• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chem ical Bond ing and In terp retation of Tim e-Dependen t Elec tronic Processes w ith Maxim um Probability Dom ains

    2018-05-25 00:57:35SAVINAndreas
    物理化學(xué)學(xué)報 2018年5期

    SAVIN Andreas

    Laboratoire de Chim ie Théorique,CNRS,and Sorbonne Université,UPMC Univ Paris 06,4 place Jussieu,F 75252 Paris cedex 05,France.

    1 Introduction

    Many tools have been developed to describe chem ical bonding using quantum mechanics.But chemical bonding changes during structuralmodificationsof themolecules.Does assigning spatial domains to electron pairs(the Lew is perspective)survive in time-dependent processes?Usual chemical routineuses curved arrows,suggesting that this is the case.Quantum chemical calculations performed along the reaction path tend to confi rm it.But is this adiabatic picture correct?

    This paper uses a simple model,of two independent particles of the same spin,in a one-dimensional box.(As the formation of the Lew is pairs is mainly due to the Pauli principle,and only independent particles are discussed in this paper,the treatmentof two electrons of the same spin is easily transposed to the treatmentof two electron pairs.)Atstart,each of the the particles is confined to a half-box.Thewallbetween boxes becomes transparentw ith time,allow ing the particle to pass from one half-box to the other.A fter some time,τ,the wall completely disappears.

    Using a “reasonable” definition,one can attribute a spatial domain to one of the electrons,the other one being in the remaining space available.This evidently workswhen thewall is impenetrable.One may naively believe that making the separation wall vanish does not qualitatively change the situation,that the Pauli principle forces the two electron pairs to remain as such,whether they are separated by awall,or not.However,aswe consider amodel for a chem ical reaction,we should look at the influence of time on the electron localization domain,and whether it aあects our perception of electron localization.

    The timeevolution is computed using

    (1)theadiabatic approximation,validwhen the Ham iltonian changes very slow ly w ith time,

    (2)the sudden approximation,valid when the change of the Hamiltonian is fast,

    (3)an explicit solution of the time-dependent Schr?dinger equation,for a finite basis set,and given parameters of the system.

    For amore precise definition of“slow”and “fast”,see,e.g.1,Section XVII.

    The calculations below show that w ith the last two approaches,for certain time intervals,electrons are not essentially confined to the half-boxes,in contrast to a Lew is-like concept.One can find thatone electron(or electron pair)is located in the center of the box,while the other is delocalized over the remaining leftand rightparts.

    The simplicity of themodel allows presenting the detailed structure of the wave function.Pictures are presented using other interpretative tools that can also be used for more complicated systems(localized orbitals,the density,and its second derivative,the electron localization function,and the maximum probability domains).It is concluded that the latter method is preferable to describe time-dependent processes,although one should keep inm ind that the present calculations are far from being representative for realsystems.

    Fig.1 One-particleeigenfunctionsof the stationary Schr?dinger equation for a particle in a box w ith an opaquewall;symmetric solutions u+,for n=1(top),for n=2(center),for diあerent valuesof theopacity param eter a,and antisymm etric solutions u?(bottom),for n=1,2.

    2 System

    2.1 Ham iltonian

    A one-dimensionalbox stretching from?L to L isseparated at x=0 by an opaquewall(see,e.g.2,problems19,20).The potential isgiven by:

    and is infinite outside this interval.The parameter a defines the “opacity” of the wall.For a=0 there is no separation between the two half-boxes(corresponding to x<0,and x>0,respectively).For a=∞there is no communication between them:the wall at x=0 is impenetrable,and each electron is confined to itshalf-box.In thispaperweconsiderthattheopacity parameter a can changew ith time,t.To simplify notation,L is dropped when equal to 1.

    2.2 Stationary so lutions

    The solution of the stationary Schr?dinger equation for this potentialisanalytically known.By thesymmetry of thepotential v(x),there are two typesof solutions,

    The antisymmetric solutions have a node at x=0,and are thus notaあected by the term aδ(x)appearing in v(x),Eq.(1).The explicit formsof u±are given in Appendix A.Fig.1 shows u+(n=1,x,a),and u+(n=2,x,a)for diあerent values of the parameter a,aswell as u?for n=1,2.Please notice the notch in u+produced by aδ(x)becom ingmore pronounced as a increases(atgiven n).

    2.3 A trip let non-in terac ting tw o partic le system

    Themodel system studied in this paper consists of two noninteracting ferm ions,in a triplet state.In fact,it stands for a system for two non-interacting electron pairs in a singletstate.Having another two electronsw ith opposite spin changes little to theproblem,as theanti-symmetrization needs to bedoneonly among particles of the same spin.The properties of this noninteracting system can be computed from awave function that is a product of two identical two-by-two Slater determ inants,one for each spin(see,e.g.3).It is thus suきcient to analyze only one of them,the properties of the four-electron system beingunderstood easily from thoseof thesame-spin twoelectron system.For example,ifwe have the density of the system w ith two spin-up electronsin the tripletstate,we justhave tomultiply itby two to obtain thatof the four-electron system.

    The repulsion between electronshasbeen neglected because the formation of electron pairs isnotdue to electron repulsion.The intuition of Lew iswas that Coulomb’s law is not valid at shortdistances,and that“each pairofelectronshasa tendency to be drawn together”4.Although theexplanation given by Lew is is not correct,such an eあect is seen inmean-fieldmodels like Hartree-Fock;localized orbitalsw ith diあerentspin are pairw ise identical in the spatial part.It is the Pauli principle that keeps the electronsw ith same spin apart,and it actswhether or not they interact.Opposite spin electronscan share the same spatial domain,and can form thepairsdescribed by Lew is.In fact,many of the tools used to analyze the chem icalbond only exploit the Pauliprinciple.

    Another reason not to introduce repulsion in the present calculations is that there is not a clear way how repulsion should be treated in one dimension.The Coulomb interaction in one dimension,1/|x1?x2|producesa severe singularity at x1=x2,and the volume elementdoesnotmake itvanish,as it does in three dimensions.Softened Coulomb repulsion has to be used(see,e.g.5).Physically,this is easy to understand:electrons can better avoid each other in three dimensions than in one dimension.

    2.4 Analogies

    In order to see a connection to chemistry,we can imagine someanalogue.Forexample,one could consider two Heatoms getting closer.From the Lew is pairing perspective,nothing interesting can be expected:even for He2,the electron pairs stay on each of the atoms.

    In analogy to amolecule formation in time,we startw ith the particles separated by an infinitewall,a=∞(or,w ith a very large value).As time evolves the opacity parameter a goes to zero so that the particles finally do notsee awallat x=0,and canmove freely in thewhole box,from?L to L.

    3 Too ls to analyze the electron d istribution

    Therearemany tools to analyze theelectronic structure.Just a few areused below,and arenow shortly described.

