林紅波, 馬海濤, 許麗萍
吉林大學(xué)通信工程學(xué)院, 長春 130012
?
壓制空間非平穩(wěn)地震勘探隨機噪聲的ROAD徑向時頻峰值濾波算法
林紅波, 馬海濤*, 許麗萍
吉林大學(xué)通信工程學(xué)院, 長春 130012
徑向時頻峰值濾波算法是一種有效保持低信噪比地震勘探記錄中反射同相軸的隨機噪聲壓制方法,但該算法對空間非平穩(wěn)地震勘探隨機噪聲壓制效果不理想.本文研究空間非平穩(wěn)地震勘探隨機噪聲,即各道噪聲功率不同的地震勘探隨機噪聲,其在徑向濾波軌線上表征近似脈沖噪聲,在徑向時頻峰值濾波過程中干擾相鄰道濾波結(jié)果.為了減小空間非平穩(wěn)隨機噪聲的影響,本文提出一種基于絕對級差統(tǒng)計量(ROAD)的徑向時頻峰值濾波隨機噪聲壓制方法.該方法首先根據(jù)徑向軌線上信號的絕對級差統(tǒng)計量檢測空間非平穩(wěn)地震勘探隨機噪聲,然后結(jié)合局部時頻峰值濾波和徑向時頻峰值濾波壓制地震勘探記錄中的隨機噪聲.將ROAD徑向時頻峰值濾波方法應(yīng)用于合成記錄和實際共炮點地震記錄,結(jié)果表明ROAD徑向時頻峰值濾波方法可以壓制空間非平穩(wěn)地震勘探隨機噪聲且不損害有效信號,有效抑制隨機噪聲空間非平穩(wěn)對濾波結(jié)果的影響.與徑向時頻峰值濾波相比,ROAD徑向時頻峰值濾波方法更適用于空間非平穩(wěn)地震勘探隨機噪聲壓制.
地震勘探隨機噪聲; 徑向時頻峰值濾波; 空間非平穩(wěn)隨機噪聲; 絕對級差統(tǒng)計量
地震勘探是透視地球內(nèi)部、探查油氣資源的重要手段.受復(fù)雜地表條件影響,地震勘探資料廣泛存在強隨機噪聲,極大地制約了探測目標(biāo)的實現(xiàn).壓制隨機噪聲,提高地震勘探資料信噪比是地震資料處理的關(guān)鍵環(huán)節(jié).但隨機噪聲不具有確定性,僅存在統(tǒng)計特性,在低信噪比情況下壓制隨機噪聲會損失一部分有效信號,嚴(yán)重影響進一步解釋和成像.因此,壓制噪聲且保留有效信號是國內(nèi)外學(xué)者一直致力于研究的熱點問題(Herrmann et al., 2008; Lu Y H and Lu W K, 2009; 鄧小英等,2010;Deng et al., 2011;Liu et al., 2012; Naghizadeh and Sacchi, 2012; 袁艷華等,2013; 李月等,2013).
時頻峰值濾波(TFPF)是在時頻分析基礎(chǔ)上發(fā)展的隨機噪聲壓制方法,在解決低信噪比、非平穩(wěn)信號估計方面優(yōu)勢明顯,目前TFPF已成功應(yīng)用于地震勘探隨機噪聲消減(Barkat and Boashash, 1999;Boashash and Mesbah, 2004;Lin et al., 2007; Roshandel Kahoo and Siahkoohi, 2009).TFPF是一維隨機噪聲壓制方法,無偏估計信號的前提條件是信號近似線性和噪聲為高斯白噪聲.在處理實際觀測信號時,利用偽魏格納威力分布(PWVD)的窗函數(shù)對信號局部線性化處理,從而實現(xiàn)對信號的無失真恢復(fù)(Swiercz, 2006).但TFPF壓制噪聲和保持信號對窗長的要求是矛盾的,恢復(fù)有效信號需要小窗長以滿足線性條件,而壓制隨機噪聲需要長窗長(李月等,2009; Li et al., 2013).時變窗長時頻峰值濾波基于信號和噪聲的特征調(diào)節(jié)窗函數(shù)長度,有效解決了時頻峰值濾波方法保持信號和壓制噪聲矛盾的問題(林紅波等,2011; Lin et al., 2014).但這種方法對于有效信號和噪聲的判別精度要求較高,對復(fù)雜的實際地震勘探記錄濾波效果有待改善.因此,將一維TFPF推廣到二維是TFPF方法研究的重要內(nèi)容.二維TFPF方法結(jié)合地震同相軸的連續(xù)性,通過構(gòu)建與同相軸時距曲線接近的徑向或二次濾波軌線拓展時頻峰值濾波(Wu et al., 2011; Tian and Li, 2014).二維時頻峰值濾波具有更好的保幅性能和噪聲壓制效果.但該方法假設(shè)地震勘探隨機噪聲是平穩(wěn)的,其均值為常數(shù)且二階矩不隨時間變化,沒有考慮實際地震勘探隨機噪聲空間分布特點.而地震勘探記錄受環(huán)境因素和地表地質(zhì)條件復(fù)雜變化影響,存在各道地震記錄噪聲不相關(guān),且各道噪聲功率不等的隨機噪聲,與陣列信號處理中的空間非平穩(wěn)噪聲類似(Moghaddamjoo, 1991; 吳云韜等,2003).在空間非平穩(wěn)地震勘探隨機噪聲情況下,二維時頻峰值濾波方法會受噪聲空間非平穩(wěn)特性的影響,導(dǎo)致壓制空間非平穩(wěn)地震勘探隨機噪聲效果不理想,需要根據(jù)噪聲空間特性改進濾波算法.
