• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adso rp tion of Hyd razoic Acid on Pristine Graphyne Sheet:A Com pu tational Study

    2018-05-25 00:57:59DEBJyotirmoyPAULDebolinaPEGUDavidSARKARUtpal
    物理化學(xué)學(xué)報(bào) 2018年5期

    DEB Jyotirmoy, PAUL Debolina, PEGU David, SARKAR Utpal

    Department of Physics, Assam University, Silchar-788011, India.

    1 In troduction

    In recent years low dimensional structures1–5have gained immense attention due to their potential application in next-generation nanoelectronics6–8. Among these, graphyne9,10is a latest proposed allotrope of carbon which is built from double and triple bonded unit of carbon atoms. It has attracted an extensive interest of the scientific society due to its extraordinary properties. Graphynes can be arranged as multiple lattice types, e.g., α, β, γ graphynes, and out of these, α and β graphynes present Dirac cone-like band structure around the Fermi level11, while γ graphyne is a sem iconductor12.Unlike graphene, γ graphyne has non-zero band gap and this is due to the presence of the acetylenic linkages and non-uniform π bindings. As graphyne and their derivatives possess various versatile characteristics, thus these systems may be strongly recommended for several technological applications such as nano-electronics13–16, optoelectronics17–19, spintronics20, for storing hydrogen21,22, as an electrode in batteries23,24, for the detection of gas molecules25–28and also as an energy storage device29,30.

    Interaction of atoms and molecules w ith electromagnetic field modifies its ground as well as excited state reactivity trends in greater extent31–33. Similarly, when confinement of systems takes place its reactivity profile changes significantly compared to unconfined one34–37, which is one of the major reason for a large number of investigations on gas molecule interaction w ith various systems. Recent literature survey reveals that detection of various gas molecules present in the atmosphere is now recognized as an emerging field for many of the researchers for the designing of the suitable gas sensor in order to detect chem ical and biological hazardous elements present in the environment and alsofor the monitoring purposes. It has been also noticed that graphyne material is a promising candidate for designing of the gas sensor. Beheshtian et al.25have investigated the interaction of HCN on pristine and Si-doped graphynes and their study indicate that the electronic properties of the graphyne system are highly influenced due to the presence of HCN and thus graphyne is a suitable candidate for the detection of HCN. In the year 2016,Deb et al. have reported that adsorption of BX3 (X = F, Cl and I)molecule on graphyne has induced significant changes in the electronic properties of the graphyne system. Thus we have concluded that graphyne based gas sensor can be designed for the detection of BX3(X = F, Cl and I) molecule38. Some other gas molecules (CO, NH3, formaldehyde etc.), nucleobases and amino acid adsorption on graphyne have been investigated in order to see their sensing capability27,39–41.

    Here we have studied the interaction of hydrazoic acid (HN3)on pristine graphyne. We have chosen HN3 molecule as it is a colorless, volatile, highly toxic and explosive molecule. It has a pungent odor and causes various diseases such as headaches,irritation to eyes, nose, throat, skin, respiratory system and mucous membrane. Direct exposures of HN3molecule on human being also results in multi-organ failure and even in many cases, it leads to death. On contact w ith heat, it becomes very dangerous explosive. Thus, some efficient methods should be designed in order to detect HN3molecule present in the environment. In this article, we have investigated the structural properties, electronic properties, band structure and charge transfer analysis of HN3 adsorbed graphyne system.

    2 Com pu tational m ethod

    All the quantum chemical computations have been performed using density functional theory as suggested in SIESTA code42,43. The exchange-correlation functional part of the generalized gradient approximation (GGA) has been represented using Perdew-Burke-Ernzerhof (PBE)44form.Troullier-Martin type norm-conserving pseudo potentials45and double zeta polarized basis set is used for the calculation. The sampling of Brillouin zone is achieved using 11 × 11 × 2 Monkhorst-Pack set of k points and mesh kinetic energy cutoff value was set at 300 Ryd. To avoid any undesirable interactions a vacuum space of 15 ? (1 ? = 0.1 nm) is maintained between the different layers of the graphyne system. Different orientations of the HN3molecule in different positions (on the top of triangular hollow, hexagonal hollow, acetylene linkage etc.) of graphyne have been tested tofind the ground state geometry of the HN3adsorbed graphyne system.

    The adsorption energy of hydrazoic acid adsorbed on graphyne sheet can be determined using the relation:Eads= E(Graphyne + molecule) – E(Graphyne) –(molecule)

    where, E(Graphyne + molecule), E(Graphyne) and E(molecule)are the energies of hydrazoic acid adsorbed graphyne system,pristine graphyne and hydrazoic acid respectively.

    In order to consider the interaction due to van der Waals(vdW) forces, we have also incorporated the van der Waals dispersion correction explicitly by using the empirical correction scheme as proposed by Grimme46.

    Fig.1 Optim ized geometry of (a) pristine graphyne; (b) Hmolecule adsorbed graphyne system (top view); (c) Hmolecu le adsorbed graphyne system (side view).