    3.1 Wave func tion

    Onecananalyzethewave function.Ingeneral,ithasatoohigh dimension.For our example,it is only in two dimensions(the coordinate of each of the particles),and can be easily plotted.

    In order to avoid the dimensionality problem,Artmann6proposed to locate themaxima of thewave function.This is a very appealing proposal,welladapted tomethod like Quantum Monte Carlo7.Ithas the disadvantage that thewave function can presentseveralmaxima,and onehas to chooseamong them.This can be avoided inmany practical situationsby choosing a domain around them8.

    3.2 Maxim um p robability dom ains

    Oneway to definea spatialdomain is to consider theone that maxim izes the probability to have a given number of particles,ν,in it9,the “maximum probability domains”(MPDs).In our example,we search fora domain?,such that the probability tofind one(and only one)particlein it

    ismaximal.?means that the integration is performed only over?thatmay,butmust not be spatially disconnected;the prefactor N,the numberof particles in the system,is due to the indistinguishably ofelectrons.

    3.3 Density

    A simple three-dimensional quantity is the electron density,ρ,

    Itsanalysisand use hasbeenmuch promoted by Bader10.The particle density should not be confused with a probability densZi t y,as

    This integral over the density gives the average number of particles in?.

    3.4 Second density derivative

    Themaxima of??2ρa(bǔ)re used to indicate where electron pairs localize(see,e.g.10,Section 7.1.4).Here,asoursystem is in one dimension,?isused.

    3.5 Elec tron localization func tion

    Another popular quantity to detect the Lew is pairs is the electron localization function(ELF)11.It isa function defined in each pointofspace,takig valuesbetween0 and 1.For regions where electrons localize,the values of ELF should be large.It has been generalized to time-dependent processes,TDELF12.In this paper,we use a formula that ismodified for particles in one dimension.The explicit expression of ELF is given in the Appendix B.

    As we deal w ith independent particles,we do not have to worry aboutgeneralizations of ELF forwave functions beyond a single Slater determ inant.

    3.6 Localized orbitals

    Localizedorbitalsprovideasimpleinterpretation tool,andare also beused below.Forexample,for thestationary lowestenergy solution,the localized orbitalsare just the linear combination of thetwo lowestenergy canonicalorbitalswith diあerentsymmetry,[u+(n=1,x,a)±u?(n=1,x,a)]/2.Inversion,x→?x,transformsone localized orbital into the other.

    4 Resu lts

    4.1 Ham iltonian changes s low ly w ith tim e

    Letus fi rstconsider systemswhere the Ham iltonian changes slow ly w ith time.In this case,one can simply use the solutions of the stationary Schr?dinger equation,ateachmoment t.This is themostw idely used treatment.For example,one solves the Schr?dinger equation on points on the reaction path,and uses oneof thebonding interpretation toolsavailable.

    Corresponding to thisimage,itissuきcientto presentpictures obtained for diあerentvalues of the opacity parameter a.To get an order-of-magnitude idea of how a changes w ith time,see Appendix C.

    As expected,our system turns out to be uninteresting.All themethodsmentioned above give the same result that can be summarized as “one electron in each of the half-boxes”,atall times.Of course,this statement is strictwhen a=∞,and is only qualitatively validwhen a is finite.Fig.2 showsthatonly the extreme cases,when there isan impenetrablewallseparating the half-boxes(a=∞),and when there is no separation(a=0).A discussion of this figure follows,in order to prepare that of the follow ing section,when a new situation showsup.

    Thewave function,for a=∞,isstrictly localized in each of the half-boxes(it is zero when x1is in one half-box,and x2in theother).When thewallis removed,thewave function slightly extendsover the otherhalf-box(Fig.2a).

    In accordancew ith it,the perfectly localized orbitals for a=∞,slightly delocalize,even for a down to 0(Fig.2b).

    The density shows two peaks,each centered in a half-box;?ρ(x)hasalso suchmaxima(Fig.2c and Fig.2d).

    ELF takes the maximal value(=1)when the half-boxes are separated,and each of the electrons is localized in one of them(Fig.2e).When a=0,ELF decreases,but only in the wall region,show ing again the localization of particles in the half-boxes.

    Fig.2f shows the probability of finding one electron between x.When the spatial region x∈(x<,x>),is chosen tomaxim ize the probability tofind one,and only one particle in it,two solutions are found:x<=?L,x>=0,and x<=0,x>=L.A maximum probability domain is thus either the segment corresponding to the left,or that corresponding to the righthalf-box.

    Fig.2 Slow changeof the Ham iltonian w ith time.From top to bottom:a)absolute valueof thewave function squared,as function of the coordinatesof the particles,x 1,x 2,b)localizedmolecular orbitals,c)density,d)m inus the second derivativeof the density,e)theelectron localization function,f)the probability tofind one,and only oneelectron between x;left:impenetrab lewall(a=∞),right:wallhasvanished(a=0).

    Fig.3 Absolute valueof thewave function squared,for a sudden changeof the Ham iltonian asa function of the coordinatesof the particles,x 1,x 2.The tim eafter the changeof the Ham iltonian is given in atom ic units(1 a.u.≈24 attoseconds),for L=1.

    4.2 Sudden change of the Ham iltonian

    4.2.1 Mathematicaldescription

    Weconsidernow theoppositeextreme,when themodification in time occurs w ith a jump,from the Hamiltonian w ith a=∞ to that w ith a=0.We recall that all the u?states are unaあected by theperturbation(thatispresentonly atthenodeof these functions).After the Hamiltonian has changed,u+(n=1,x,a=∞,L)is not the ground state anymore.We expand the initial state,u+(n=1,x,a=∞,L)on the final states,u+(k,x,a=0,L),

    This expression shows how excited states of the stationary Schr?dinger equation for the final Hamiltonian participate to thewave function?+.

    4.2.2 Wave function

    Theevolution of the squareof the two-particlewave function w ith time ispresented in Fig.3.The starting point(t=0)is that shown for a=∞in Fig.2.At the very beginning of the process each of the particle remains highly localized in its half-box.However,the particles “realize” that they havemore space at theirdisposal,and starttoexpand(t=0.16).A broadmaximum appears later(t=0.24),and its nature is understood a short time later(t=0.28).Thewave function hasmaximaat x1=0,x2≈0.5,etc.:while one of the particles is in the center of the box,the other particle can be in eitherof the half boxes.This is followed,by another broad maximum(t=0.32),followed by again a situation as for t=0.28,etc.,until the particles retract to the initialhalf-boxes,and the processstartsagain.

    Fig.4 Absolute valueof the squareof the localized orbitals,for a sudden changeof the Ham iltonian.The tim eafter the changeof the Ham iltonian isgiven in atom ic units(1 a.u.≈24 attoseconds),for L=1.