本文著重研究空間非平穩(wěn)地震勘探隨機噪聲情況下徑向時頻峰值濾波隨機噪聲壓制方法.首先介紹空間非平穩(wěn)隨機噪聲,研究空間非平穩(wěn)地震勘探隨機噪聲空間分布特點,并進一步分析空間非平穩(wěn)地震勘探隨機噪聲在徑向時頻峰值濾波過程中的影響.在此基礎(chǔ)上,提出基于絕對級差統(tǒng)計量(ROAD)的徑向時頻峰值濾波方法,抑制空間非平穩(wěn)地震勘探隨機噪聲.
在地震信號處理研究中,通常將地震勘探隨機噪聲看作各階統(tǒng)計量不隨時間變化的平穩(wěn)隨機噪聲處理.在空間分布上,各道地震記錄的隨機噪聲功率通常比較接近,二階統(tǒng)計量不隨空間變化,對二維濾波方法影響較小.但在復(fù)雜地表條件和環(huán)境因素的影響下,有些地震記錄中隨機噪聲的二階統(tǒng)計特性隨空間劇烈變化,不滿足隨空間變化寬平穩(wěn)的條件.我們借用陣列信號處理中空間非平穩(wěn)噪聲來描述這種地震勘探隨機噪聲.
空間非平穩(wěn)噪聲是陣列信號處理研究中廣泛關(guān)注的問題(Moghaddamjoo, 1991; 吳云韜等,2003).空間非平穩(wěn)噪聲是指各天線陣元之間噪聲不相關(guān),且各個陣元噪聲功率不等的隨機噪聲.對于這種空間非平穩(wěn)噪聲,假設(shè)噪聲為零均值、時間和空間上均不相關(guān)的高斯過程,且噪聲功率不相等,則噪聲協(xié)方差矩陣為:
(1)
地震道相當(dāng)于陣列信號處理中陣元接收到的信號,地震勘探記錄中也存在各道地震勘探隨機噪聲不相關(guān),但各道隨機噪聲功率隨空間變化較大的情況,與陣列信號處理中空間非平穩(wěn)隨機噪聲近似.以中國某地區(qū)實際地震勘探隨機噪聲記錄為例,分析各道地震勘探隨機噪聲空間分布特征和非平穩(wěn)特性.
(1)各地震道噪聲功率空間分布特征.統(tǒng)計空間非平穩(wěn)隨機噪聲記錄(圖1a)和平穩(wěn)隨機噪聲記錄(圖1c)各地震道噪聲方差分析噪聲功率的變化,圖1b為每一道空間非平穩(wěn)噪聲記錄的方差,可以看出各地震道隨機噪聲方差隨機波動,在40道和100道附近變化最為劇烈,該記錄噪聲功率隨空間變化劇烈.與之相對應(yīng),圖1d中空間平穩(wěn)地震勘探隨機噪聲的方差隨空間變化較小,沒有劇烈波動,在空間濾波過程中可近似為平穩(wěn)隨機噪聲處理.