    3 Resu lts and discussion

    3.1 Elec tronic s truc tu re

    In our present study, we have placed HN3molecule in various adsorption sites (parallelly and perpendicularly) of the molecule w ith respect to graphyne sheet (see Fig.S1 of Supporting Information). Depending on their adsorption energy we have investigated the most stable configuration. The result reflects that parallel orientation is more stable in comparison to perpendicular orientation due to minimum energy in parallel configuration, which well agrees w ith our previous finding38.The optim ized structure of pristine and HN3adsorbed graphyne system is shown in Fig.1 and detailed analysis of various parameters such as optimal distance (D), adsorption energy(E ads), energy gap (E g), Mulliken charge transfer (Q) and electric dipole moment (μ) of the minimum energy structure of HN3adsorbed on graphyne sheet are represented in Table 1.Sim ilar to BX3(X = F, Cl and I) molecule38there is also no notable structural deformation observed in graphyne sheet due to the presence of HN3molecule on it. The bond length between the C atoms of intrinsic graphyne remains unaltered not only in our present study of the adsorption of HN3molecule on graphyne sheet but also in the case of several other molecules such as NH339, HCN25etc. on graphyne system.The adsorption energy of HN3adsorbed on graphyne system is found to be ?0.550 eV w ithout considering the van der Waals(vdW) correction and when vdW dispersion correction is taken care of, the adsorption energy of the same system is found to be?0.725 eV. The negative adsorption energy value in both the cases confirms the stability of the HN3adsorbed on graphyne system but the stability of system increases to a certain extent when vdW correction is considered. When NH339, HCN25are adsorbed on hydrogen terminated pristine graphyne, adsorption energy value of NH3, HCN adsorbed graphyne are found to be?0.191, ?0.108 eV respectively, using B3LYP functional and 6-31G(d) basis set. It is already reported40that graphyne can also sense formaldehyde and the adsorption energy is 0.40 eV which is higher than our observed adsorption energy. Since our system possesses lower adsorption energy compared to other small gas molecules such as NH3, HCN and formaldehyde so HN3adsorbed graphyne system is more stable. Thus, reflects its capability of acting as a sensor. The optimal distance (D) is the minimal distance between the pristine system and the interacting molecule. Here the optimal distance is found between the C atom (nearest to HN3molecule) of graphyne sheet and H atom of HN3molecule. The magnitude of D is 2.884 ? (Table 1) for both, w ith and w ithout vdW correction.The larger value of optimal distance and smaller magnitude of adsorption energy confirms the weak interaction of HN3molecule w ith graphyne sheet. This means weak physical adsorption of HN3molecule has taken place on graphyne system25,28,39. Also, the adsorption energy value of BX3(X = F,Cl and I) molecule adsorbed on graphyne system38is much higher in comparison to HN3 adsorbed graphyne system.

    Tab le 1 The op timal distance (D), adsorption energy (E ads), energy gap (E g), M u lliken charge transfer (Q) and electric dipole moment (μ) ofthe adsorp tion of hydrazoic acid on pristine graphyne.

    Fig.2 Band structure of HN3 molecule adsorbed graphyne system (a) w ithout vdW correction; (b) w ith vdW correction.

    3.2 Elec tronic p roperties

    3.2.1 Charge transfer analysis

    The magnitude of Mulliken charge transfer is 0.078e (Table 1) w ithout accounting the vdW correction but the magnitude of charge transfer decreases to 0.021e when vdW interaction is taken into consideration. The result shows that a very small amount of electron transfer has taken place between HN3molecule and graphyne sheet and the smaller Q value again suggesting the physisorption of HN3molecule on graphyne sheet25. This charge transfer occurs from HN3molecule to pristine graphyne. In our previous study38, we have shown that BCl3 and BI3 adsorbed graphyne system behaves as an n-type semiconductor, likew ise HN3adsorbed graphyne system also acts as an n-type semiconductor as the number of valence electrons of this system increases significantly. But, the magnitude of charge transfer is much higher when BCl3and BI3interact w ith graphyne system. On the basis of charge transfer,we may remark that although chemisorption of BX3 (X = F, Cl and I) molecule is observed on graphyne sheet, the HN3molecule, on the other hand, is physisorbed on the pristine graphyne system. In HCN adsorbed graphyne, 0.041e amount of charge calculated using B3LYP functional and 6-31G(d)basis set, is transferred from graphyne to HCN molecule.However, the present study reveals that 0.021e amount of charge is transferred from HN3molecule to graphyne. So the charge transfer direction of HCN adsorbed graphyne shows a reverse trend w ith respect to HN3adsorbed graphyne.Interaction of formaldehyde w ith graphyne system40also shows that formaldehyde is physically adsorbed on graphyne system similar to HN3adsorbed graphyne system but the charge transfer is quite large when formaldehyde correlates w ith graphyne system as compare to HN3interaction w ith graphyne system.

    3.2.2 Dipole m om ent

    The detailed study of dipole moment leads us to infer that although pristine graphyne has zero dipole moment the interaction of HN3molecule induces a significant amount of dipole moment into the system. The magnitude of dipole moment in case of HN3adsorbed graphyne system is found to be 0.173 Debye both for vdW and w ithout vdW correction. The sudden change in dipole moment may be detected w ith the help of a suitable detector and hence may ensure the possibility of designing as a sensor. This moderate value of dipole moment may be due to the rearrangement of charge carriers between graphyne system and HN3molecule. On comparing, it has been noticed that the magnitude of dipole moment in case of BF3adsorbed graphyne38is smaller than HN3 adsorbed graphyne whereas, increase in dipole moment are observed for BCl3and BI3adsorbed graphyne38system. Therefore, based on this comparison, we may conclude that the chance of detection of HN3molecule is higher than that of BF3molecule using graphyne as a host material.

    3.2.3 Band structure ana lysis

    In this work, we have analyzed the band structure of pristine graphyne when hydrazoic acid is adsorbed on it and presented a comparative discussion w ith its pristine counterpart. Our analysis and plot of band structure (see Fig.2) for HN3adsorbed graphyne system clearly shows that there is no spin splitting taking place for up and down spins and this is certainly because of the zero magnetic moment of the system. A lso, it has been observed that the valance band maximum (VBM) and the conduction band m inimum (CBM) of the HN3adsorbed graphyne system are located at the Г point of the hexagonal Brillouin zone and this observation of the VBM and CBM exactly matches w ith that of pristine graphyne38. For the pristine graphyne, the difference in energy level between the VBM and CBM is found to be approximately 0.453 eV13,38.But just when the adsorption of HN3molecule takes place on the surface of the pristine graphyne, its band gap gets changed and decreases to 0.424 eV (Table 1) w ithout incorporating vdW correction. There is no change in magnitude of the band gap when vdW interaction is considered. It is known that electrical conductivity is proportional tow here E,K and Tgbrepresents band gap, Boltzmann constant and temperature respectively. Since the band gap decreases when pristine graphyne interacts w ith HN3molecule, the HN3adsorbed system possesses larger electrical conductivity than that of the pristine system. The decrease in band gap is also observed in case of formaldehyde interaction w ith graphyne system40.However, our previous study on BX3 (X = F, Cl and I)molecule adsorption on graphyne sheet shows that38, the band gap of the pristine sheet slightly got increased, which is just opposite from the results of our present study of gas adsorption.Again from the literature survey, it is known that systems w ith low energy gap are less chem ically hard and consequently shows relatively low chem ical hardness profile47,48. Hence from our present work, we can infer that as the band gap of the pristine graphyne decreases on HN3adsorption on its surface,the resulting system becomes more reactive as compared to the pristine structure but less reactive compare toformaldehyde adsorbed graphyne system40. This is because the band gap of formaldehyde adsorbed graphyne is minimum compared to our studied molecule. Further, it is a known fact that pristine graphyne is a direct band gap intrinsic sem iconductor and it sustains this particular characteristic even when HN3 interacts w ith its surface. But the adsorption of HN3molecule on the graphyne system makes it an extrinsic sem iconductor (n-type).

