• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    重金屬元素Hg、Cd、Cu、Zn和Se在南海東島上的時空分布特征

    2015-03-01 07:30:18張文超劉成程李明趙三平孫立廣
    地球環(huán)境學(xué)報 2015年5期
    關(guān)鍵詞:鳥糞極地金屬元素

    晏 宏,張文超劉成程李 明趙三平,孫立廣

    (1.中國科學(xué)院地球環(huán)境研究所 黃土與第四紀地質(zhì)國家重點實驗室,西安 710061;

    2.中國科學(xué)技術(shù)大學(xué) 地球與空間科學(xué)學(xué)院 極地環(huán)境研究室,合肥 230026)

    doi:10.7515/JEE201505010

    重金屬元素Hg、Cd、Cu、Zn和Se在南海東島上的時空分布特征

    晏 宏1,2,張文超1,劉成程1,李 明1,趙三平2,孫立廣2

    (1.中國科學(xué)院地球環(huán)境研究所 黃土與第四紀地質(zhì)國家重點實驗室,西安 710061;

    2.中國科學(xué)技術(shù)大學(xué) 地球與空間科學(xué)學(xué)院 極地環(huán)境研究室,合肥 230026)

    重金屬和其他污染物遷移轉(zhuǎn)化過程中的生物傳輸模式在極地及高緯地區(qū)已經(jīng)被廣泛研究,但是生物傳輸模式對低緯地區(qū)重金屬元素從海洋向陸地轉(zhuǎn)移過程中的作用目前還不是很清楚。本研究主要分析了重金屬元素Hg、Cd、Cu、Zn和 Se等在南海熱帶珊瑚礁島嶼東島上的時空分布。結(jié)果顯示:海鳥糞是東島表土和沉積物中元素P、Hg、Cd、Cu、Zn和Se的主要來源。同時本文還校準得到了過去千年海鳥糞中重金屬元素Hg、Cd、Cu、Zn和Se的濃度變化,結(jié)果顯示:海鳥糞中的重金屬元素在工業(yè)革命之后均出現(xiàn)了快速的上升,與人類活動的加劇相對應(yīng)。除了Cd之外,東島表土和沉積物中的其他重金屬元素濃度目前都相對較低,沒有達到污染水平。但是,東島上目前生活有超過50000只的紅腳鰹鳥,這些鳥類會不斷地從海洋中富集重金屬元素,并通過鳥糞的形式輸送到島嶼上。這些鳥類本身不是污染的制造者,它們只是人類排放污染物的富集和傳輸媒介。

    重金屬元素;土壤與沉積物;紅腳鰹鳥;生物傳輸;污染

    Most of the world's oceans and seas have been under increasing pressure of anthropogenic contaminations since the Industrial Revolution as emission of atmospheric contaminants and discharge of oily wastes,ballast water,garbage,and sewage keep increasing(Fitzgerald et al,1998; Miller et al,2003; Elliott,2005).Among the industrial contaminants,heavy metals Cd,Hg and Pb are nutritionally nonessential,and dietary exposure to elevated levels of these metals can be toxic to consumer(Elliott and Scheuhammer,1997; Elliott,2005).Cr,Cu,Zn,F(xiàn)e,Mn and Se are nutritionally essential,but may become toxic if they are accumulated in tissues at excessively high levels(Elliott and Scheuhammer,1997; Elliott,2005).

    Marine animals can concentrate heavy metals to potentially toxic levels(Ewald et al,1998; Li et al,2002; Christensen et al,2005; Blais et al,2007; Michelutti et al,2009).Seabirds,as one of the top predators in the marine food web and the globally relevant biovectors,have received considerable attention recently(Blais et al,2007).Many seabird species occupy high trophic positions in the marine food web; as a result,they often accumulate elevated levels of contaminants due to bioaccumulation(Blais et al,2007).When seabirds congregate on shore,often in dense nesting colonies,they funnel a portion of their bioaccumulated contaminants to land via guano and mortality.This biovector transport process has been widely recognized in the Arctic flora and mire,in the soils with high gull density,and in the Antarctic ornithogenic lake sediments(Sun et al,2000; Sun and Xie,2001; Blais et al,2005; Liu et al,2005; Blais et al,2007),but seabirds' role in the movement of heavy metals from marine to terrestrial ecosystems in low latitudes remains less studied(Liu et al,2006,2008b; Yan et al,2010,2011b).

