放| 秋霞伦理黄片| 最新中文字幕久久久久| 午夜福利视频1000在线观看| 欧美人与善性xxx| 久久久久久伊人网av| 水蜜桃什么品种好| 国产白丝娇喘喷水9色精品| av又黄又爽大尺度在线免费看| 韩国av在线不卡| 色综合色国产| 亚洲国产欧美人成| 蜜桃久久精品国产亚洲av| 国产免费一级a男人的天堂| 激情 狠狠 欧美| 亚洲av电影不卡..在线观看| 男人舔奶头视频| 国产高清有码在线观看视频| 成人一区二区视频在线观看| 最新中文字幕久久久久| 亚洲精品成人av观看孕妇| 国产成人精品福利久久| 亚洲人成网站在线观看播放| 亚洲成人精品中文字幕电影| 五月天丁香电影| 欧美激情国产日韩精品一区| 国产黄a三级三级三级人| 亚洲欧美日韩卡通动漫| 久久午夜福利片| 中文天堂在线官网| 亚洲电影在线观看av| 搡女人真爽免费视频火全软件| 日本免费a在线| 亚洲综合精品二区| 男人狂女人下面高潮的视频| 一级毛片aaaaaa免费看小| 精品国产露脸久久av麻豆 | 国产国拍精品亚洲av在线观看| 国产精品久久视频播放| 成年av动漫网址| 人妻制服诱惑在线中文字幕| 国产亚洲5aaaaa淫片| 有码 亚洲区| 午夜精品在线福利| 亚洲av成人精品一区久久| 最近中文字幕2019免费版| 九九久久精品国产亚洲av麻豆| 免费观看无遮挡的男女| 少妇人妻精品综合一区二区| 欧美一级a爱片免费观看看| 国产av码专区亚洲av| eeuss影院久久| 国产黄片视频在线免费观看| 一本一本综合久久| av在线老鸭窝| 国产精品久久久久久久电影| 男女下面进入的视频免费午夜| av在线播放精品| 国产v大片淫在线免费观看| 久久久久免费精品人妻一区二区| 中文字幕av成人在线电影| 久久久久久国产a免费观看| 国产淫片久久久久久久久| 天天一区二区日本电影三级| 又大又黄又爽视频免费| 九色成人免费人妻av| 午夜视频国产福利| 午夜福利视频精品| 亚洲aⅴ乱码一区二区在线播放| 最近2019中文字幕mv第一页| 精品人妻一区二区三区麻豆| .国产精品久久| 国产午夜精品久久久久久一区二区三区| 激情五月婷婷亚洲| 一级黄片播放器| 国产伦精品一区二区三区四那| 国产永久视频网站| 2018国产大陆天天弄谢| 熟女人妻精品中文字幕| 少妇的逼水好多| 亚洲精品久久久久久婷婷小说| 男女国产视频网站| 免费黄色在线免费观看| 日韩欧美一区视频在线观看 | 偷拍熟女少妇极品色| 成人鲁丝片一二三区免费| 波多野结衣巨乳人妻| 欧美区成人在线视频| 婷婷六月久久综合丁香| 欧美成人a在线观看| 欧美极品一区二区三区四区| 国产精品一区二区三区四区免费观看| av免费观看日本| 日日干狠狠操夜夜爽| 亚洲精品国产av蜜桃| 精品酒店卫生间| 国产不卡一卡二| 日日干狠狠操夜夜爽| 欧美成人午夜免费资源| 九九在线视频观看精品| 高清日韩中文字幕在线| 毛片女人毛片| 成人综合一区亚洲| 纵有疾风起免费观看全集完整版 | 麻豆乱淫一区二区| 免费观看av网站的网址| 日本色播在线视频| a级毛片免费高清观看在线播放| 99久久九九国产精品国产免费| 人体艺术视频欧美日本| 久久这里只有精品中国| 深爱激情五月婷婷| 久久草成人影院| 成人高潮视频无遮挡免费网站| 少妇丰满av| 美女内射精品一级片tv| 九九爱精品视频在线观看| 亚洲成人av在线免费| 高清av免费在线| 99热6这里只有精品| .