    Fig.3 Total density of states (DOS) and projected density of states(PDOS) of HN3 molecule adsorbed graphyne system,(a) w ithout vdW correction; (b) w ith vdW correction.

    Fig.4 PDOS of pristine graphyne and HN3 adsorbed graphyne.

    3.2.4 Density of states

    The total density of states (DOS) and projected density of states (PDOS) considering w ith and w ithout vdW correction of each of the constituted atoms of ‘HN3 molecule adsorbed graphyne system’ show ing their individual orbital contribution has been picturized in Fig.3. There is no spin splitting in the system since it shows zero magnetism. So only the up-spin of the system has been plotted. The valence band (VB), as well as the conduction band (CB) in the total DOS, is primarily contributed by the energy states of C atom. The N and H atoms add some states to the TDOS. The absence of any energy state on the Ferm i level (Fig.4) confirms that HN3molecule adsorbed system is show ing sem iconducting behavior. The Fig.3(a, b)clearly shows that C atom is dom inating the HOMO, LUMO and their adjacent energy states in the TDOS. The VB region of C atom [Fig.3a(ii)] is strictly governed by the pz orbital except?2.7 to ?2.0 eV where the pxand pyorbitals overlap each other and dom inate over the contribution of pzorbitals. In the CB region, again the magnitude of pzorbital of C atom is dom inating and is spread all over before it vanishes at the extreme part of our considered energy range. But, as we move farther away from the Fermi level, towards the higher energy range, it is observed that the pxand pyorbitals start contributing together from 3.4 eV onwards. It may also be noted that in a very small region between 3.5 to 4.1 eV, the contribution from pzorbital of C atom is suppressed by pxand pyorbitals. Again,the states of px and py orbitals arise from 4.6 eV onwards and dom inate in the rest of the region of C atom (where pz vanishes). The s orbital of C atom hardly adds to the DOS. On the other hand, the contribution of the only s orbital of H atom is negligible w ith two peaks of least magnitude, one at VB and the other at CB region [Fig.3a(iii)]. However, the peak at CB is comparatively of greater amplitude than that of VB. In the case of N atom, the VB and the CB are composed of two peaks,each one from the contribution of pxand pzorbitals [Fig.3a(iv)]separately. The highest energy states of pxfalls between ?3.2 to?2.5 eV in the VB region and 3.0 to 3.3 eV in the CB region,while that of pzit lies from ?1.5 to ?1.4 eV in the VB region and 4.1 to 4.6 eV in the CB region of the N atom. Interestingly,the peak of the pz orbital of N atom is higher than that of px orbital in the VB area and vice versa in case of the CB region.Our study on the DOS analysis of HN3adsorbed graphyne system is dom inated especially by the energy states of the pzorbital of C atom, which well matches w ith the DOS of pristine graphyne13,38, where the pz orbital of C atom is dominant. We find that the presence of the dopant (HN3) in graphyne produces less impact on the TDOS. Specifically, the graph of TDOS of the adsorbed system is found to be very sim ilar to that of its pristine counterpart only w ith an increase in the amplitude. Further, vdW correction produced no effect on the DOS and PDOS of the HN3 adsorbed graphyne system. In order to verify the intrinsic mechanism of the change of band gap,especially the contribution of the band near the Fermi level, the zoom version of pzorbital of contributing atoms of pristine graphyne and HN3adsorbed graphyne system is presented in Fig.4. For the pristine system, the pzorbital of C atom starts contributed at ?0.058 eV away from the Ferm i level. However,when HN3 is adsorbed, the pz orbitals started contributing nearly from the Fermi level, and this is the main reason for lowering the band gap apart from the very small contribution of the pzorbital of N atom which was m issing for the pristine system.

    4 Conc lusions

    In order to investigate the sensing behavior of graphyne for the detection of HN3molecule based on first principle calculations w ith vdW correction, we have studied the adsorption of HN3molecule on pristine graphyne. The result shows that parallel orientation of HN3molecule on graphyne sheet is found to be more stable in contrast to transverse orientation and is in good accordance w ith our previous findings. The negative value of adsorption energy clearly reflects the stability of HN3adsorbed graphyne system. The smaller magnitude of adsorption energy and higher value of optimal distance signifies that physisorption of HN3 molecule occurs on graphyne system whereas BX3(X = F, Cl and I)molecule is chem isorbed on it. The band structure analysis indicates that HN3adsorbed graphyne is also exhibiting sem iconducting characteristics like pristine as well as BX3(X =F, Cl and I) adsorbed graphyne system. The band gap decreases slightly w ith respect to the pristine system which is also confirming the increase in chemical reactivity profile of the HN3adsorbed graphyne system. It has been noticed that sim ilar to BCl3, BI3and other molecules adsorbed graphyne system,HN3molecule adsorbed graphyne system also behaves like an n-type semiconductor. The pristine graphyne possesses zero dipole moment but a considerable value of dipole moment,even higher than BF3adsorbed graphyne system, is obtained when the interaction of HN3molecule occurs w ith pristine graphyne. The PDOS analysis reveals that pzorbital of C atom is mostly contributed to the total density of states of HN3adsorbed graphyne system. Finally, the electronic properties of the graphyne system are highly influenced due to the presence of HN3molecule on it which ensures the possibility to use graphyne system for the identification of hydrazoic acid in the atmosphere.