    In this study,we analyzed concentrations of Hg,Cd,Cu,Zn and Se in the ornithogenic sediment and surface soil samples collected from a seabird colony of a tropical coral reef island,South China Sea(Fig.1),studied the temporal and spatial characteristics of biotransport of these heavy metal pollutants,and reconstructed concentrations of these heavy metals in the historical red-footed booby droppings over the past millennium.

    1 Materials and methods

    1.1 Study area description>

    Dongdao Island(16°39'~16°41'N,112°43'~112°45'E)is located in the east of the Xisha Islands of South China Sea,and is about 18 sea miles from Yongxin Island,the largest one of the Xisha Islands.Dongdao Island is a tropic coral reef island with an elliptical shape and a northwest-southeast orientation(Fig.1),and it is developed on an individual reef f at and formed during the period of mid-late Holocene,the primary formation period of the Xisha Islands(Liu et al,2008a; Yan et al,2011a).This small island has a land area of 1.55 km2and an elevation of about 3~6 m above the sea level(a.s.l.),and it is completely composed of coral sand and coral rock.The eastern,southern and western shores of this island are surrounded by 5~6 m high sand barriers; the sand barrier on the southeastern shore is slightly higher than that on the northwestern shore.The sand barriers are covered with thriving shrubs.A wide and continuous area of beach rock and unconsolidated bioclasts of Tridacna shells crop out along the northern shore.Along the northwestern shore is a sandy beach of coral and shell.In the interior of this island is an up to 3 m high f at.In the middle and about half area of this island is covered by Pisonia grandis woodland,providing a good and shaded nesting place for numerous seabirds.Under the Pisonia grandis woodland is black phospho-calc soils enriched with organic matter with a distinct smell of seabird droppings.Dongdao Island has been identified as the natural reserve area for red-footed booby(Sula sula)(Liu et al,2006,2008a).

    Fig.1 Maps showing the geographical location of the Dongdao Island(A),and the distribution of morphological zones of Dongdao Island(B).The geomorphology from the beach to the center of Dongdao Island(C),Cattle Pond,sampling sites T1 to T8,and the sampling site DY4 are marked in(C)

    "Cattle Pond" was discovered on Dongdao Island during our f eld investigations in 2003(Liu et al,2006,2008a; Yan et al,2011a).Cattle Pond is a crescent-shaped freshwater lake,located within the southwestern sand barrier,it is about 150 m long,and it has a maximum width of 15 m.This pond is hydrologically closed,it is the only fresh water source for the seabirds living on the island,and the lake water is completely fed by atmospheric precipitation and lost predominantly through evaporation(Yan et al,2011a).Field observations showed that a large number of seabirds cluster in this area and seabird droppings signif cantly inf uenced this pond.The water depth of Cattle Pond varies with the alternation of dry and wet seasons.According to f eld investigations,Cattle Pond never completely dries out; the water depth remains steady at about 0.5 m most of the time.

    1.2 Sample collection>

    Sediment core DY4,117 cm long,was collected from Cattle Pond during the field investigations March 10 — April 11,2003(Liu et al,2008a).During sampling,PVC plastic gravity pipes of 12 cm in diameter were pushed down into the soft substrate of the lake floor and then quickly retrieved.In the laboratory,the DY4 core was opened,photographed and described,and then sectioned at 1 cm intervals.Eight surface soil samples named T1 to T8 were collected from the beach to the center of Dongdao Island(Fig.1).Three fresh dropping samples were taken from different sites with breeding colonies.Five common perennial plant species in Dongdao Island,S.sericea,G.speciosa,A.villosa,P.grandis,and S.portulacastrum,were chosen for this study.We also collected three coral rock samples to determine the element background of Dongdao Island.