国产精品久久| 国产综合精华液| a级一级毛片免费在线观看| 色吧在线观看| 别揉我奶头 嗯啊视频| 国产精品无大码| 乱系列少妇在线播放| 在线天堂最新版资源| 日韩av在线大香蕉| 欧美+日韩+精品| 色综合站精品国产| 久久久a久久爽久久v久久| 日韩伦理黄色片| 天堂俺去俺来也www色官网 | 青春草亚洲视频在线观看| 午夜精品一区二区三区免费看| 少妇丰满av| 天堂俺去俺来也www色官网 | 能在线免费观看的黄片| 麻豆久久精品国产亚洲av| 亚洲婷婷狠狠爱综合网| 人人妻人人澡人人爽人人夜夜 | 国产欧美日韩精品一区二区| 国产国拍精品亚洲av在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产一区二区在线观看日韩| 亚洲成人一二三区av| 亚洲精品乱码久久久久久按摩| 在现免费观看毛片| 精品一区二区三区人妻视频| 国产精品嫩草影院av在线观看| 色网站视频免费| 最近中文字幕高清免费大全6| 久久久欧美国产精品| 亚洲av福利一区| videos熟女内射| 精品久久久久久久久亚洲| 建设人人有责人人尽责人人享有的 | 亚洲国产色片| 寂寞人妻少妇视频99o| 国产精品久久视频播放| 在线a可以看的网站| 日日干狠狠操夜夜爽| 国产伦理片在线播放av一区| 乱人视频在线观看| 欧美变态另类bdsm刘玥| 国产视频首页在线观看| 亚洲人成网站在线观看播放| 91久久精品国产一区二区三区| 日韩电影二区| 亚洲欧洲日产国产| a级一级毛片免费在线观看| 中文精品一卡2卡3卡4更新| 最近最新中文字幕大全电影3| 99久久精品热视频| 精品人妻一区二区三区麻豆| 七月丁香在线播放| 久久久久久久久久久丰满| 男女下面进入的视频免费午夜| 91精品国产九色| 国产精品无大码| 国产视频内射| 日韩欧美精品v在线| 建设人人有责人人尽责人人享有的 | 欧美3d第一页| 国产极品天堂在线| 美女高潮的动态| 久久精品国产亚洲av涩爱| 亚洲精品日韩av片在线观看| av播播在线观看一区| 日韩欧美精品v在线| 国产精品一区www在线观看| 久久精品国产亚洲av天美| 久久久久久九九精品二区国产| 午夜福利视频精品| 久久久欧美国产精品| 日韩精品有码人妻一区| 久久精品夜色国产| 夫妻性生交免费视频一级片| 国产精品一及| 久久久国产一区二区| 亚洲不卡免费看| 亚洲精品自拍成人| 久久99热这里只频精品6学生| 高清在线视频一区二区三区| 日韩欧美精品v在线| 婷婷色综合www| 欧美高清成人免费视频www| 国产精品久久久久久av不卡| 22中文网久久字幕| 2018国产大陆天天弄谢| 特大巨黑吊av在线直播| 黄色日韩在线| 日韩强制内射视频| 18禁动态无遮挡网站| 少妇高潮的动态图| 久久人人爽人人爽人人片va| 免费在线观看成人毛片| 国产探花极品一区二区| 国产亚洲91精品色在线| 国产精品久久久久久久久免| av.