(2)空間非平穩(wěn)特性度量.采用衡量非平穩(wěn)特性的相關(guān)積分來分析地震勘探隨機噪聲沿空間采樣的平穩(wěn)特性(關(guān)惠玲等,2003).從地震記錄中任選一點,任取三個方向構(gòu)建采樣路徑,如圖1a中直線D1,D2和D3所示,分別統(tǒng)計圖1a和圖1c沿空間軌線D1,D2和D3采樣隨機噪聲的相關(guān)積分,以度量空間采樣噪聲的非平穩(wěn)性,統(tǒng)計結(jié)果記錄于表1.
從表1中數(shù)據(jù)可以看出,圖1a記錄中每條軌線上噪聲的相關(guān)積分在0.77左右,圖1c記錄中每條軌線上噪聲的相關(guān)積分為0.81.圖1a記錄的相關(guān)積分值小,說明沿空間采樣得到的噪聲記錄產(chǎn)生較大波動,在空間方向非平穩(wěn).這種空間非平穩(wěn)隨機噪聲特性不滿足常規(guī)地震勘探噪聲壓制方法對噪聲性質(zhì)的假設(shè),易影響二維地震勘探噪聲壓制方法的去噪效果.本文將基于空間非平穩(wěn)地震勘探隨機噪聲的特點與表征,研究其解決方案.
圖1 地震勘探隨機噪聲記錄 (a) 空間非平穩(wěn)地震勘探噪聲記錄; (b) 記錄(a)各道方差; (c) 空間平穩(wěn)地震勘探隨機噪聲記錄; (d) 記錄(c)的各道方差.Fig.1 Seismic noise record (a) Spatial nonstationary seismic noise; (b) The variance of seismic traces in (a); (c) Spatial stationary seismic noise; (d) The variance of seismic traces in (c).
相關(guān)積分D1D2D3空間非平穩(wěn)噪聲0.770.780.78空間平穩(wěn)噪聲0.810.810.81
3.1 徑向時頻峰值濾波
徑向時頻峰值濾波沿徑向濾波軌線執(zhí)行時頻峰值濾波.徑向時頻峰值濾波的濾波軌線可以看作是一系列斜率為k的平行直線,如圖2中平行虛線所示.對含有加性隨機噪聲的地震記錄x(t,d),沿平行徑向濾波軌線重采樣數(shù)據(jù)表示為
(2)
式中t為時間,d為炮檢距,b為徑向軌跡截距,改變截距獲得一組具有相同斜率的徑向軌線.徑向時頻峰值濾波沿徑向軌線對重采樣信號調(diào)制和時頻峰值估計實現(xiàn)隨機噪聲壓制.每條濾波軌線的重采樣信號經(jīng)頻率調(diào)制生成解析信號:
(3)
求取解析信號z(t)的偽魏格納威力分布(PWVD)的峰值頻率獲得濾波后的信號,即
(4)
其中Wz(t,f)是解析信號的時頻分布.考慮到時頻分辨率和信號的線性條件,一般利用PWVD窗函數(shù)實現(xiàn)信號局部線性化,PWVD定義為
×exp(-j2πfτ)dτ,
(5)
式中h(·)為窗函數(shù),z*是z的復(fù)共軛.
徑向時頻峰值濾波的濾波軌線和同相軸平行時,如圖2加粗軌線Trace1,徑向軌線上的數(shù)據(jù)樣本為同相軸同相位的數(shù)據(jù),則徑向軌線上數(shù)據(jù)幅度變化緩慢(圖2b).與沿時間方向的第一道地震信號(圖2c)相比,徑向軌線上的信號更接近于線性,更好地滿足時頻峰值濾波獲得無偏估計的線性條件.因此沿平行徑向軌線時頻峰值濾波有利于改善時頻峰值濾波方法對信號的保持能力.然而,時頻峰值濾波方法假設(shè)噪聲是高斯白噪聲,在空間非平穩(wěn)地震勘探隨機噪聲情形下,濾波軌線上噪聲的性質(zhì)會受到噪聲空間非平穩(wěn)特性的影響,因此我們需要進一步分析實際地震勘探隨機噪聲在平行徑向軌線上的特點及解決方案.
圖2 平行徑向濾波軌線示意圖 (a) 合成記錄的平行徑向濾波軌線;(b) 徑向道Trace1 上的地震記錄;(c) 第一道地震記錄.Fig.2 Parallel radial traces (a) Parallel radial traces on synthetic seismic data; (b) Samples on the radial trace Trace1; (c) The 1st seismic trace in (a).