    1.3 Analysis method>

    All subsamples were analyzed for inorganic elemental concentrations.The plant samples were analyzed according to the procedure by a previous study(Xie and Sun,2003).They were cleaned from soil deposits,washed separately and thoroughly with tap and deionized water,and dried at 60℃ for 12 h.Root tissues of these plant samples were discarded to avoid possible soil contamination,and only the above ground plant parts(stems,leaves)were analyzed.These dried plant tissues were blended and powdered.The powdersample(0.5 g)was fused with NaOH and Na2O2at 650℃ in a covered nickel crucible.The residue was extracted by 50 mL deionized water at 90℃,and the f ltrate was diluted to 100 mL using deionized water.The soil,feces,coral rock and sediment samples were air-dried in the clean laboratory first,ground and passed through a 120-mesh screen,and then dried again at 60℃ for 12 h.About 3 g of each dried powder sample was taken,precisely weighed,and then digested by multi-acid(high purity grade HNO3,HF,HClO4)in a Pt crucible with electric heating.Atomic absorption spectrophotometry(AAS)was used to determine concentrations of Ca,Cu,Zn,Pb,Cd,F(xiàn)e,and Mn.For details of these analytical methods,see Liu et al(2006).Abundance of P2O5was determined by ultraviolet visible spectrophotomety(UVS).Concentrations of As and Hg were determined by atomic fluorescent hydrogenation(AFS).For quality control purpose,the national standard sediment and soil samples of GBW07120 and GBW07108(2 replicates)were measured as "unknowns" with every batch analysis.The analytical values for the major elements and heavy elements are within ± 0.5% and ± 5% of the certif ed ones,respectively.

    Radiocarbon analyses for the DY4 core were performed on terrestrial organic matter(plant caryopsis)after HCl treatment with the Accelerator Mass Spectrometer facility at Institute of Heavy Iron Physics in Peking University.The dating results and detailed description of the equipment and method were given by Liu et al(2008a)and Yan et al(2011a).

    1.4 Method for reconstruction of heavy metal concentrations in the historical red-footed booby droppings over the past millennium>

    Previous study by Zhao et al(2007)analyzed the ratios of Sr/Ca and Mg/Ca in the plant,coral sand,and seabird dropping samples from Dongdao Island and found that these ratios were distinct and could be used to identify the material source.Using three end-member mixing model,we calculated relative contribution of seabird dropping,coral sand,and plant remains in DY4(Fig.2).

    Seabird droppings and coral sands make up 90% of the DY4 sediments(Fig.2).The sediments in the top 45 cm of DY4 are composed of roughly 50% feces,40% coral sands,and 10% plant remains.Because of the steady and abundant seabird droppings input,the sediments in the top 45 cm were used to estimate the Hg,Cd,Cu,Zn,and Se concentrations in the historical red-footed booby droppings using the following mass equation:

    Where

    M=total weight of sediment,

    x%=percentage of booby droppings in lake sediments,

    y%=percentage of coral sands in lake sediments,

    z%=percentage of plant remains in lake sediments,

    Cx=concentration of elements(Hg,Cd,Cu,Zn and Se)in booby droppings,

    Cy=concentration of elements(Hg,Cd,Cu,Zn and Se)in coral sands,

    Cz=concentration of elements(Hg,Cd,Cu,Zn and Se)in plants,

    Cm=concentration of elements(Hg,Cd,Cu,Zn and Se)in sediments.

    We assumed that the Hg,Cd,Cu,Zn,and Se concentrations in coral sands and plants remain constant during the studied time period and used the Hg,Cd,Cu,Zn,and Se concentrations in coral sands background and modern plant as Cyand Cz.