    Acknow ledgm en t: US would like to acknow ledge the support from Prof. Paul W Ayers, Department of Chemistry,McMaster University, Canada, in various ways and SHARCNET Canada for providing computational facilities for this research work.

    Suppo rting In fo rm ation: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    References

    (1) Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R .E.Nature 1985, 318, 162. doi: 10.1038/318162a0

    (2) Iijima, S. Nature 1991, 354, 56. doi: 10.1038/354056a0

    (3) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.;Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306,666. doi: 10.1126/science.1102896

    (4) Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Chem. Rev. 2015,115, 4744. doi: 10.1021/cr500304f

    (5) Lu, H.; Li, S. -D. J. Mater. Chem. C 2013, 1, 3677.doi: 10.1039/C3TC30302K

    (6) Yang, M. -Q.; Zhang, N.; Xu, Y. -J. ACS Appl. Mater. Interfaces 2013,5, 1156. doi: 10.1021/am3029798

    (7) Deng, W. -Q.; Matsuda, Y.; Goddard, W. A. J. Am. Chem. Soc. 2007,129, 9834. doi: 10.1021/ja061443r

    (8) Romo-Herrera, J. M.; Terrones, M.; Terrones, H.; Meunier, V. ACS Nano 2008, 2, 2585. doi: 10.1021/nn800612d

    (9) Baughman, R. H.; Eckhardt, H.; Kertesz, M. J. Chem. Phys. 1987, 87,6687. doi: 10.1063/1.453405

    (10) Narita, N.; Nagai, S.; Suzuki, S.; Nakao, K. Phys. Rev. B 1998, 58,11009. doi: 10.1103/PhysRevB.58.11009

    (11) Malko, D.; Neiss, C.; Vi?es, F.; G?rling, A. Phys. Rev. Lett. 2012,108, 086804. doi: 10.1103/PhysRevLett.108.086804

    (12) Kondo, M.; Nozaki, D.; Tachibana, M.; Yumura, T.; Yoshizawa, K.Chem. Phys. 2005, 312, 289. doi: 10.1016/j.chemphys.2004.11.029

    (13) Singh, N. B.; Bhattacharya, B.; Sarkar, U. Struct. Chem. 2014, 25,1695. doi: 10.1007/s11224-014-0440-4

    (14) Koo, J.; Huang, B.; Lee, H.; Kim, G.; Nam, J.; Kwon, Y.; Lee, H.J. Phys. Chem. C 2014, 118, 2463. doi: 10.1021/jp4087464

    (15) Shayeganfar, F. J. Phys. Chem. C 2015, 119, 12681.doi: 10.1021/acs.jpcc.5b01560

    (16) Deb, J.; Bhattacharya, B.; Sarkar, U. J. Phys.: Conf. Ser. 2016, 759,012038(1/6). doi:10.1088/1742-6596/759/1/012038

    (17) Bhattacharya, B.; Sarkar, U. J. Phys. Chem. C 2016, 120, 26793.doi: 10.1021/acs.jpcc.6b07478

    (18) Kang, J.; Li, J.; Wu, F.; Li, S.-S.; Xia, J.-B. J. Phys. Chem. C 2011,115, 20466. doi: 10.1021/jp206751m

    (19) Bhattacharya, B.; Singh, N. B.; Sarkar, U. Int. J. Quantum Chem.2015, 115, 820. doi: 10.1002/qua.24910

    (20) Pan, J.; Du, S.; Zhang, Y.; Pan, L.; Zhang, Y.; Gao, H.; Pantelides, S.T. Phys. Rev. B 2015, 92, 205429(1/6).doi: 10.1103/PhysRevB.92.205429

    (21) Li, C.; Li, J.; Wu, F.; Li, S.-S.; Xia, J.-B.; Wang, L.-W. J. Phys. Chem.C 2011, 115, 23221. doi: 10.1021/jp208423y

    (22) Guo, Y.; Jiang, K.; Xu, B.; Xia, Y.; Yin, J.; Liu, Z. J. Phys. Chem. C 2012, 116, 13837. doi: 10.1021/jp302062c

    (23) Hwang, H. J.; Koo, J.; Park, M.; Park, N.; Kwon, Y.; Lee, H. J. Phys.Chem. C 2013, 117, 691. doi: 10.1021/jp3105198

    (24) Deb, J.; Paul, D.; Sarkar, U. AIP Conf. Proc. 2017, 1832, 050106.doi: 10.1063/1.4980339

    (25) Baheshtian, J.; Peyghan, A. A.; Bagheri, Z.; Tabar, M. B. Struct.Chem. 2014, 25, 1. doi: 10.1007/s11224-013-0230-4

    (26) Deb, J.; Bhattacharya, B.; Sarkar, U. AIP Conf. Proc. 2016, 1731,050081. doi: 10.1063/1.4947735

    (27) Omidvar, A.; Mohajeri, A. Mol. Phys. 2015, 113, 3900.doi: 10.1080/00268976.2015.1080388

    (28) Deb, J.; Bhattacharya, B.; Paul, D.; Sarkar, U. Phys. E 2016, 84, 330.doi: 10.1016/j.physe.2016.08.006

    (29) Srinivasu, K.; Ghosh, S. K. J. Phys. Chem. C 2012, 116, 5951.doi: 10.1021/jp212181h

    (30) Bhattacharya, B.; Sarkar, U.; Seriani, N. J. Phys. Chem. C 2016, 120,26579. doi: 10.1021/acs.jpcc.6b07092

    (31) Chattaraj, P. K.; Sarkar, U. Int. J. Quantum Chem. 2003, 91, 633.doi: 10.1002/qua.10486