    Fig.5 Density,ρ,for a sudden changeof the Ham iltonian.The tim eafter the changeof the Ham iltonian isgiven in atom ic units(1 a.u.≈24 attoseconds),for L=1.

    Fig.6 ?ρ,for a sudden changeof the Ham iltonian.The tim e after the changeof the Ham iltonian isgiven in atom ic units(1 a.u.≈24 attoseconds),for L=1.

    4.2.3 Localized orbitals

    Localized orbitals for this process are shown in Fig.4.The orbitalsdelocalizeinto theotherhalf-box(t=0.24).During this process the orbitals getvery close to each other(t=0.28,t=0.32),before reversing themovement,going back to theoriginal half-box,and restarting the cycle.It isworth to remark that in the“unconventional”,intermediatestep(t≈ 0.3),the centroids of chargesof the two localized orbitals getmuch closer than at the start:the localization is only poorly realized.Wew ill later comeback to thispoint.

    4.2.4 Density

    The change of the density compresseswhat has been seen above,and some information can be lost,cf.Fig.5.At t=0.16 the density presents two importantpeaks,as could be expected,but a new smallmaximum shows up in between.The latter rem inds of the so-called “non-nuclear attractors” that are associated tometallic systems(see,e.g.10,Section E2.1.1).At t=0.24,in accordancew ith the broadmaximum in thewave function,there is a broad maximum in the density.At later times(t=0.28,0.32),the density hasa centralmaximum,and shoulders appear instead of the outer maxima.Plots of the density are notexpected to show such features in the stationary case.

    4.2.5 “Lap lacian”of the density

    Instead of the Laplacian of the densitywe consideragain,as suited to theone-dimensionalproblem,?.The problems in interpreting the density getmagnified,cf.Fig.6.For example,the smallmaximum in the density at t=0.16 gets sim ilar importance to theother two.At t=0.24 the diあerencebetween maxima fades.At t=0.32,four maxima show up.Should one relate them to the two maxima in each of the localized orbitals?Asw ith the density,one can speculateabouttheorigin of thesemaxima,once we havemore information,but can we interpret?ρ w ithout having it?The problem of having too manymaxima rem indsofoneknown for the CC bond in ethane,see,e.g.10,Section3.2.4).There,although there is justonebond and onewould expecta singlemaximum,the Laplacian of the density shows twomaxima.

    4.2.6 Electron localization function

    Theelectron localization functionbringsin information thatis consistentw ith the information theψ(x1,x2)gives.Thegraphs show more clearly what is happening than ?ρ,as for all t shown,atmost threemaxima show up(see,Fig.7).One is very weak at t=0.16,is weakly distinguishable from the others at t=0.24,while three clearmaxima show up clearly at t=0.28,0.32.However,as for?ρ,it ishard to guesswhat three maximamean,when only two electrons are present,because ELF is used to attribute a domain to each of the electrons(or electron pairs).Know ing that one electron is delocalized over two spatial regions solves the problem.However,one should know that the two basins(on the left,and on the right)have to be grouped together.One could integrate the density over these regions(thesebasins),and get≈3/4 electronsin it.Oneshould note,however,that,oscillations occur(see below),and some further criteria to unify the new ly appeared basinsare needed.

    4.2.7 Maximum probability domain

    Forinterpretation reasons,themaximum probability domains seem tohave thesimpleststructure.Fig.8 showstheprobabilities tofind one electron between x.In these pictureswe search for the pairs xthatcorrespond to themaximum probability.The segment(x<,x>)is a domain for which the probability tofind one and only one electron ismaximal.If only one electron is in this segment,the other one has to be in the remaining region between?L and L.Of course,when x/=?L,the latter is disconnected;it is the union of(?L,x<)and(x>,L).

    Fig.7 Electron localization function,η,for a sudden changeof the Ham iltonian.The tim eafter the changeof the Ham iltonian is given in atom ic units(1 a.u.≈24 attoseconds),for L=1.

    Fig.8 Probability tofind one,and only oneelectron between x,for a sudden changeof the Ham iltonian.The tim eafter the changeof the Ham iltonian isgiven in atom ic units(1 a.u.≈24 attoseconds),for L=1.

    Fig.9 Tim e-dependent orbitalssquared,reduced to the n=1,2components,at tim es t=0,T,...(upper panels),and t=T/2,3T/2,...(lower panels);left for symm etry-adapted orbitals(full lines:u+,dashed lines:u?),right for localized orbitals;sam e scale in allpanels.

    At t= 0.16,the two half-boxes are the maximum probability domains.However,at t=0.24,a diあerence to the adiabatic picture is clear.Forany fixed x

    4.2.8 Physical interpretation

    Eq.(2)is valid when the change of the Hamiltonian is sofast that the wave function does not have the time to change.After the change,the wave function?evolvesw ith time,and to 98 percent is amixture of the u+(n=1,a=0,x)and u+(n=2,a=0,x)states(Rabioscillationsare produced):

    where uk=u+(n=k,x,a=0),ΔE= π2is the diあerence between the energies of the n=2 and n=1 states,c1=8/(3π),c2=8/(5π).Theextreme casesoccurwhen the cosine function equals plus or m inus one,i.e.,at t=jT and t=(j+1/2)T where j isan integernumber,T=2π/ΔE=2/π.

    Fig.9 shows the squares of the orbitals for times equal to even or for odd numbersof T/2.One notices thatat t=0,the occupied canonical orbitals squared are similar.The diあerence between them comesmainly from the sign in one of the halfboxes.This allows an almost perfect localization by linearly combining the canonicalorbitals.In contrast to it,at t=T/2,the symmetric orbital iswell localized at the center of the box,while theantisymmetricone,u?,isunchanged.The localization obtainedby linearly combining thecanonicalorbitalsispoor:the centroids of the orbitals are close,the delocalization is strong.The total wave functionψ(x1,x2,t=T/2)is given by the Slater determ inant built from ?+and u?.It hasmaxima for x1=0,and x2= ±0.5.ψis not shown,as it resembles the one of Fig.3.One can understand it by noticing that u?=0 where?+has amaximum,and?+almostvanisheswhere u?hasextrema.Thepictureproduced by the canonicalorbitals(one strongly localized orbital,and one delocalized orbital)is closer to theoneobtained by looking directly to the totalwave function than theone produced by the two poorly localized orbitals.

    The maximum probability domains do not start from an orbital“prejudice”,but analyze the total wave function.A fter the separating wall has vanished,for certain intervals of time,there is a maximum probability domain around the position where thewallhas been.A lso,by perm itting the spatial region to be spatially disconnected,they allow for the description of the quantum phenomenon that a particle can be found in two diあerentdisconnected domains.