    Fig.2 Relative contributions(%)of seabird droppings,coral sand,and plant remains in the DY4 lake sediments(Zhao et al,2007)

    2 Results and discussions

    2.1 Concentrations of P and heavy metals in seabird droppings,plants and coral sand background>

    The levels of nine heavy metals(Hg,Cd,Cu,Zn,Se,Pb,As,F(xiàn)e,Mn,Ni,and Sr)and nutrient element P in the red-footed booby droppings and the coral sand background of Dongdao Island are given in Tab.1 together with the ratios of element concentration in feces to that in coral sand.P has the highest level of up to 15% in the red-footed booby droppings,almost a thousand times higher than that in the coral sand background.The concentrations of Cd,Cu,Zn,and Se in the seabird droppings are tens of times higher than those in the coral sands(Tab.1).The level of Hg in the fresh seabird droppings is more than f fty times higher than that in the coral sand background(Tab.1).One likely explanation for this is that red-footed boobies(S.sula)have fish as its main diet; they accumulate Hg through biomagnif cation in the food chain(Burger and Gochfeld,2000).Pb has comparable levels in the seabird droppings and the coral sands,indicating a lack of bioaccumulation in the food chain; and this is consistent with the earlier observation(Ancora et al,2002).The Cu concentration in the seabird droppings is 18 times that in the coral sands.

    Tab.1 Concentrations of P and heavy metals in seabird droppings,coral sand background,plants,DY4 sediments,and surface soil

    2.2 Seabird droppings' inf uence on spatial distributions of P and heavy metals in surface soil of Dongdao Island>

    We collected 8 surface soil samples(T1— T8)from beach to the center(Fig.1),analyzed the concentrations of P and Hg,Cd,Cu,Zn,and Se,and observed a clear concentration gradient of P,Cd,Cu,Zn and Se from beach to the center(Fig.3).This is understandable.Due to the great difference in the concentrations of P,Hg,Cd,Cu,Zn and Se between seabird droppings and local background,a large amount of seabird droppings input will dramatically change the characteristics of the surface soil.The T1 — T4 samples were collected from the seaward side of the coral sand,the place that is an unfavorable area for seabird activities due to strong wind from sea; thus seabird droppings input is very limited.Additionally,waves may flush away the seabird droppings on the surface of the coral sand barriers.On the contrary,the T7— T8 samples were collected from the Pisonia grandis woodland with approximately 35000 breeding pairs of red-footed booby(S.sula)(Cao et al,2005)and a large amount of excrement.The average concentrations of P,Cd,Cu,Zn,and Se in T7— T8 are 31,71,5,11 and 29 times higher than those of T1— T4,respectively.Unlike Cd,Cu,Zn,Se and P,Hg does not have a clean concentration gradient between T1— T4 and T7-T8,and this could be attributed to its vaporizable nature(a low enthalpy of vaporization as 59.15 kJ·mol-1).Mercury could evaporate from seabird droppings(with high mercury concentration),and thisevaporation process is more intense on Dongdao Island due to the warm(strong tropical sunlight)and windy climate(Gustin et al,2002).The T5— T6 samples were collected form the transition belt with shrubs and small trees,the place unfit for seabird nesting but suitable for recreation.Therefore,the concentrations of P,Cd,Cu,Zn,and Se concentrations in T5 — T6 are between those of T1 — T4 and T7 — T8.

    Fig.3 Concentrations of Cd,Cu,Zn,Se,P2O5and Hg in the surface soil of Dongdao Island from T1 to T8

    2.3 Heavy metal concentrations in the historical red-footed booby droppings over the past millennium and possible causes>