    (32) Chattaraj, P. K.; Sarkar, U.; Parthasarathi, R.; Subramanian, V. Int. J.Quantum Chem. 2005, 101, 690. doi: 10.1002/qua.20334

    (33) Chattaraj, P. K.; Sarkar, U. Comp. Theor. Chem. 2007, 19, 269.doi: 10.1016/S1380-7323(07)80014-8

    (34) Sarkar, U.; Khatua, M.; Chattaraj, P. K. Phys. Chem. Chem. Phys.2012, 14, 1716. doi: 10.1039/c1cp22862e

    (35) Sarkar, U.; Giri, S.; Chattaraj, P. K. J. Phys. Chem. A 2009, 113,10759. doi: 10.1021/jp902374d

    (36) Khatua, M.; Sarkar, U.; Chattaraj, P. K. Eur. Phys. J. D 2014, 68, 1.doi: 10.1140/epjd/e2013-40472-y

    (37) Chattaraj, P. K.; Khatua, M.; Sarkar, U. Int. J. Quantum Chem. 2015,115, 144. doi: 10.1002/qua.24801

    (38) Deb, J.; Bhattacharya, B.; Singh, N. B.; Sarkar, U. Struct. Chem.2016, 27, 1221. doi: 10.1007/s11224-016-0747-4

    (39) Peyghan, A. A.; Rastegar, S. F.; Hadipour, N. L. Phys. Lett. A 2014,378, 2184. doi: 10.1016/j.physleta.2014.05.016

    (40) Majidi, R.; Karam i, A. R. Phys. E 2014, 59, 169.doi: 10.1016/j.physe.2014.01.019

    (41) Shekar, S. C.; Swathi, R. S. J. Phys. Chem. C 2014, 118, 4516.doi: 10.1021/jp412791v

    (42) Ordejón, P.; Artacho, E.; Soler, J. M. Phys. Rev. B 1996, 53, R10441.doi: 10.1103/PhysRevB.53.R10441

    (43) Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.;Ordejón, P.; Portal, D. S. J. Phys. Condens. Matter 2002, 14, 2745.doi: 10.1088/0953-8984/14/11/302

    (44) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77,3865. doi: 10.1103/PhysRevLett.77.3865

    (45) Troullier, N.; Martins, J. Solid State Commun. 1990, 74, 613.doi: 10.1016/0038-1098(90)90686-6

    (46) Grimme, S. J. Comput. Chem. 2006, 27, 1787.doi: 10.1002/jcc.20495

    (47) Parr, R. G.; Chattaraj, P. K. J. Am. Chem. Soc. 1991, 113, 1854.doi: 10.1021/ja00005a072

    (48) Ghara, M.; Pan, S.; Deb, J.; Kumar, A.; Sarkar, U.; Chattaraj, P. K.J. Chem. Sci. 2016, 10, 15378. doi: 10.1007/s12039-016-1150-9