3.2 地震勘探隨機噪聲空間分布表征
在利用徑向時頻峰值濾波方法濾波時,需針對這種空間非平穩(wěn)噪聲在徑向軌線上噪聲的特性改進濾波方法.以中國某地區(qū)40道實際地震勘探隨機噪聲為例分析地震勘探隨機噪聲空間分布表征.圖3a所示隨機噪聲記錄各道功率波動較大,地震記錄中16道至22道記錄功率變化最為劇烈,噪聲功率在空間上呈現(xiàn)非平穩(wěn)分布.
當(dāng)沿空間徑向軌線(圖3a中灰色虛線所示)濾波時,在徑向軌線上的噪聲性質(zhì)會受到噪聲空間非平穩(wěn)性的影響.任取一道徑向軌線Tr1,其上的信號如圖3b所示,采樣點幅值在0.92 s附近突然增大,其波形類似脈沖噪聲,這主要是由于地震勘探隨機噪聲在16道至22道噪聲記錄功率存在突變,在徑向軌線Tr1相應(yīng)區(qū)域(0.9至0.95 s之間)表現(xiàn)為近似脈沖的噪聲.在采用徑向時頻峰值濾波壓制噪聲時,這類空間非平穩(wěn)地震勘探隨機噪聲在徑向軌線上的噪聲性質(zhì)不是平穩(wěn)的高斯白噪聲,不滿足時頻峰值濾波無偏估計的假設(shè),會影響濾波效果.
圖3 實際地震勘探隨機噪聲在徑向濾波軌跡上的表征 (a) 實際地震勘探隨機噪聲;(b) 徑向道上的隨機噪聲;(c) Tr1上隨機噪聲的絕對級差統(tǒng)計量(ROAD).Fig.3 Field seismic random noise and its property on radial trace (a) Field seismic random noise; (b) Random noise on radial traces; (c) ROAD of the seismic noise on Tr1.
圖4 實際地震勘探隨機噪聲在徑向濾波結(jié)果 (a) 實際地震勘探隨機噪聲;(b) 徑向時頻峰值濾波結(jié)果; (c)剔除脈沖噪聲后RTFPF結(jié)果.Fig.4 Field seismic random noise and filtered result by RTFPF (a) Field seismic random noise; (b) Filtered result by RTFPF; (c) Result from RTFPF on data removed pulse noise.
對實際地震勘探隨機噪聲(圖4a)徑向時頻峰值濾波處理,濾波結(jié)果如圖4b所示.可見在噪聲強度變化劇烈區(qū)域(方框所示)存在大量殘留噪聲.因為濾波軌線上脈沖噪聲在濾波過程中影響附近點濾波結(jié)果幅值,0幅值變?yōu)榉橇阒?,甚至引起幅值符號的變?徑向軌線上脈沖噪聲的相鄰點對應(yīng)于時空域相鄰地震道上的點,繼而引起時空域記錄相鄰道上對應(yīng)點的幅值變化,產(chǎn)生殘留噪聲.剔除徑向軌線上的脈沖噪聲,然后再沿徑向軌線時頻峰值濾波處理,濾波結(jié)果(圖4c)在噪聲強度變化劇烈區(qū)域幾乎沒有殘留的隨機噪聲.從上述實驗結(jié)果我們可以推斷,殘留噪聲產(chǎn)生原因是隨機噪聲空間非平穩(wěn),可以通過抑制徑向道上的脈沖噪聲來改善徑向時頻峰值濾波壓制空間非平穩(wěn)隨機噪聲的效果.為此,我們結(jié)合脈沖噪聲檢測方法改進徑向時頻峰值濾波使之能夠更好地壓制這種空間非平穩(wěn)地震勘探隨機噪聲.
3.3 ROAD徑向時頻峰值濾波算法
這里用絕對級差統(tǒng)計量(ROAD)檢測脈沖噪聲(Garnett et al., 2005), 脈沖噪聲的ROAD統(tǒng)計量在強度上要高于非脈沖噪聲的ROAD統(tǒng)計量,由此可以判斷出脈沖噪聲.
(6)
(7)
圖3c為徑向軌線Tr1上隨機噪聲的ROAD統(tǒng)計量值的變化.對照圖3b分析可見,對應(yīng)于濾波軌線上強度較高噪聲(0.9至0.95s之間),ROAD統(tǒng)計量值大于2,明顯大于其他時刻噪聲的ROAD值.較大的ROAD值說明徑向軌線上這種能量突然變大的噪聲近似脈沖噪聲.這些近似脈沖噪聲點對應(yīng)地震勘探噪聲記錄中功率變化劇烈的地震道,這種近似脈沖的噪聲是噪聲能量空間不平穩(wěn)地震勘探隨機噪聲在徑向濾波軌線上的表現(xiàn).