    4.2.9 Comparison to stationary states

    The bestdescription of the chem icalbond is notnecessarily given by a single localized solution even when considering the time-independent case.The simplest example is themolecule,where a localized solution does not exist.Onemay have a localized picture by using resonance structures.In the case of,one can describe itas H...H+?H+...H.For the system considered in this paper,one can imagine the state at t=T/2 as

    where?denotes an unoccupied site.One electron stays at the center,while the other can be either in the left,or in the right half-box.(Of course,as stated before,the single electron↑c(diǎn)an be replaced by apair↑↓.The leftor right locationof theelectron pair rem indsof the ionic resonantstateofH2,or thecharge-shift(resonating)bond13.)

    Another example is given by particles in a ring,ormetals,where the localization is not considered to give the best description.Let us assume that for particles in a ring we have found some region,defined by the points x,such that the probability tofindνparticles reaches a maximum.Displacing both points by some constantvalueκdefines a new region.By translational invariance,the probability tofindν particles in it is independentofκ.Of course,changing justone of x<,or x>lowers the probability.Thisbehavior isanalogous to what is seen in Fig.8,t=0.24:pairs of xfor which there is practically no change in the probability.

    Onemore example isgiven by atom ic shells.A lthough,e.g.,in an atom like Ne thereare fourelectron pairs,due to spherical symmetry a spatial region defining an electron pair can be oriented in any direction:there are infinitely many equivalent“pair domains”.In this case,we consider atom ic shells,and only destroying the symmetry fixes the orientation of the pairs.

    Itisworth to stress thatin the time-dependentcase discussed in this paper,it is not the symmetry that produces equivalent solutions,but them ixingw ith excited eigenstates thatgenerates diあerent localization patterns.

    Interestingly,Lew is4had the intuition of the failure of taking hismodel rigidly.Although desiring to explain polarity,and not the quantum eあects discussed here,he w rites about“tautomerism,where two ormore forms of themolecule pass readily into one another and exist together in a condition of mobileequilibrium”.

    4.2.10 Period of the cycle

    For L=1,the symmetric orbital?+changesw ith a period T≈0.64 atom ic units,or≈15 attoseconds.Thismainly due to the separation between the two lowest energy levels,E(n=1,a=0),and E(n=2,a=0),of the symmetric states u+.As E(k,a=0,L)=E(k,a=0,L=1)/L2,the time evolution for L /= 1 is easily recovered via the transformation t → tL2.The diあerence between E(n=2,a=0)and E(n=1,a=0)thatdeterm ines the period of the oscillations,is unrealistically large for L=1(≈10 hartree).This can be corrected by choosing a larger box.For example,by choosing L=10,it is brought down to≈0.1 hartree,or≈ 3 eV.This way,the period of the cycle is of 1.5 fem toseconds.

    4.2.11 Spatialoscillations

    Up to now,an important technical detail was hidden from the discussion,viz.,the number of functions u+(k,x,a=0)used in Eq.(2).As the process analyzed above is determined mainly by the two lowest energy symmetric states,the figures were produced by limiting the sum to k≤5.We can analyze the eあect of increasing the number of functions,e.g.,up to k=10.ELF,and evenmore importantly??2xρemphasize the rapid oscillations produced by adding these higher frequency components.These rapid oscillations producemany maxima,and this makes any analysis based on counting the maxima useless.However,almostno eあect is seen on the probabilities.This can be understood by the need of taking derivatives for obtaining ??2xρ ,while integration used for generating the probabilitieshasa smoothing eあect.

    4.3 Exp licit so lu tion of the tim e-dependen t Sch r?dinger equation

    4.3.1 Mathematicaldescription

    Up to now,we have obtained results in two lim iting cases.Wewould like to know whether the sudden approximationmay be relevant.For this,letusconsiderexpand the time-dependent,spatially symmetricwave function as

    After substitution ofφ+into the time-dependent Schr?dinger equation,and projection onχm(x),wehave

    where the dot above the letter represents the derivative w ith respect to t.

    Detailson solving thisequation aregiven in Appendix D.

    In contrast to the treatmentbefore,we cannotstartat t=∞,because we would need infinite time tofollow the evolution.Furthermore,wehave to decideabouthow theopacity parameter a changesw ith time.a is uniform ly sw itched oあfrom a large value,inτ≈10 fem toseconds.For t>τ,theHamiltoniandoes notchangew ith timeanymore,but thewave function continues toevolveaccording to theSchr?dingerequation,havingasinitial wave function φ+(τ,x).Detailson thechoiceof theparameters can be found in Appendix C.

    4.3.2 Probability evolution

    If the change of the opacity parameter a w ith timewere very slow,one would see essentially the same images as in Fig.2.However,for the choice of the parameters just described,the results look sim ilar to thosegiven for thesudden approximation.It is thusnotnecessary to show and analyze in detail the results again.The calculation has only shown that the regime of the sudden approximation isnotunrealistic.

    Nevertheless,we discuss how the probabilities evolve w ith time(see Fig.10).One of the curves corresponds to the probability of finding one electron in a half-box.The other,to that of finding one electron in the center(equal to that of finding one electron in the disconnected domain thatexcludes this central region).In Fig.10,when follow ing the evolution in the central region,x<= ?x>was arbitrarily set to a time-independent constant.The optimization of x<,x>increases the probability,andmovesup the curve in the figure.

    Although the probability tofind a centralMPD is not large at themomentτ,when the Hamiltonian hasarrived at the final form,one notices that the probabilities continues to change in time,w ith periods of≈ 64 a.u.(≈ 1.5 fem toseconds).Furthermore,the variation w ith time is important.For≈1/6 of the cycle,around the the probability of finding one electron in the central region is larger than that of finding one in a half-box.The duration where the two probabilities are comparable isevenmore important.

    Fig.10 Probability tofind one,and only oneelectron in a half-box(between x<=0 and x>=L),dashed curve,and that for x<=0.3L and x>=0.3L(full curve),asa function of tim e after the Ham iltonian stopped changing(given in atom ic units,1 a.u.≈24 attoseconds;for L=10,and the thewallm ade transparent inτ≈10 fem toseconds).

    5 Perspectives

    The example of two electronsw ith the same spin shows that when the Ham iltonian changes electron localizationmay look,for certain time intervals,qualitatively diあerent from what the adiabatic picture presents.In our example,the latter follows that of Lew is,while time dependence brings in quantum delocalization eあects.It gives a significant probability of finding an electron in two spatially disconnected regions.

    An analogue to the spatially disconnected regions exists for thewave function solving the stationary Schr?dinger equation,e.g.,when resonant structures are needed to describe the bonding.It can be speculated that phenomena like this play a role,e.g.,in charge transfer,in transport properties,also in nano and biologicalsystems.