    亚洲熟女毛片儿| 2021少妇久久久久久久久久久| 国产男人的电影天堂91| 国产精品亚洲av一区麻豆 | 人妻人人澡人人爽人人| av国产精品久久久久影院| 观看美女的网站| 99久久综合免费| 女人被躁到高潮嗷嗷叫费观| 性高湖久久久久久久久免费观看| 日本一区二区免费在线视频| 91精品国产国语对白视频| 妹子高潮喷水视频| 国产成人一区二区在线| 欧美日韩视频精品一区| 人人妻人人添人人爽欧美一区卜| 一区二区三区激情视频| 国产精品二区激情视频| 91国产中文字幕| 在线观看三级黄色| 国产精品久久久久久精品电影小说| 十八禁高潮呻吟视频| 伦理电影大哥的女人| 哪个播放器可以免费观看大片| 中文字幕最新亚洲高清| 亚洲精品在线美女| 欧美日本中文国产一区发布| 亚洲色图 男人天堂 中文字幕| 国产精品一区二区在线不卡| 国产日韩欧美视频二区| 亚洲久久久国产精品| 国产探花极品一区二区| 国产黄色免费在线视频| 桃花免费在线播放| 校园人妻丝袜中文字幕| 三上悠亚av全集在线观看| 不卡视频在线观看欧美| 欧美日韩一级在线毛片| 丁香六月欧美| www.自偷自拍.com| 女性生殖器流出的白浆| 国产成人免费观看mmmm| 大片免费播放器 马上看| 欧美精品亚洲一区二区| 精品第一国产精品| 免费观看人在逋| 欧美日韩一区二区视频在线观看视频在线| 人成视频在线观看免费观看| 母亲3免费完整高清在线观看| 人成视频在线观看免费观看| 欧美人与性动交α欧美精品济南到| 一级,二级,三级黄色视频| 操出白浆在线播放| 桃花免费在线播放| 成年女人毛片免费观看观看9 | 日本欧美视频一区| 丝袜喷水一区| 欧美另类一区| 欧美精品av麻豆av| 黑人欧美特级aaaaaa片| 两个人看的免费小视频| 99九九在线精品视频| 国产免费视频播放在线视频| 日日摸夜夜添夜夜爱| 国精品久久久久久国模美| 一本大道久久a久久精品| 欧美 亚洲 国产 日韩一| 最近2019中文字幕mv第一页| 国产精品国产三级国产专区5o| 狠狠精品人妻久久久久久综合| 免费看不卡的av| 夫妻性生交免费视频一级片| 少妇人妻 视频| 午夜福利视频精品| 午夜福利视频在线观看免费| 你懂的网址亚洲精品在线观看| 一本色道久久久久久精品综合| 日韩免费高清中文字幕av| 国产精品久久久av美女十八| 午夜日本视频在线| 我的亚洲天堂| 国产欧美日韩一区二区三区在线| 久久久国产精品麻豆| av网站免费在线观看视频| 美女午夜性视频免费| 国产不卡av网站在线观看| 在线天堂最新版资源| 色网站视频免费| 街头女战士在线观看网站| 母亲3免费完整高清在线观看| av网站免费在线观看视频| 欧美日韩一级在线毛片| 日韩伦理黄色片| 一本色道久久久久久精品综合| av国产精品久久久久影院| 午夜日韩欧美国产| 亚洲欧美日韩另类电影网站| 新久久久久国产一级毛片| 国产伦理片在线播放av一区| 久久鲁丝午夜福利片| 亚洲精品视频女| 国产精品秋霞免费鲁丝片| 国产亚洲午夜精品一区二区久久| 亚洲图色成人| 国产亚洲av高清不卡| 精品亚洲成国产av| 成人午夜精彩视频在线观看| 啦啦啦 在线观看视频| 你懂的网址亚洲精品在线观看| 高清黄色对白视频在线免费看| 少妇被粗大猛烈的视频| 精品久久久久久电影网| 精品一区二区三区av网在线观看 | 国产精品偷伦视频观看了| 精品国产乱码久久久久久小说| 高清av免费在线| 91老司机精品| 国产精品久久久久久精品电影小说| 老司机靠b影院| 亚洲第一av免费看| 岛国毛片在线播放| 久久99一区二区三区| 在线观看免费午夜福利视频| 亚洲欧美成人综合另类久久久| bbb黄色大片| 观看美女的网站| 高清欧美精品videossex| 色婷婷久久久亚洲欧美| 另类精品久久| 亚洲第一av免费看| 90打野战视频偷拍视频| 母亲3免费完整高清在线观看| 久久久精品国产亚洲av高清涩受| 成人三级做爰电影| 国产高清国产精品国产三级| 久久国产亚洲av麻豆专区| 丝袜脚勾引网站| 国产野战对白在线观看| 在线观看免费视频网站a站| 国产又爽黄色视频| 午夜免费观看性视频| 男女床上黄色一级片免费看| 麻豆av在线久日| 精品久久蜜臀av无| www日本在线高清视频| 午夜精品国产一区二区电影| 日韩电影二区| 亚洲精品美女久久av网站| 亚洲国产欧美一区二区综合| 午夜老司机福利片| www.熟女人妻精品国产| 又大又黄又爽视频免费| 亚洲欧美一区二区三区黑人| 国产av精品麻豆| 十八禁高潮呻吟视频| 亚洲视频免费观看视频| 中文字幕人妻丝袜制服| 国产成人一区二区在线| 亚洲少妇的诱惑av| 国产爽快片一区二区三区| 色播在线永久视频| 下体分泌物呈黄色| 亚洲国产欧美日韩在线播放| 日日啪夜夜爽| 日韩,欧美,国产一区二区三区| 亚洲av国产av综合av卡| 熟女少妇亚洲综合色aaa.| 2021少妇久久久久久久久久久| 精品人妻一区二区三区麻豆| 国产成人精品福利久久| 亚洲精品,欧美精品| 夫妻午夜视频| 不卡av一区二区三区| 国产亚洲精品第一综合不卡| 国产精品一区二区在线观看99| 欧美日韩一级在线毛片| xxxhd国产人妻xxx| 一区二区三区激情视频| 免费看不卡的av| 亚洲精品自拍成人| 国产男女内射视频| 美女国产高潮福利片在线看| 91成人精品电影| 国产高清不卡午夜福利| 国产极品粉嫩免费观看在线| 国精品久久久久久国模美| 最近2019中文字幕mv第一页| 一级毛片电影观看| 9色porny在线观看| 国产男人的电影天堂91| 中文字幕人妻熟女乱码| 菩萨蛮人人尽说江南好唐韦庄| svipshipincom国产片| 欧美人与性动交α欧美软件| 亚洲熟女毛片儿| 亚洲国产毛片av蜜桃av| 在线天堂最新版资源| 亚洲欧美成人综合另类久久久| 黑人欧美特级aaaaaa片| 午夜激情av网站| 国产亚洲av片在线观看秒播厂| 国产一区二区激情短视频 | 激情视频va一区二区三区| 亚洲伊人色综图| 日韩,欧美,国产一区二区三区| 国产精品一国产av| 日韩成人av中文字幕在线观看| 热re99久久精品国产66热6| 