在线天堂| 视频中文字幕在线观看| 国产高清三级在线| 91aial.com中文字幕在线观看| 精品久久久精品久久久| 亚洲国产日韩欧美精品在线观看| 久久这里只有精品中国| 2021少妇久久久久久久久久久| 日韩成人伦理影院| 在线免费观看的www视频| 婷婷色av中文字幕| 91久久精品电影网| 午夜老司机福利剧场| 精品国产露脸久久av麻豆 | 国产成人a区在线观看| 黑人高潮一二区| 亚洲人成网站高清观看| 夫妻午夜视频| 91精品一卡2卡3卡4卡| 免费看美女性在线毛片视频| 欧美不卡视频在线免费观看| videossex国产| 亚洲电影在线观看av| 老司机影院成人| 亚洲精品aⅴ在线观看| 欧美xxxx性猛交bbbb| 汤姆久久久久久久影院中文字幕 | 久久久亚洲精品成人影院| 免费黄色在线免费观看| 国内少妇人妻偷人精品xxx网站| 免费大片18禁| 国产精品蜜桃在线观看| 亚洲欧美清纯卡通| 免费看日本二区| 色网站视频免费| 欧美性感艳星| 精品国内亚洲2022精品成人| 1000部很黄的大片| 一个人观看的视频www高清免费观看| 国产激情偷乱视频一区二区| 亚洲一级一片aⅴ在线观看| 欧美成人一区二区免费高清观看| 精品人妻一区二区三区麻豆| 黄片wwwwww| 人妻少妇偷人精品九色| 女人久久www免费人成看片| 欧美性猛交╳xxx乱大交人| 亚洲天堂国产精品一区在线| 永久免费av网站大全| 天天躁日日操中文字幕| 免费少妇av软件| 国产精品av视频在线免费观看| 国产精品久久久久久精品电影小说 | 亚洲精品乱码久久久久久按摩| 婷婷色综合www| 免费av不卡在线播放| 综合色丁香网| 精品久久久噜噜| 少妇人妻一区二区三区视频| 久久久色成人| 欧美不卡视频在线免费观看| 天堂√8在线中文| 99热这里只有是精品在线观看| 国产精品一区二区性色av| 好男人视频免费观看在线| 午夜免费观看性视频| 精品一区二区免费观看| 成年免费大片在线观看| 成年女人看的毛片在线观看| 性插视频无遮挡在线免费观看| 日日摸夜夜添夜夜添av毛片| 国产亚洲91精品色在线| 久久久久久久久久久丰满| 少妇人妻一区二区三区视频| 午夜爱爱视频在线播放| 欧美区成人在线视频| 日日摸夜夜添夜夜爱| 色5月婷婷丁香| 国产精品三级大全| 久久久a久久爽久久v久久| 菩萨蛮人人尽说江南好唐韦庄| 欧美丝袜亚洲另类| 男女下面进入的视频免费午夜| 国产综合懂色| 综合色av麻豆| 女人久久www免费人成看片| 午夜福利视频1000在线观看| xxx大片免费视频| 久久精品熟女亚洲av麻豆精品 | 十八禁国产超污无遮挡网站| 综合色av麻豆| 亚洲色图av天堂| 午夜精品在线福利| 亚洲乱码一区二区免费版| 久久久久久久大尺度免费视频| 菩萨蛮人人尽说江南好唐韦庄| 成人综合一区亚洲| 免费看美女性在线毛片视频| 久久久久久久久久人人人人人人| 亚洲成人久久爱视频| 亚洲国产精品sss在线观看| 久久精品国产鲁丝片午夜精品| 久久久国产一区二区| av在线亚洲专区| 久久韩国三级中文字幕| 国产高潮美女av| 免费看av在线观看网站| 99久久中文字幕三级久久日本| 国产伦精品一区二区三区四那| 搡老妇女老女人老熟妇| 免费av不卡在线播放| 久久久久精品性色| 免费观看a级毛片全部| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产欧美人成| 色综合色国产| 亚洲国产精品成人久久小说| 日本午夜av视频| 国产精品麻豆人妻色哟哟久久 | 免费av不卡在线播放| 久久久久精品性色| 黄片wwwwww| 