    One should not forget that two particles in a box w ith an opaquewall do not represent reality,and thatno choice of the parameters of themodel can compensate for it.However,the simplicity of themodelallows us to look at thewave function,and understand betterhow well,orhow badly,the interpretation toolswork.Thus,the paper has only two objectives,namely to encourage

    ?the study of time-dependent processes,as they disclose unexpected situations for chemicalbond description,and

    ?theuseof themaximum probability domains thatseem well suited for such time-dependentprocesses.

    We finallymention that latter isclose towhatisalready used in time-dependentcontext,see,e.g.14,and that lim itationsof ELF in time-dependentcaseshasalso been noted before5.

    6 Ded ication

    Thispaper is dedicated to DebashisMukherjee,who reached his seventies birthday.During themany years of our friendship wespenta long timeindiscussionsonvarioussubjects,including thatof the presentpaper.

    Append ix

    A So lu tions of the stationary Sch r?dinger equation fo r a partic le in a box w ith an opaque wall

    As given in Ref.2(problems 19,20),the expressions of the one-particle wave functions,solutions of the stationary Schr?dinger equation w ith potential v(x)given in Eq.(1),are given by

    where k(n,a,L)is the solution of

    k(n,a,L)cot[k(n,a,L)L]=?a

    lying between(n ? 1/2)π/L and nπ/L.The normalization constant is

    Fig.11 Eigenvaluesof the stationary Schr?dinger equation for a particle in a box w ith awallhaving an opacity increasingw ith a;for n=1,2;those corresponding to the symmetric eigen functions u+are shown w ith fu ll lines;thoseof theantisymm etric eigen functions u?do not depend on a and are shown as horizontaldashed lines.

    B The exp ression of the elec tron localization func tion for a sing le Slater determ inant

    Aswe are discussing one-dimensional systems,the formula of ELF is slightly diあerent from thatgenerally used.A lso,we consider the fully polarized systems,while usually the closed-shell formula is given.We follow the initial choice of the interpretation of ELF11,viz.related to the curvature of the Ferm i hole.It also includes the current contribution15,as needed when orbitals are complex,as is the case in time-dependent theory12.For a single Slater determ inant,the explicitexpression of ELF is

    C Connec ting the opacity param eter a w ith tim e

    In order to associate time to the opacity parameter a,letus fi rstdefine the rangeof theopacity parameter,a,takes.Wewant to reach afinal=0 starting from a large ainitial=a(t=0)in a timeτ.Forsimplicity,weassumea lineardependenceon time

    We can define a constantυ=˙a(t)=ainitial/τ.We see that ainitial= ∞is not an acceptable choice if we wantτto be finite.We now choose ainitialsuch that the particles in the two half-boxesare just in contact,i.e.,the density isof the order of 0.001 atomic units.Thisvaluewas taken to delimit the shapeof themolecules(cf.10,Section 1.1).For a size of the box given by L=10 bohr,chosen to give a reasonable fi rstexcited state,thisgives ainitial≈40 atomic units.

    We have the freedom to chooseτ.For Fig.10,υ =0.1,i.e.,τ=400 atomic units≈ 10 fem toseconds.

    D So lving the tim e-dependen t Sch r?d inger equation

    In order to solve Eq.(5)abasishas to be chosen.Thebasis is given by the functions

    that correspond to the symmetric eigenfunctions u+at a=0.Thesystem ofdiあerentialequationswassolved numericallyw ith Mathematica16.

    Theexpansion in a fixed basis iscomplicated by the presence of the time-dependent cusp in u+(x=0),as shown in Fig.1.However,thisdoesnotseem toaあectthediscussionof theresults.

    Re ferences

    (1) Messiah,A.Quantum Mechanics;North Holland Publishing Company:Amsterdam,The Netherlands,1967.

    (2) Flügge,S.PracticalQuantum Mechanics;Springer:Berlin,Germany,1999;p.14.

    (3) W igner,E.Phys.Rev.1934,46,1002.doi:10.1103/PhysRev.46.1002

    (4) Lewis,G.N.J.Am.Chem.Soc.1916,38,762.doi:10.1021/ja02261a002

    (5) Durrant,T.R.;Hodgson,M.J.P.;Ramsden,J.D.;Godby,R.W.arXiv 2015,1505.07687.

    (6) Artmann,K.Z.Naturforschg.1946,1,426.

    (7) Scemama,A.;Caあarel,M.;Savin,A.J.Comput.Chem.2007,28,442.doi:10.1002/jcc.20526

    (8) Lüchow,A.;Petz,R.J.Comput.Chem.2011,32,2619.doi:10.1002/jcc.21841

    (9) Savin,A.ReviewsofModern Quantum Chemistry:ACelebration of the ContributionsofRobertG.Parr;Sen,K.D.Ed.;World Scientific:Singapore,2002;p.43.

    (10) Bader,R.F.W.AtomsinMolecules:AQuantum Theory;Oxford University Press:Oxford,UK,1990.

    (11) Becke,A.D.;Edgecombe,K.E.J.Chem.Phys.1990,92,5397.doi:10.1063/1.458517

    (12) Burnus,T.;Marques,M.A.L.;Gross,E.K.U.Phys.Rev.A 2005,71,010501.doi:10.1103/PhysRevA.71.010501

    (13) Sini,G.;Maitre,P.;Hiberty,P.C.;Shaik,S.S.J.Mol.Struct.THEOCHEM 1991,229,163.

    (14) Petersilka,M.;Gross,E.Laser Physics1999,9,1.

    (15) Dobson,J.F.J.Chem.Phys.1993,98,8870.doi:10.1063/1.464444

    (16) Wolfram,S.Mathematica Edition,Version 11.1;Wolfram Research,Inc.:Champaign,Illinois,USA,2017.