天天添夜夜摸| 一区二区三区四区激情视频| 久久精品aⅴ一区二区三区四区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品一区二区精品视频观看| 欧美激情高清一区二区三区 | 欧美日本中文国产一区发布| 久久久国产一区二区| 亚洲一区二区三区欧美精品| 婷婷色综合www| 男女床上黄色一级片免费看| av网站在线播放免费| 欧美成人精品欧美一级黄| 精品免费久久久久久久清纯 | 免费看av在线观看网站| av有码第一页| 国产成人91sexporn| 欧美人与性动交α欧美精品济南到| 国产福利在线免费观看视频| 日韩制服骚丝袜av| 王馨瑶露胸无遮挡在线观看| 久久久久久久国产电影| 99re6热这里在线精品视频| 男女下面插进去视频免费观看| 夫妻午夜视频| 亚洲婷婷狠狠爱综合网| 免费看av在线观看网站| 高清视频免费观看一区二区| 街头女战士在线观看网站| 制服人妻中文乱码| 热99国产精品久久久久久7| 亚洲精品中文字幕在线视频| 国产精品香港三级国产av潘金莲 | 国产伦理片在线播放av一区| 久久精品亚洲av国产电影网| 精品少妇久久久久久888优播| 欧美成人精品欧美一级黄| 成人免费观看视频高清| 我的亚洲天堂| 熟女av电影| 最近最新中文字幕免费大全7| 在线观看www视频免费| 免费女性裸体啪啪无遮挡网站| 久久青草综合色| 久久婷婷青草| 最黄视频免费看| 国精品久久久久久国模美| 精品人妻一区二区三区麻豆| 国产一区二区三区av在线| 欧美 亚洲 国产 日韩一| 久久精品国产亚洲av涩爱| 亚洲色图 男人天堂 中文字幕| 99久久综合免费| 精品人妻在线不人妻| 1024视频免费在线观看| 亚洲综合精品二区| 中文字幕人妻丝袜一区二区 | 尾随美女入室| 国产亚洲午夜精品一区二区久久| 国产xxxxx性猛交| 在线观看免费午夜福利视频| 国产精品久久久久久精品古装| 最近最新中文字幕大全免费视频 | 久久精品国产a三级三级三级| 亚洲精品久久久久久婷婷小说| 美女福利国产在线| 国产日韩欧美在线精品| 亚洲在久久综合| 亚洲欧美色中文字幕在线| 免费高清在线观看日韩| 国产精品亚洲av一区麻豆 | 精品少妇黑人巨大在线播放| 最黄视频免费看| 啦啦啦在线免费观看视频4| 国产深夜福利视频在线观看| 熟女av电影| 欧美精品一区二区大全| 1024香蕉在线观看| 天天躁夜夜躁狠狠久久av| 搡老乐熟女国产| 欧美日韩av久久| 亚洲人成网站在线观看播放| 丝袜人妻中文字幕| 伦理电影免费视频| 三上悠亚av全集在线观看| 精品国产乱码久久久久久男人| 午夜福利免费观看在线| 夫妻性生交免费视频一级片| 亚洲熟女精品中文字幕| 高清欧美精品videossex| 亚洲精品美女久久久久99蜜臀 | 大陆偷拍与自拍| 久久ye,这里只有精品| 国产深夜福利视频在线观看| 男女下面插进去视频免费观看| 一边亲一边摸免费视频| 欧美 日韩 精品 国产| 99精国产麻豆久久婷婷| 2018国产大陆天天弄谢| 国产精品一二三区在线看| 免费高清在线观看日韩| 2018国产大陆天天弄谢| 777久久人妻少妇嫩草av网站| 一区二区日韩欧美中文字幕| 高清黄色对白视频在线免费看| 国产人伦9x9x在线观看| 韩国高清视频一区二区三区| 考比视频在线观看| 一区二区av电影网| 久久久久精品性色| 中文字幕人妻丝袜制服| 老司机深夜福利视频在线观看 | 蜜桃在线观看..| 啦啦啦在线观看免费高清www| 伊人久久国产一区二区| 久久久久精品久久久久真实原创| 18禁动态无遮挡网站| 麻豆av在线久日| 精品一区二区三区av网在线观看 | 精品一区在线观看国产| 超碰成人久久| av在线老鸭窝| 一级,二级,三级黄色视频| av天堂久久9| 亚洲少妇的诱惑av| e午夜精品久久久久久久| 伊人久久大香线蕉亚洲五| 日本午夜av视频| 青春草国产在线视频| 国产精品 国内视频| 国产精品熟女久久久久浪| 国产av码专区亚洲av| 亚洲婷婷狠狠爱综合网| 最近中文字幕2019免费版| 少妇猛男粗大的猛烈进出视频| 久久精品国产亚洲av涩爱| 两个人看的免费小视频| 国产精品二区激情视频| 看免费av毛片| 人人妻人人爽人人添夜夜欢视频| 综合色丁香网| 国产欧美亚洲国产| 叶爱在线成人免费视频播放| 夜夜骑夜夜射夜夜干| 午夜福利在线免费观看网站| 欧美乱码精品一区二区三区| 肉色欧美久久久久久久蜜桃| 黄色怎么调成土黄色| 97在线人人人人妻| 丝袜美腿诱惑在线| 80岁老熟妇乱子伦牲交| 最近最新中文字幕大全免费视频 | 秋霞在线观看毛片| 国产精品久久久久久久久免| 久久精品国产亚洲av涩爱| 国产麻豆69| 亚洲欧美精品综合一区二区三区| 久久av网站| 亚洲天堂av无毛| 一边摸一边做爽爽视频免费| 街头女战士在线观看网站| 国产亚洲一区二区精品| 哪个播放器可以免费观看大片| 蜜桃国产av成人99| 国产极品粉嫩免费观看在线| 十八禁高潮呻吟视频| 精品一区二区免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 一级片'在线观看视频| 欧美在线黄色| 欧美少妇被猛烈插入视频| 欧美变态另类bdsm刘玥| 制服人妻中文乱码| 十八禁网站网址无遮挡| 午夜福利视频精品| 国产熟女欧美一区二区| 老司机亚洲免费影院| 久久精品国产亚洲av高清一级| 日本欧美国产在线视频| 久久久亚洲精品成人影院| 亚洲欧美一区二区三区国产| 视频在线观看一区二区三区| 妹子高潮喷水视频| 久久久久精品久久久久真实原创| 涩涩av久久男人的天堂| 午夜激情久久久久久久| 欧美变态另类bdsm刘玥| 黄片播放在线免费| 国产一区二区激情短视频 | 欧美少妇被猛烈插入视频| 久久久精品免费免费高清| 丰满乱子伦码专区| 亚洲人成网站在线观看播放| 成人18禁高潮啪啪吃奶动态图| 亚洲男人天堂网一区| 国产精品女同一区二区软件| 九草在线视频观看| 亚洲欧美一区二区三区久久| 黄频高清免费视频| 曰老女人黄片| 大香蕉久久成人网| 