    The lake sediment core DY4 has three sediment units(Sun et al,2007; Zhao et al,2007; Liu et al,2008a)(Fig.4).The bottom unit(Unit 3,from 117 cm to 87 cm)consists of fragments of greywhite coral,shell and sandy gravels.The sediments in the bottom unit probably represent deposition in a lagoon environment,and they do not contain any plant remains.The top unit(Unit 1)consists of ornithogenic sediments and is influenced by guano; it contains bone remnants of seabirds and their dietary fish and discharges a strong and unpleasant smell,similar to the smell of modern seabird excrements.The interbedded coral sand layer(Unit 2,58~69 cm)has distinctly different lithology from the overlying and underlying sediments,and it possibly corresponds to a precipitous marine sedimentation event happened at about 926 AD(Sun et al,2007).The seabird droppings content in DY4(Fig.4)is consistent with the lithology analysis result.For example,the seabird droppings content in the interbedded coral sand layer(Unit 2)is much lower than that in the ornithogenic sediments(Unit 1).

    The high phosphate(as P2O5)content of 1.63%(means of all subsamples)in DY4(Fig.4)also conf rmed the lithology analysis result that a large amount of guano was transported and deposited in the Cattle Pond.The important role of seabirds in the transportation of nutrient nitrogen and phosphorus of marine origin to terrestrial ecosystems has been well recognized(Anderson and Polis,1999).Phosphate deposits have been shown to occur in the islands of the Pacific and Indian Oceans as the result of phosphate being leached from the superficial coating of avian guano and subsequently the re-precipitation in underlying calcareous sands(Trichet and Fikri,1997; Baker et al,1998).The levels and depthdistributions of As,Cd,Cu,Zn,Pb,Hg,F(xiàn)e and Mn in sediment core DY4 have been analyzed by Liu et al(2008b)and the results demonstrated that the seabird droppings are probably the main source of these elements in lake sediments(Fig.4).This result is consistent with numerous studies in the remote islands of Antarctica and Arctic(Sun et al,2000; Blais et al,2005; Liu et al,2005; Blais et al,2007).

    Fig.4 Lithological characters and down-core variation prof les of Se,Cd,P2O5,Cu,Zn ,Hg,TN,TOC,and feces content in the DY4 core

    Using three end-member mass equation(1),we calculated the Hg,Cd,Cu,Zn,and Se concentrations in the historical booby droppings and the results are plotted in Fig.5.The Hg,Cd,Cu,Zn,and Se concentrations in seabird droppings over the past millennium fall into two distinct periods(Fig.5).Under 15 cm of DY4,they kept at stable relatively low levels.In the top 15 cm,they increased rapidly and fluctuated drastically; the Hg,Cu,and Zn concentrations increased from 27 μg·kg-1,2 mg·kg-1,and 47 mg·kg-1to 90 μg·kg-1,16 mg·kg-1,and 116 mg·kg-1,respectively.From 15 cm to 13 cm,the Cd and Se levels increased from 3 mg·kg-1and 2 mg·kg-1to 8 mg·kg-1and 6 mg·kg-1,respectively,and then stayed relatively stable.The reconstructed concentrations of these heavy metals for the booby droppings of the surface sediments are not differentiable from those in fresh booby droppings.

    Seabird droppings contain diet-derived and nonbiologically available heavy metals,these metals are accumulated in different organs and excreted via different physiological routes(Pastor et al,1994; Furness and Camphuysen,1997),and the concentrations of these heavy metals in the seabird excreta closely reflect those in their diets(Pastor et al,1994; Furness and Camphuysen,1997; Elliott,2005).Based on our investigation,flying fish makes up a large proportion of red-footed booby's diet(more than 80%),and squid the rest.Flying f sh is plentiful near the studied area due to the good coral inhabits in Xisha Islands.Thus red-footed booby's diet is mainly determined by its feeding habits and expected to be stable over the studied time span.As reported in our previous study(Liu et al,2008a),each 1 cm sample in DY4 represents about 15 years of sediment accumulation on average based on AMS14C age model.The Hg,Cd,Cu,Zn,and Se concentrations in the top 15 cm,roughly spanning the recent two centuries,are several times higher than those in the 15~45 cm.It is difficult to explain such large and rapid variations by the changes in natural marineenvironment,and increased anthropogenic emissions in recent centuries are most likely the main contributor(Elliott and Scheuhammer,1997; Fitzgerald et al,1998; Miller et al,2003).For example,Hg is a well known global contaminant and has a long atmospheric residence time of over one year,a long range atmospheric transport,and a global distribution.Human mercury consumption experienced sustained and rapid growth since about AD 1650 in corresponding to beginning of the large-scale gold mining activity in South Central America,which left an unparalleled legacy of massive mercury pollution(Nriagu,1994; Camargo,2002; Hylander and Meili,2003).In this study,the reconstructed Hg prof le also revealed a sustained increasing since about AD 1650,similar to the reported sediment records from the other parts of the world(Nriagu,1994; Martinez-Cortizas et al,1999; Biester et al,2002; Sun et al,2006).