基于ROAD統(tǒng)計量,我們提出二次迭代徑向時頻峰值濾波算法.該方法首先計算徑向濾波軌線上數(shù)據(jù)的ROAD統(tǒng)計量,將大于閾值的點判為脈沖噪聲.然后對以脈沖噪聲為中心的鄰域內(nèi)的數(shù)據(jù)局部時頻峰值濾波處理,濾波結(jié)果替代ROAD大于閾值T的脈沖噪聲,我們將壓制脈沖噪聲后的記錄表示為
(8)
(9)
通過脈沖噪聲檢測和迭代徑向時頻峰值濾波,ROAD徑向時頻峰值濾波方法能夠有效壓制空間非平穩(wěn)地震勘探隨機噪聲.
為了驗證所提出方法的有效性,我們將ROAD徑向時頻峰值濾波方法應(yīng)用于合成地震記錄.利用主頻為30 Hz的Ricker子波構(gòu)建40道地震信號模型,包含2個同相軸.Ricker子波的表達式為:
(10)
其中fp表示譜峰頻率.在模型中加入如圖3a所示的實際地震勘探隨機噪聲,生成的含噪記錄如圖5a.構(gòu)建斜率與同相軸接近的平行徑向濾波軌線,分別采用徑向時頻峰值濾波和ROAD徑向時頻峰值濾波處理,濾波結(jié)果分別顯示于圖5b和圖5c中.
從圖5b可以看出,徑向時頻峰值濾波結(jié)果中大部分隨機噪聲得到很好地抑制,同相軸恢復(fù)良好,但對于隨機噪聲強度波動較大的16道至22道地震記錄附近,雖然大部分隨機噪聲能夠被壓制,但在徑向時頻峰值濾波結(jié)果中殘留許多隨機干擾,這些隨機干擾噪聲將對后續(xù)處理產(chǎn)生不利的影響.相比之下,圖5c所示的ROAD徑向時頻峰值濾波結(jié)果背景更為干凈,同相軸保持良好,不存在殘留的隨機干擾.可見我們提出的方法能夠更好地抑制空間非平穩(wěn)地震勘探隨機噪聲,保留有效信號.
為了進一步認(rèn)識空間非平穩(wěn)隨機噪聲對徑向時頻峰值濾波的影響,我們對比分析經(jīng)ROAD處理前后所有徑向軌線上的地震數(shù)據(jù).圖6a為ROAD處理前的徑向軌線上地震數(shù)據(jù),在每條徑向軌線上均出現(xiàn)類似脈沖的隨機噪聲.經(jīng)ROAD處理后(圖6b),徑向軌線上的脈沖噪聲被抑制,而有效信號沒有受到影響.分析上述結(jié)果我們得到以下結(jié)論,隨機噪聲在空間非平穩(wěn)會在徑向濾波軌線上表現(xiàn)為脈沖噪聲,若直接進行徑向時頻峰值濾波處理,壓制噪聲效果不理想,有大量殘留的隨機干擾.ROAD徑向時頻峰值濾波方法能夠有效抑制脈沖噪聲且不損傷有效信號,更好地壓制空間非平穩(wěn)地震勘探隨機噪聲.
4.2 實際算例
為了驗證本文方法的實際應(yīng)用效果,我們將本文方法應(yīng)用于中國某地區(qū)實際共炮點記錄,并與徑向道時頻峰值濾波進行對比.圖7給出了161道共炮點記錄,每道時長5.5 s,采樣時間為1 ms.該共炮點記錄中含有較強的隨機噪聲,且部分區(qū)域隨機噪聲能量較強,從空間上看各道噪聲功率變化較明顯,如框圖所示.分別采用徑向時頻峰值濾波和本文方法對該共炮點記錄進行處理,本文方法以炮點為中心向兩側(cè)取徑向濾波軌線,結(jié)果分別顯示于圖7b和圖7c.
圖5 實際地震勘探隨機噪聲合成記錄 (a) 加入實際地震勘探隨機噪聲的合成數(shù)據(jù);(b) 徑向時頻峰值濾波處理結(jié)果;(c) 本文方法處理結(jié)果.Fig.5 Synthetic seismic data with field seismic random noise (a) Synthetic data; (b) Result by using radial TFPF; (c) Result by using our method.