    成人欧美大片| 淫秽高清视频在线观看| 天天躁夜夜躁狠狠躁躁| 老司机在亚洲福利影院| 夜夜躁狠狠躁天天躁| 热re99久久国产66热| 在线观看66精品国产| 久久欧美精品欧美久久欧美| 欧美激情极品国产一区二区三区| 好男人在线观看高清免费视频 | 国产成人一区二区三区免费视频网站| 丁香六月欧美| 每晚都被弄得嗷嗷叫到高潮| АⅤ资源中文在线天堂| 一区二区三区精品91| 欧美日韩亚洲国产一区二区在线观看| 手机成人av网站| 午夜福利18| 欧美黄色片欧美黄色片| 男人的好看免费观看在线视频 | 免费不卡黄色视频| 咕卡用的链子| 亚洲精品在线观看二区| 国产精品自产拍在线观看55亚洲| 国产区一区二久久| 亚洲国产日韩欧美精品在线观看 | 国产精品日韩av在线免费观看 | 99国产极品粉嫩在线观看| 欧美黑人欧美精品刺激| 好男人在线观看高清免费视频 | 国产一区二区三区视频了| 久热这里只有精品99| 亚洲七黄色美女视频| 很黄的视频免费| 一级毛片女人18水好多| 女人被躁到高潮嗷嗷叫费观| 成人免费观看视频高清| 亚洲人成伊人成综合网2020| 中文字幕精品免费在线观看视频| 啦啦啦免费观看视频1| 亚洲 欧美 日韩 在线 免费| 精品国产美女av久久久久小说| 大型av网站在线播放| 少妇的丰满在线观看| 亚洲av片天天在线观看| av中文乱码字幕在线| 黄色视频不卡| tocl精华| 国产成人精品久久二区二区免费| 老熟妇乱子伦视频在线观看| 亚洲一区中文字幕在线| 国产精品野战在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 侵犯人妻中文字幕一二三四区| 亚洲中文日韩欧美视频| 国产高清videossex| 久久人人爽av亚洲精品天堂| 中文字幕精品免费在线观看视频| 亚洲中文字幕日韩| 97人妻精品一区二区三区麻豆 | 国产精品亚洲美女久久久| 夜夜看夜夜爽夜夜摸| 精品人妻1区二区| 亚洲精品一区av在线观看| 少妇 在线观看| 超碰成人久久| 国内精品久久久久精免费| svipshipincom国产片| 午夜成年电影在线免费观看| 精品久久久久久久久久免费视频| 黄色毛片三级朝国网站| 欧美乱码精品一区二区三区| 美女国产高潮福利片在线看| 亚洲精品在线美女| 精品人妻1区二区| 欧美av亚洲av综合av国产av| 午夜免费观看网址| 国产一区二区三区综合在线观看| av有码第一页| 少妇裸体淫交视频免费看高清 | 天天一区二区日本电影三级 | 亚洲七黄色美女视频| 亚洲久久久国产精品| 亚洲专区中文字幕在线| 久久婷婷人人爽人人干人人爱 | 性少妇av在线| 日韩欧美国产在线观看| 色尼玛亚洲综合影院| 香蕉丝袜av| 日韩视频一区二区在线观看| 国产免费av片在线观看野外av| 久久中文字幕人妻熟女| 精品熟女少妇八av免费久了| 正在播放国产对白刺激| 好看av亚洲va欧美ⅴa在| 午夜精品国产一区二区电影| 免费av毛片视频| 两个人视频免费观看高清| x7x7x7水蜜桃| 亚洲天堂国产精品一区在线| 亚洲在线自拍视频| 男男h啪啪无遮挡| 欧美乱色亚洲激情| 午夜激情av网站| 黑人巨大精品欧美一区二区mp4| 国产精品98久久久久久宅男小说| 国产一级毛片七仙女欲春2 | 91老司机精品| 午夜日韩欧美国产| 国产一级毛片七仙女欲春2 | 欧美日韩黄片免| 黑人操中国人逼视频| 国产成+人综合+亚洲专区| 亚洲va日本ⅴa欧美va伊人久久| 日日夜夜操网爽| xxx96com| 亚洲av五月六月丁香网| 妹子高潮喷水视频| 亚洲 国产 在线| 亚洲欧美日韩无卡精品| 少妇被粗大的猛进出69影院| 人人妻人人爽人人添夜夜欢视频| 最近最新中文字幕大全免费视频| 久久这里只有精品19| 亚洲国产欧美网| 国产野战对白在线观看| 男女下面插进去视频免费观看| 亚洲男人的天堂狠狠| 在线观看免费视频日本深夜| 亚洲av成人av| 欧美中文日本在线观看视频| 国产亚洲精品久久久久久毛片| 国产精品,欧美在线| 如日韩欧美国产精品一区二区三区| 日韩大尺度精品在线看网址 | 十分钟在线观看高清视频www| 超碰成人久久| 人人妻人人爽人人添夜夜欢视频| 久久久精品国产亚洲av高清涩受| 欧美日韩精品网址| 亚洲精品美女久久av网站| 国产麻豆成人av免费视频| 国产亚洲精品综合一区在线观看 | 天天躁夜夜躁狠狠躁躁| 精品乱码久久久久久99久播| 1024香蕉在线观看| or卡值多少钱| 免费女性裸体啪啪无遮挡网站| 亚洲人成网站在线播放欧美日韩| 欧美亚洲日本最大视频资源| 神马国产精品三级电影在线观看 | 视频在线观看一区二区三区| 日韩一卡2卡3卡4卡2021年| 窝窝影院91人妻| 欧美不卡视频在线免费观看 | 国产成人av激情在线播放| 亚洲熟女毛片儿| 精品国产超薄肉色丝袜足j| 成人18禁在线播放| 我的亚洲天堂| 久久 成人 亚洲| 午夜福利高清视频| 久久中文看片网| 1024视频免费在线观看| 狂野欧美激情性xxxx| √禁漫天堂资源中文www| 成人欧美大片| 亚洲午夜精品一区,二区,三区| 悠悠久久av| 国产91精品成人一区二区三区| 国产精品精品国产色婷婷| 久久天躁狠狠躁夜夜2o2o| 丝袜人妻中文字幕| 无遮挡黄片免费观看| 精品久久久久久,| 精品乱码久久久久久99久播| 欧美乱妇无乱码| 国产精品一区二区免费欧美| 国产视频一区二区在线看| 欧美午夜高清在线| 欧美在线一区亚洲| 操美女的视频在线观看| 国产成+人综合+亚洲专区| 日韩精品青青久久久久久| 亚洲第一av免费看| 19禁男女啪啪无遮挡网站| av视频免费观看在线观看| 看片在线看免费视频| 中文字幕高清在线视频| 成人国产综合亚洲| 好男人电影高清在线观看| 男女床上黄色一级片免费看| a在线观看视频网站| 亚洲男人的天堂狠狠| 看片在线看免费视频| 夜夜看夜夜爽夜夜摸| 美国免费a级毛片| 好男人在线观看高清免费视频 | 色播亚洲综合网| 亚洲人成伊人成综合网2020| 国产精品野战在线观看| 国产精品1区2区在线观看.