    Fig.5 Down-core concentration variation prof les of calibrated Se,Cd,Cu,Zn and Hg in top 45 cm of the DY4 core.Solid dots mark heavy metals concentration in seabird droppings

    2.4 Potential heavy metal pollution on Dongdao Island>

    It is difficult to accurately evaluate the contamination level of heavy metals in the soils and sediments of Dongdao Island.First,few data about the historical heavy metal levels in this island are available.Second,the guano-derived element concentrations are closely related to the degree of the inf uences by seabirds(Otero and Fernandez-Sanjurjo,2000; Sun et al,2000; Blais et al,2005,2007).Here we give a tentative estimation for the environment quality in Dongdao Island using the determined levels of heavy metals in the bird-influenced materials,the national environmental quality standards,and the published thresholds of heavy metal levels that may affect wild animals and plants(Tab.2).

    For the soils in Dongdao Island,the concentrations of Cu and Hg in the bird-influenced samples were lower than the critical levels given in Chinese Environmental Quality Standard(No.GB15618— 1995)(threshold: Cu 100 mg·kg-1,Hg 1.0 mg·kg-1),but the concentration of Zn in T7 — T8 samples,which are strongly influenced by seabird droppings,is above the critical level(Zn 300 mg·kg-1).The concentrations of Cd in T5— T6 and T7— T8 samples are far above the critical level(0.6 mg·kg-1).

    For the lake sediments,the corresponding national standard is not available,so we used the marine sediment standard instead(No.GB181668— 2002,threshold: Cu 35 mg·kg-1,Zn 150 mg·kg-1,Hg 0.2 mg·kg-1,Cd 0.5 mg·kg-1).Like in the soils,the concentrations of Cu,Zn,and Hg in the sediments are below the critical levels,but the concentration of Cd is above.We also compared theconcentrations of Cd,Cu,Zn,and Hg in the sediments of Dongdao Island with the threshold effect level(TEL)from Canadian ecological database for sediment baseline(Cu 36 mg·kg-1,Zn 123 mg·kg-1,Hg 0.173 mg·kg-1,Cd 0.6 mg·kg-1)(Ni et al,2005).Again Cd is the only element exceeding TEL.In summary,as a whole,the contamination levels of heavy metals Cu,Zn and Hg in the soils and sediments of Dongdao Island are low,but the concentration of Cd greatly exceeds the critical level.

    Tab.2 Comparison of concentrations of heavy metals Cd,Cu,Zn and Hg in surface soil and sediment on Dongdao Island with accepted standard ones

    3 Conclusion>

    Seabird droppings are the major source of heavy metals Hg,Cd,Cu,Zn,and Se in the surface soils and sediments of Dongdao Island.The concentrations of these heavy metals in pure seabird feces have been rapidly increasing since AD 1800,the time of Industrial Revolution; apparently the increase is caused by recent anthropogenic activities.Except Cd,the contamination levels of heavy metals in the soils and sediments of Dongdao Island are presently low; however the current 50000 red-footed booby are generating more droppings and aggravating the heavy metal pollution on the island.Seabirds are not polluters per se; they are just inadvertent vectors of these pollutants released to the environment by human activities.