圖6 實際地震勘探隨機噪聲ROAD處理前后對比
圖7 實際地震資料濾波結(jié)果對比
比較兩種方法的濾波結(jié)果可見,兩種方法濾波結(jié)果中的隨機噪聲均得到有效抑制,同相軸能夠從隨機噪聲中顯現(xiàn)出來.但對原始記錄中隨機噪聲突然增強部分(如矩形框所示),徑向時頻峰值濾波結(jié)果在該區(qū)域依然殘留部分隨機干擾.而在ROAD徑向時頻峰值濾波結(jié)果中,該區(qū)域幾乎沒有殘留的隨機干擾,與徑向時頻峰值濾波結(jié)果相比,背景更干凈,同相軸保持良好,沒有畸變.對比上述濾波結(jié)果可見,本文的方法和已有方法相比,能夠在保留有效信號的同時,較好地壓制低信噪比地震記錄中的隨機噪聲,對空間非平穩(wěn)地震勘探隨機噪聲也能夠有效壓制,拓展了徑向時頻峰值濾波抑制噪聲的能力.
本文針對徑向時頻峰值濾波不能有效去除空間非平穩(wěn)地震勘探隨機噪聲的問題,提出了一種基于絕對級差統(tǒng)計量的徑向時頻峰值濾波算法.這類空間非平穩(wěn)地震勘探隨機噪聲在徑向軌線局部區(qū)域存在類似脈沖的噪聲,與各道功率接近的地震勘探隨機噪聲相比具有較低的相關(guān)積分值,非平穩(wěn)度更強.徑向時頻峰值濾波壓制空間非平穩(wěn)地震勘探隨機噪聲效果不理想,濾波結(jié)果在強度變化劇烈的地震道相鄰區(qū)域存在大量殘留噪聲.理論分析和實驗結(jié)果表明,結(jié)合絕對級差統(tǒng)計量和迭代徑向時頻峰值濾波方法能夠檢測并抑制空間非平穩(wěn)地震勘探隨機噪聲,實現(xiàn)對地震記錄保幅壓噪.實際地震記錄處理結(jié)果也表明,ROAD徑向時頻峰值濾波改進了徑向時頻峰值濾波壓制空間非平穩(wěn)隨機噪聲能力和同相軸保持效果,將其應(yīng)用于實際地震勘探處理是可行且有效的.
Barkat B, Boashash B. 1999. Design of higher order polynomial Wigner-Ville distributions.IEEETransactionsonSignalProcessing, 47(9): 2608-2611. Boashash B, Mesbah M. 2004. Signal enhancement by time-frequency peak Filtering.IEEETransactionsonSignalProcessing, 52(4): 929-937.Deng X Y, Yang D H, Liu T, et al. 2010. Performance analysis of least squares support vector regression filtering system.ChineseJ.Geophys. (in Chinese), 53(8): 2004-2011, doi: 10.3969/j.issn.0001-5733.2010.08.027.
Deng X Y, Yang D H, Liu T, et al. 2011. Study of least squares support vector regression filtering technology with a new 2D Ricker wavelet kernel.JournalofSeismicExploration, 20(2): 161-176. Garnett R, Huegerich T, Chui C, et al. 2005. A universal noise removal algorithm with an impulse detector.IEEETransactionsonImageProcessing, 14(11): 1747-1754. Guan H L, Yan X G, Zhang Y Y. 2003. Unsteadiness measurement of dynamic process and its application to equipment-diagnosing engineering.ChineseJournalofMechanicalEngineering(in Chinese), 39(8): 141-145.
Herrmann F J, Wang D L, Hennenfent G, et al. 2008. Curvelet-based seismic data processing: A multiscale and nonlinear approach.Geophysics, 73(1): A1-A5.
Li Y, Lin H B, Yang B J, et al. 2009. The influence of limited linearization of time window on TFPT under the strong noise background.ChineseJ.Geophys. (in Chinese), 52(7): 1899-1906, doi: 10.3969/j.issn.0001-5733.2009.07.025.
Li Y, Peng J L, Ma H T, et al. 2013. Study of the influence of transition IMF on EMD do-noising and the improved algorithm.ChineseJ.Geophys. (in Chinese), 56 (2): 626-634, doi: 10.6038/cjg20130226.
Li Y, Yang B J, Lin H B, et al. 2013. Suppression of strong random noise in seismic data by using time-frequency peak filtering.ScienceChina(EarthSciences), 56(7): 1200-1208.