| 亚洲少妇的诱惑av| 男女午夜视频在线观看| 国产精品永久免费网站| 看片在线看免费视频| 亚洲色图av天堂| 男女午夜视频在线观看| 女生性感内裤真人,穿戴方法视频| 国产成人精品久久二区二区91| e午夜精品久久久久久久| 看免费av毛片| 亚洲va日本ⅴa欧美va伊人久久| 久久九九热精品免费| 可以在线观看的亚洲视频| 久久国产精品人妻蜜桃| 999久久久精品免费观看国产| 长腿黑丝高跟| 老司机午夜十八禁免费视频| 亚洲中文日韩欧美视频| 欧美一区二区精品小视频在线| 亚洲第一青青草原| 老鸭窝网址在线观看| 可以免费在线观看a视频的电影网站| 最新美女视频免费是黄的| netflix在线观看网站| 亚洲色图av天堂| 亚洲国产欧美日韩在线播放| 国产精品久久久久久精品电影 | 久久天堂一区二区三区四区| 亚洲人成电影观看| 久久热在线av| 18禁观看日本| 免费高清在线观看日韩| 精品无人区乱码1区二区| 啦啦啦观看免费观看视频高清 | 久久九九热精品免费| 免费高清在线观看日韩| 久久精品国产清高在天天线| 亚洲九九香蕉| 国产成人欧美在线观看| 少妇熟女aⅴ在线视频| 两个人免费观看高清视频| 午夜精品久久久久久毛片777| 亚洲一区二区三区不卡视频| 亚洲国产精品sss在线观看| 国产成人精品在线电影| 中出人妻视频一区二区| 一本综合久久免费| 国产又爽黄色视频| 男女之事视频高清在线观看| 欧美丝袜亚洲另类 | 性少妇av在线| 国产99久久九九免费精品| 国产亚洲av高清不卡| 亚洲av美国av| 免费看十八禁软件| 亚洲第一电影网av| 欧美成人午夜精品| 国产91精品成人一区二区三区| 亚洲性夜色夜夜综合| 成年女人毛片免费观看观看9| 在线十欧美十亚洲十日本专区| 无遮挡黄片免费观看| 午夜亚洲福利在线播放| 亚洲免费av在线视频| 国产成+人综合+亚洲专区| 精品国产亚洲在线| 婷婷丁香在线五月| 成熟少妇高潮喷水视频| 免费不卡黄色视频| 在线国产一区二区在线| 波多野结衣av一区二区av| 叶爱在线成人免费视频播放| 欧美另类亚洲清纯唯美| 一边摸一边做爽爽视频免费| 老汉色av国产亚洲站长工具| 夜夜夜夜夜久久久久| 亚洲一区中文字幕在线| 一区二区日韩欧美中文字幕| 欧美日韩乱码在线| 免费在线观看亚洲国产| 黄色a级毛片大全视频| 国产高清视频在线播放一区| 国产黄a三级三级三级人| 午夜精品在线福利| 久久 成人 亚洲| 免费在线观看影片大全网站| 天堂动漫精品| 国产一卡二卡三卡精品| 亚洲欧美精品综合一区二区三区| 亚洲国产欧美日韩在线播放| 天堂√8在线中文| 国产麻豆成人av免费视频| 国产99久久九九免费精品| 亚洲一区二区三区色噜噜| 成人亚洲精品一区在线观看| 99久久综合精品五月天人人| 曰老女人黄片| 色综合亚洲欧美另类图片| 日韩高清综合在线| 欧美最黄视频在线播放免费| 亚洲少妇的诱惑av| 51午夜福利影视在线观看| 亚洲人成电影观看| 丰满的人妻完整版| 丝袜美腿诱惑在线| 可以免费在线观看a视频的电影网站| 亚洲人成网站在线播放欧美日韩| 男女床上黄色一级片免费看| 久久性视频一级片| 国产成人av激情在线播放| www.自偷自拍.com| 一级片免费观看大全| 亚洲人成电影观看| 老汉色∧v一级毛片| 1024香蕉在线观看| 中文字幕人妻熟女乱码| 国产成人免费无遮挡视频| 久久人人精品亚洲av| 久久久精品欧美日韩精品| 久久久精品国产亚洲av高清涩受| 国产精品一区二区在线不卡| 黄色成人免费大全| 久久香蕉国产精品| 夜夜夜夜夜久久久久| 亚洲va日本ⅴa欧美va伊人久久| 精品久久久久久,| 亚洲自拍偷在线| 午夜视频精品福利| 叶爱在线成人免费视频播放| 午夜久久久久精精品| 少妇粗大呻吟视频| 久久久久久大精品| 丰满人妻熟妇乱又伦精品不卡| www.自偷自拍.com| 满18在线观看网站| 国产av一区在线观看免费| 欧美日韩黄片免| 高清黄色对白视频在线免费看| 一区二区三区国产精品乱码| 精品一品国产午夜福利视频| 在线观看日韩欧美| 精品久久久精品久久久| 午夜两性在线视频| 99精品在免费线老司机午夜| 欧美+亚洲+日韩+国产| 叶爱在线成人免费视频播放| 中文字幕久久专区| 巨乳人妻的诱惑在线观看| 18美女黄网站色大片免费观看| 热re99久久国产66热| 国产免费av片在线观看野外av| 美女 人体艺术 gogo| 国产精品98久久久久久宅男小说| 亚洲男人天堂网一区| 91麻豆av在线| 国产欧美日韩一区二区三区在线| av视频在线观看入口| 日日爽夜夜爽网站| 91成人精品电影| 国产成人精品久久二区二区91| 夜夜爽天天搞| 女性生殖器流出的白浆| 精品欧美一区二区三区在线| 999久久久精品免费观看国产| 久久久久久久午夜电影| 亚洲国产中文字幕在线视频| 在线观看日韩欧美| 欧美一级a爱片免费观看看 | 免费看美女性在线毛片视频| 欧洲精品卡2卡3卡4卡5卡区| 午夜视频精品福利| 亚洲国产精品成人综合色| 两个人看的免费小视频| 中文字幕最新亚洲高清| 欧美一级毛片孕妇| 久久久久久免费高清国产稀缺| 一夜夜www| 91老司机精品| 99re在线观看精品视频| 男人操女人黄网站| 色播在线永久视频| 男女床上黄色一级片免费看| 18禁黄网站禁片午夜丰满| 久久久久国产精品人妻aⅴ院| 久久精品国产清高在天天线| av网站免费在线观看视频| 一a级毛片在线观看| 一级a爱片免费观看的视频| 97碰自拍视频| 免费在线观看完整版高清| 国产又爽黄色视频| 亚洲av熟女| 日韩欧美国产在线观看| 国产精品国产高清国产av| 国产欧美日韩一区二区三| 少妇熟女aⅴ在线视频| 乱人伦中国视频| 日本 欧美在线| 校园春色视频在线观看| 老司机在亚洲福利影院| 亚洲av成人av| 别揉我奶头~嗯~啊~动态视频| 亚洲专区中文字幕在线| 欧美不卡视频在线免费观看 | 婷婷精品国产亚洲av在线| av视频免费观看在线观看| 免费搜索国产男女视频| 国产麻豆成人av免费视频| 性少妇av在线| 