免费少妇av软件| 久久综合国产亚洲精品| 全区人妻精品视频| 国产乱来视频区| 国产伦精品一区二区三区视频9| 成人美女网站在线观看视频| 青青草视频在线视频观看| av天堂中文字幕网| 午夜激情福利司机影院| 草草在线视频免费看| 成人欧美大片| 色播亚洲综合网| 日韩欧美 国产精品| 91精品国产九色| 亚洲自偷自拍三级| 亚洲在久久综合| 久久久久九九精品影院| 自拍偷自拍亚洲精品老妇| 高清在线视频一区二区三区| or卡值多少钱| 欧美日韩综合久久久久久| 日韩 亚洲 欧美在线| 婷婷色综合大香蕉| 美女大奶头视频| 真实男女啪啪啪动态图| av在线天堂中文字幕| 欧美区成人在线视频| 99热全是精品| 高清日韩中文字幕在线| 尾随美女入室| 国产亚洲av嫩草精品影院| 中文欧美无线码| 又黄又爽又刺激的免费视频.| 美女xxoo啪啪120秒动态图| 精品国产一区二区三区久久久樱花 | 一区二区三区高清视频在线| 国产精品伦人一区二区| 午夜激情久久久久久久| 成人高潮视频无遮挡免费网站| 五月天丁香电影| 婷婷色综合大香蕉| 精品国内亚洲2022精品成人| 亚洲aⅴ乱码一区二区在线播放| 一区二区三区高清视频在线| 成年av动漫网址| 欧美另类一区| 国产老妇女一区| 国产精品一区www在线观看| 又大又黄又爽视频免费| 午夜视频国产福利| 成人无遮挡网站| 自拍偷自拍亚洲精品老妇| 久久久a久久爽久久v久久| 在线观看美女被高潮喷水网站| 欧美xxⅹ黑人| 中文字幕制服av| 夫妻午夜视频| 亚洲成人av在线免费| a级毛色黄片| 久久久久久久久久黄片| 国产一区二区三区综合在线观看 | 亚洲综合精品二区| 国产精品无大码| 欧美97在线视频| 色播亚洲综合网| 亚洲精品日韩在线中文字幕| 日日啪夜夜爽| 亚洲av电影在线观看一区二区三区 | 中文字幕av成人在线电影| 国产久久久一区二区三区| 丰满乱子伦码专区| 熟女电影av网| 日韩 亚洲 欧美在线| 亚洲真实伦在线观看| 国产亚洲一区二区精品| 国产在视频线在精品| 久久久午夜欧美精品| 成年免费大片在线观看| 美女大奶头视频| 国产久久久一区二区三区| 日韩欧美三级三区| 国产探花在线观看一区二区| 麻豆国产97在线/欧美| 久久亚洲国产成人精品v| 亚洲精品久久午夜乱码| 亚洲成色77777| 男人和女人高潮做爰伦理| 国产高潮美女av| 777米奇影视久久| 精品久久久久久久人妻蜜臀av| 青春草亚洲视频在线观看| 色综合色国产| 2021少妇久久久久久久久久久| 日韩一本色道免费dvd| 成人二区视频| 亚洲综合色惰| 国产激情偷乱视频一区二区| 日本免费a在线| 亚洲成人av在线免费| 国产片特级美女逼逼视频| 国产三级在线视频| 伊人久久国产一区二区| 午夜激情久久久久久久| 内射极品少妇av片p| 2021少妇久久久久久久久久久| 久久99蜜桃精品久久| 十八禁国产超污无遮挡网站| 18禁在线播放成人免费| 全区人妻精品视频| 成年免费大片在线观看| 亚洲一级一片aⅴ在线观看| 97超碰精品成人国产| 性插视频无遮挡在线免费观看| 精品一区二区三区人妻视频| 丝瓜视频免费看黄片| 国产综合精华液| 久久久亚洲精品成人影院| 十八禁国产超污无遮挡网站| 少妇猛男粗大的猛烈进出视频 | 国产精品一及| 欧美激情久久久久久爽电影|