Lin H B, Li Y, Yang B J. 2007. Recovery of seismic events by time-frequency peak filtering. ∥ IEEE International Conference on Image Processing. San Antonio, TX: IEEE, 2007: v-441-v-444.
Lin H B, Li Y, Xu X C. 2011. Segmenting time-frequency peak filtering method to attenuation of seismic random noise.ChineseJ.Geophys. (in Chinese), 54(5): 1358-1366, doi: 10.3969/j.issn.0001-5733.2011.05.025.
Lin H B, Li Y, Yang B J, et al. 2014. Seismic random noise elimination by adaptive time-frequency peak filtering.IEEEGeoscienceandRemoteSensingLetters, 11(1): 337-341.
Liu G C, Chen X H, Du J, et al. 2012. Random noise attenuation usingf-xregularized nonstationary autoregression.Geophysics, 77(2): V61-V69.Lu Y H, Lu W K. 2009. Edge-preserving polynomial fitting method to suppress random seismic noise.Geophysics, 74(4): V69-V73. Moghaddamjoo A. 1991. Transform-based covariance differencing approach to the array with spatially nonstationary noise.IEEETransactionsonSignalProcessing, 39(1): 219-221.
Naghizadeh M, Sacchi M. 2012. Multicomponent f-x seismic random noise attenuation via vector autoregressive operators.Geophysics, 77(2): v91-v99. Roshandel Kahoo A, Siahkoohi H R. 2009. Random noise suppression from seismic data using time-frequency peak filtering. ∥ 71st EAGE Conference & Technical Exhibition, Extended Abstracts.
Swiercz E. 2006. Recognition of radar signals by time-frequency peak filtering. ∥ Proc. of International Radar Symposium. Krakow, Poland: IEEE, 1-4. Tian Y N, Li Y. 2014. Parabolic-trace time-frequency peak filtering for seismic random noise attenuation.IEEEGeoscienceandRemoteSensingLetters, 11(1): 158-162.
Wu N, Li Y, Yang B J. 2011. Noise attenuation for 2-D seismic data by radial-trace time-frequency peak filtering.IEEEGeoscienceandRemoteSensingLetters, 8(5): 874-878.Wu Y T, Liao G S, Zhang G B. 2003. A novel method for estimating DOA in the presence of spatially nonstationary noise fields.JournalofXidianUniversity(in Chinese), 30(1): 51-54.Yuan Y H, Wang Y B, Liu Y K, et al. 2013. Non-dyadic Curvelet transform and its application in seismic noise elimination.ChineseJ.Geophys. (in Chinese), 56(3): 1023-1032, doi: 10.6038/cjg20130330.
附中文參考文獻
鄧小英, 楊頂輝, 劉濤等. 2010. 最小二乘支持向量回歸濾波系統(tǒng)性能分析. 地球物理學(xué)報, 53(8): 2004-2011, doi: 10.3969/j.issn.0001-5733.2010.08.027.
關(guān)惠玲, 閻獻國, 張優(yōu)云. 2003. 動態(tài)過程非平穩(wěn)性度量及其在設(shè)備診斷工程中的應(yīng)用. 機械工程學(xué)報, 39(8): 141-145.
李月, 林紅波, 楊寶俊等. 2009. 強隨機噪聲條件下時窗類型局部線性化對TFPF技術(shù)的影響. 地球物理學(xué)報, 52(7): 1899-1906, doi: 10.3969/j.issn.0001-5733.2009.07.025.
李月, 彭蛟龍, 馬海濤等. 2013. 過渡內(nèi)蘊模態(tài)函數(shù)對經(jīng)驗?zāi)B(tài)分解去噪結(jié)果的影響研究及改進算法. 地球物理學(xué)報, 56(2): 626-634, doi: 10.6038/cjg20130226.
林紅波, 李月, 徐學(xué)純. 2011. 壓制地震勘探隨機噪聲的分段時頻峰值濾波方法. 地球物理學(xué)報, 54(5): 1358-1366, doi: 10.3969/j.issn.0001-5733.2011.05.025.
吳云韜, 廖桂生, 張光斌. 2003. 空間非平穩(wěn)噪聲環(huán)境下的DOA估計新算法. 西安電子科技大學(xué)學(xué)報(自然科學(xué)版), 30(1): 51-54.袁艷華, 王一博. 劉伊克等. 2013. 非二次冪Curvelet變換及其在地震噪聲壓制中的應(yīng)用. 地球物理學(xué)報, 56(3): 1023-1032, doi: 10.6038/cjg20130330.