天天躁夜夜躁狠狠躁躁| 最近最新中文字幕免费大全7| 免费少妇av软件| 国产激情久久老熟女| av视频免费观看在线观看| 久久久久人妻精品一区果冻| 亚洲在久久综合| 久久国产亚洲av麻豆专区| 久久国产精品大桥未久av| 一本大道久久a久久精品| 久久99一区二区三区| 国产黄色视频一区二区在线观看| av在线观看视频网站免费| 999精品在线视频| 91国产中文字幕| 欧美 日韩 精品 国产| 又大又黄又爽视频免费| 在线观看www视频免费| 久久久亚洲精品成人影院| 色94色欧美一区二区| 亚洲伊人久久精品综合| 97精品久久久久久久久久精品| 大香蕉久久网| 啦啦啦中文免费视频观看日本| 国产又爽黄色视频| 十分钟在线观看高清视频www| 18禁观看日本| 91aial.com中文字幕在线观看| 我要看黄色一级片免费的| 日韩熟女老妇一区二区性免费视频| 观看av在线不卡| xxxhd国产人妻xxx| 99精国产麻豆久久婷婷| 久久久久精品性色| 中文欧美无线码| 18禁动态无遮挡网站| 亚洲伊人久久精品综合| 精品视频人人做人人爽| 91老司机精品| 亚洲人成77777在线视频| 欧美 亚洲 国产 日韩一| 母亲3免费完整高清在线观看| 亚洲欧美激情在线| 在线观看免费午夜福利视频| 一个人免费看片子| 久久久久精品国产欧美久久久 | 国产免费一区二区三区四区乱码| 国产成人精品久久二区二区91 | 天堂中文最新版在线下载| 美女国产高潮福利片在线看| 青草久久国产| 人人妻,人人澡人人爽秒播 | 日本爱情动作片www.在线观看| 成人免费观看视频高清| www日本在线高清视频| 麻豆av在线久日| 老司机靠b影院| 免费不卡黄色视频| 精品人妻在线不人妻| 观看美女的网站| 久久国产精品大桥未久av| 国产老妇伦熟女老妇高清| 这个男人来自地球电影免费观看 | 成年女人毛片免费观看观看9 | 黄色视频不卡| 又黄又粗又硬又大视频| 男女边摸边吃奶| 国产精品久久久久久久久免| 一本色道久久久久久精品综合| 成人午夜精彩视频在线观看| 久久97久久精品| 欧美日韩一区二区视频在线观看视频在线| 在线免费观看不下载黄p国产| 别揉我奶头~嗯~啊~动态视频 | 亚洲国产成人一精品久久久| 一本色道久久久久久精品综合| 国产精品久久久人人做人人爽| xxxhd国产人妻xxx| 成年美女黄网站色视频大全免费| 青春草国产在线视频| 亚洲av成人精品一二三区| 日韩视频在线欧美| 天美传媒精品一区二区| 中文字幕另类日韩欧美亚洲嫩草| 九色亚洲精品在线播放| 国产欧美日韩综合在线一区二区| 久久国产精品男人的天堂亚洲| 亚洲自偷自拍图片 自拍| 欧美精品人与动牲交sv欧美| 女的被弄到高潮叫床怎么办| 国产精品一国产av| 另类精品久久| 国产一区二区三区av在线| 激情视频va一区二区三区| 久久av网站| 国产精品av久久久久免费| 国产1区2区3区精品| 男女床上黄色一级片免费看| 午夜福利在线免费观看网站| 各种免费的搞黄视频| 日韩中文字幕欧美一区二区 | 最近中文字幕2019免费版| 亚洲成人手机| 久热这里只有精品99| 看十八女毛片水多多多| 亚洲 欧美一区二区三区| 国产av一区二区精品久久| 国产男女内射视频| 日韩电影二区| 在线观看三级黄色| 国产淫语在线视频| 成人三级做爰电影| 亚洲第一av免费看| 在线观看三级黄色| 欧美97在线视频| 日本猛色少妇xxxxx猛交久久| 精品一品国产午夜福利视频| 亚洲欧洲日产国产| 国产精品久久久人人做人人爽| 男女高潮啪啪啪动态图| 热99久久久久精品小说推荐| 亚洲精品国产色婷婷电影| 1024香蕉在线观看| 两个人看的免费小视频| 欧美人与善性xxx| 久久青草综合色| 国产免费现黄频在线看| 丝袜美足系列| 国产有黄有色有爽视频| 热99国产精品久久久久久7| 成人毛片60女人毛片免费| 丝袜脚勾引网站| 亚洲精品日韩在线中文字幕| 韩国高清视频一区二区三区| 国产 一区精品| 天天躁夜夜躁狠狠躁躁| 国产成人欧美在线观看 | 国产男女超爽视频在线观看| 99热全是精品| 18禁裸乳无遮挡动漫免费视频| 国产成人一区二区在线| 欧美国产精品va在线观看不卡| 一区在线观看完整版| 午夜影院在线不卡| 一区二区三区四区激情视频| 老鸭窝网址在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产视频首页在线观看| 国产有黄有色有爽视频| 婷婷色av中文字幕| 大码成人一级视频| 大香蕉久久网| 97精品久久久久久久久久精品| 极品人妻少妇av视频| 亚洲第一青青草原| 99久国产av精品国产电影| 美女主播在线视频| 成人午夜精彩视频在线观看| 99九九在线精品视频| 国产精品偷伦视频观看了| 国产日韩欧美在线精品| 日日摸夜夜添夜夜爱| 色精品久久人妻99蜜桃| 亚洲伊人色综图| 9色porny在线观看| 国产福利在线免费观看视频| 免费黄网站久久成人精品| 国产人伦9x9x在线观看| 肉色欧美久久久久久久蜜桃| 国产日韩欧美视频二区| 美女主播在线视频| 日日啪夜夜爽| 日韩av不卡免费在线播放| 国产精品人妻久久久影院| 一个人免费看片子| 日韩av免费高清视频| 久久久精品免费免费高清| 国产亚洲最大av| 国产精品二区激情视频| 黄色怎么调成土黄色| 国产免费现黄频在线看| 不卡av一区二区三区| 色精品久久人妻99蜜桃| 999精品在线视频| 日韩制服骚丝袜av| 亚洲第一av免费看| 成人18禁高潮啪啪吃奶动态图| 黄色一级大片看看| 无限看片的www在线观看| 日韩一本色道免费dvd| 欧美亚洲日本最大视频资源| 极品人妻少妇av视频| 久久狼人影院| 欧美日韩视频高清一区二区三区二| 国产精品一区二区在线观看99| 国产老妇伦熟女老妇高清| 中文欧美无线码| 精品亚洲乱码少妇综合久久| 啦啦啦在线观看免费高清www| 欧美老熟妇乱子伦牲交| 中文字幕高清在线视频| 男女下面插进去视频免费观看| 国产亚洲一区二区精品| 亚洲国产av影院在线观看| 精品视频人人做人人爽| 久久精品久久精品一区二区三区|