国产成人影院久久av| 国产成人啪精品午夜网站| 欧美一区二区精品小视频在线| 91成年电影在线观看| 国产成人啪精品午夜网站| 久久久久久免费高清国产稀缺| 国产高清有码在线观看视频 | 天天一区二区日本电影三级 | 波多野结衣高清无吗| 亚洲九九香蕉| 久久久久久亚洲精品国产蜜桃av| 色哟哟哟哟哟哟| 99国产综合亚洲精品| 日韩欧美在线二视频| 亚洲欧美日韩另类电影网站| 亚洲性夜色夜夜综合| 亚洲人成电影免费在线| 啦啦啦观看免费观看视频高清 | 国产高清有码在线观看视频 | 日本三级黄在线观看| 老熟妇乱子伦视频在线观看| 91精品三级在线观看| 女人被狂操c到高潮| 久久人人97超碰香蕉20202| 久久精品人人爽人人爽视色| 亚洲天堂国产精品一区在线| 精品少妇一区二区三区视频日本电影| 757午夜福利合集在线观看| 18禁黄网站禁片午夜丰满| 手机成人av网站| 国产男靠女视频免费网站| 黑丝袜美女国产一区| 老司机午夜十八禁免费视频| 老司机在亚洲福利影院| 免费在线观看完整版高清| 美女扒开内裤让男人捅视频| 亚洲欧美日韩另类电影网站| 一夜夜www| 首页视频小说图片口味搜索| 中文字幕高清在线视频| 午夜福利18| 国产精品爽爽va在线观看网站 | 亚洲一区中文字幕在线| 一个人免费在线观看的高清视频| 日韩大尺度精品在线看网址 | 久久影院123| 免费少妇av软件| 亚洲成a人片在线一区二区| 亚洲国产欧美日韩在线播放| 狠狠狠狠99中文字幕| 久久 成人 亚洲| 欧美亚洲日本最大视频资源| 亚洲七黄色美女视频| 中出人妻视频一区二区| 亚洲五月色婷婷综合| 午夜亚洲福利在线播放| 午夜久久久久精精品| 日韩 欧美 亚洲 中文字幕| 在线观看免费日韩欧美大片| 亚洲av日韩精品久久久久久密| 欧美日韩乱码在线| 午夜免费鲁丝| 成人特级黄色片久久久久久久| 电影成人av| 高潮久久久久久久久久久不卡| 午夜a级毛片| 免费看十八禁软件| 免费人成视频x8x8入口观看| 国产熟女xx| 亚洲国产精品999在线| 老司机在亚洲福利影院| 在线十欧美十亚洲十日本专区| 神马国产精品三级电影在线观看 | 1024视频免费在线观看| 在线播放国产精品三级| 一边摸一边做爽爽视频免费| 亚洲人成77777在线视频| 亚洲人成伊人成综合网2020| 人妻丰满熟妇av一区二区三区| 亚洲全国av大片| 国产精华一区二区三区| 亚洲精品国产一区二区精华液| 99在线人妻在线中文字幕| a级毛片在线看网站| 午夜成年电影在线免费观看| 午夜影院日韩av| 免费搜索国产男女视频| 一级毛片女人18水好多| 亚洲全国av大片| 制服诱惑二区| 黄色成人免费大全| 免费人成视频x8x8入口观看| 久久影院123| 丝袜美足系列| 国产一卡二卡三卡精品| 国产一区二区三区视频了| ponron亚洲| 欧美激情 高清一区二区三区| 桃红色精品国产亚洲av| 国产成人免费无遮挡视频| 久久天堂一区二区三区四区| 国产97色在线日韩免费| 精品一区二区三区视频在线观看免费| or卡值多少钱| 久久人人爽av亚洲精品天堂| 国产精品98久久久久久宅男小说| 免费高清在线观看日韩| 一二三四社区在线视频社区8| 久久精品人人爽人人爽视色| 两个人免费观看高清视频| 视频在线观看一区二区三区| 亚洲中文日韩欧美视频| 精品国产一区二区久久| 久久影院123| 亚洲国产精品999在线| 在线观看免费午夜福利视频| 咕卡用的链子| 色哟哟哟哟哟哟| 如日韩欧美国产精品一区二区三区| 9191精品国产免费久久| 久久久久久国产a免费观看| 91大片在线观看| 国产91精品成人一区二区三区| 男人操女人黄网站| 欧美日韩精品网址| 他把我摸到了高潮在线观看| 亚洲欧美一区二区三区黑人| 亚洲欧洲精品一区二区精品久久久| 麻豆久久精品国产亚洲av| 中亚洲国语对白在线视频| 午夜福利免费观看在线| 大型av网站在线播放| 亚洲欧洲精品一区二区精品久久久| 婷婷六月久久综合丁香| 级片在线观看| 国产精品久久久久久精品电影 | 人人妻人人爽人人添夜夜欢视频| a级毛片在线看网站| 女人爽到高潮嗷嗷叫在线视频| 两个人免费观看高清视频| 人妻久久中文字幕网| 黄网站色视频无遮挡免费观看| а√天堂www在线а√下载| 日本免费a在线| 青草久久国产| 国产亚洲精品av在线| 国产成人精品在线电影| 久久午夜综合久久蜜桃| 日本精品一区二区三区蜜桃| 亚洲第一欧美日韩一区二区三区| 啦啦啦免费观看视频1| 日本一区二区免费在线视频| 神马国产精品三级电影在线观看 | 欧美另类亚洲清纯唯美| 自线自在国产av| 精品国产一区二区久久| 色哟哟哟哟哟哟| 免费在线观看黄色视频的| 精品不卡国产一区二区三区| 亚洲精品久久国产高清桃花| 久久精品亚洲熟妇少妇任你| 高清黄色对白视频在线免费看| 香蕉久久夜色| 亚洲精华国产精华精| 亚洲 欧美 日韩 在线 免费| 91国产中文字幕| 纯流量卡能插随身wifi吗| 亚洲成国产人片在线观看| 99在线人妻在线中文字幕| 国语自产精品视频在线第100页| 国产国语露脸激情在线看| 国产91精品成人一区二区三区| 高潮久久久久久久久久久不卡| 亚洲精品中文字幕一二三四区| 免费在线观看影片大全网站| 久久久精品国产亚洲av高清涩受| 亚洲,欧美精品.| 在线播放国产精品三级| 制服丝袜大香蕉在线| 999精品在线视频| 精品国内亚洲2022精品成人| а√天堂www在线а√下载| 天天躁夜夜躁狠狠躁躁| 日韩欧美国产在线观看| 一二三四社区在线视频社区8| 9热在线视频观看99| 免费不卡黄色视频| 亚洲少妇的诱惑av| 中文字幕久久专区| 午夜福利在线观看吧| 久热爱精品视频在线9| 国产麻豆成人av免费视频| 黄片小视频在线播放| 国产激情欧美一区二区| 亚洲精品久久国产高清桃花| 国产精品久久久av美女十八| 精品日产1卡2卡| 亚洲av电影在线进入| 色哟哟哟哟哟哟| 在线观看免费日韩欧美大片| 国产又爽黄色视频| 麻豆一二三区av精品| 极品教师在线免费播放| 欧美日韩黄片免|