(本文編輯 何燕)
A radial time-frequency peak filtering based on ROAD for suppressing spatially nonstationary random noise in seismic data
LIN Hong-Bo, MA Hai-Tao*, XU Li-Ping
CollegeofCommunicationandEngineering,JilinUniversity,Changchun130012,China
Seismic exploration is an important tool to search for oil and gas. However, the presence of strong random noise greatly degrades the quality of seismic data and brings difficulty to image geological structure in the subsurface. In seismic denoising methods, seismic random noise is usually assumed to be stationary Gaussian noise without consideration of its nonstationarity in space. In the condition of the complex surface area, it is a challenge to suppress spatially nonstationary seismic random noise, i.e. the power of seismic noise is variable in different seismic traces, by using these denoising methods. On the basis of the spatially nonstationarity, we propose a method to suppress seismic random noise attenuation by using the rank-ordered absolute difference and radial time-frequency peak filtering method (ROAD-RTFPF).Radial time-frequency peak filtering (RTFPF) is an effective method to preserve seismic signals when suppressing random noise in seismic data at low signal-to-noise ratio (SNR). Based on the rank-ordered absolute difference (ROAD), we propose the ROAD-RTFPF method to suppress spatially nonstationary random noise in seismic data at low SNR. Firstly, we introduce the concept of spatially nonstationary random noise to describe such noise with spatially changing power. The correlation integral of resampled data on radial traces are analyzed to demonstrate the nonstationarity of seismic noise in space. Secondly, the property of the spatially nonstationary random noise on the radial traces is analyzed and then used to improve the performance of RTFPF. Therefore, on the basis of calculating the values of ROAD, we conduct local time-frequency peak filtering for the resampled data on radial traces with high ROAD, which indicates the nonstationary part of seismic random noise. RTFPF is then applied to the processed data on radial traces to further suppress the random noise in seismic data.We calculate the correlation integral, the rank-ordered absolute difference on field seismic random noise data, and compare the performance of the ROAD-RTFPF and RTFPF, taking synthetic seismic data and common shot point seismic record for example. We compare the correlation integral with spatially nonstationary and spatially stationary seismic records. The calculating results indicate that the spatially nonstationary seismic random noise has a smaller value of correlation integral than the stationary seismic random noise record on radial traces. For the spatially nonstationary seismic random noise record, the values of the ROAD become larger for some resampled data on a radial trace corresponding to nonstationary seismic traces. So we combine the ROAD to identify nonstationary random noise, which has higher ROAD than the other resampled noise on radial traces. The results of the synthetic seismic data and field common-short-point record show that the ROAD-RTFPF provides a satisfactory denoising and signal preserving performance for seismic data with spatially nonstationary random noise. It also shows that our method is superior to the RTFPF in suppression of spatially nonstationary random noise.The approach combining ROAD with radial time-frequency peak filtering method can effectively suppress the spatially nonstationary seismic random noise, which has small correlation integral on radial traces. On the radial traces, spatially nonstationary random noise appears as impulse noise in corresponding seismic traces with large power, so large values of ROAD can be used to identify the spatially nonstationary random noise. The ROAD-RTFPF can effectively attenuate spatially nonstationary random noise based on identification with ROAD and retain the advantage of the RTFPF in signal preservation.
Seismic random noise; Radial time-frequency peak filtering; Spatially nonstationary random noise; Rank-ordered absolute difference (ROAD)
10.6038/cjg20150729.
國家自然科學(xué)基金重點項目(41130421);國家自然科學(xué)基金面上項目(41274118)共同資助.
林紅波,女,1973年生,博士,副教授,主要從事信號與信息處理、地震勘探噪聲壓制方面的研究.E-mail:hblin@jlu.edu.cn
*通訊作者 馬海濤,男,1969年生,博士,副教授.E-mail:maht@jlu.edu.cn
10.6038/cjg20150729
P631
2014-04-01,2015-06-17收修定稿
林紅波,馬海濤,許麗萍. 2015. 壓制空間非平穩(wěn)地震勘探隨機噪聲的ROAD徑向時頻峰值濾波算法.地球物理學(xué)報,58(7):2546-2555,
Lin H B, Ma H T, Xu L P. 2015. A radial time-frequency peak filtering based on ROAD for suppressing spatially nonstationary random noise in seismic data.ChineseJ.Geophys. (in Chinese),58(7):2546-2555,doi:10.6038/cjg20150729.