    Acknowledgments:We wish to thank JIA Nan,LIU Xiaodong,YIN Xuebin and LUO Honghao for their help in sampling and analyzing.

    Ancora S,Volpi V,Olmastroni S,et al.2002.Assumption and elimination of trace elements in Adelie penguins from Antarctica: a preliminary study [J].Marine Environmental Research,54(3 - 5): 341 - 344.

    Anderson W B,Polis G A.1999.Nutrient f uxes from water to land: seabirds affect plant nutrient status on Gulf of California islands [J].Oecologia,118(3): 324 - 332.

    Baker J C,Jell J S,Hacker J L F,et al.1998.Origin of recent insular phosphate rock on a coral cay - Raine Island,Northern Great Barrier Reef,Australia [J].Journal of Sedimentary Research,68(5): 1001 - 1008.

    Biester H,Kilian R,F(xiàn)ranzen C,et al.2002.Elevated mercury accumulation in a peat bog of the Magellanic Moorlands,Chile(53 degrees S)— an anthropogenic signal from the Southern Hemisphere [J].Earth and Planetary Science Letters,201(3 - 4): 609 - 620.

    Blais J M,Kimpe L E,Mcmahon D,et al.2005.Arctic seabirds transport marine-derived contaminants [J].Science,309(5733): 445 - 445.

    Blais J M,Macdonald R W,Mackey D,et al.2007.Biologically mediated transport of contaminants to aquatic systems [J].Environmental Science & Technology,41(4): 1075 - 1084.

    Burger J,Gochfeld M.2000.Metal levels in feathers of 12 species of seabirds from Midway Atoll in the northern Pacific Ocean [J].Science of the Total Environment,257(1): 37 - 52.

    Camargo J A.2002.Contribution of Spanish-American silver mines(1570 — 1820)to the present high mercury concentrations in the global environment: a review [J].Chemosphere,48(1): 51 - 57.

    Cao L,Pang Y L,Liu N F.2005.Status of the red-footed booby on the Xisha Archipelago,South China Sea [J].Waterbirds,28(4): 411 - 419.

    Christensen J,Macduffee M,Macdonald R,et al.2005.Persistent organic pollutants in British Columbia grizzly bears: Consequence of divergent diets [J].Environmental Science & Technology,39(18):6952 - 6960.

    Elliott J E.2005.Trace metals,stable isotope ratios,and trophic relations in seabirds from the North pacific Ocean [J].Environmental Toxicology and Chemistry,24(12): 3099 - 3105.

    Elliott J E,Scheuhammer A M.1997.Heavy metal and metallothionein concentrations in seabirds from the Pacif c Coast of Canada [J].Marine Pollution Bulletin,34(10): 794 - 801.

    Ewald G,Larsson P,Linge H,et al.1998.Biotransport of organic pollutants to an inland Alaska lake by migrating sockeye salmon(Oncorhynchus nerka)[J].Arctic,51(1): 40 - 47.

    Fitzgerald W F,Engstrom D R,Mason R P.1998.The case for atmospheric mercury contamination in remote areas [J].Environmental Science & Technology,32(1): 1 - 7.

    Furness R W,Camphuysen C J.1997.Seabirds as monitors of the marine environment [J].Ices Journal of Marine Science,54(4): 726 - 737.

    Gustin M,Biester H,Kim C.2002.Investigation of the light-enhanced emission of mercury from naturally enriched substrates [J].Atmospheric Environment,36(20): 3241 - 3254.

    Hylander L D,Meili M.2003.500 years of mercury production: global annual inventory by region until 2000 and associated emissions [J].Science of the Total Environment,304(1 - 3): 13 - 27.

    Li Y,Macdonald R,Jantunen L,et al.2002.The transport of [β]-hexachlorocyclohexane to the western Arctic Ocean: a contrast to [α]-HCH [J].The Science of the Total Environment,291(1 - 3): 229 - 246.

    Liu X D,Sun L G,Wei G J,et al.2008a.A 1,100-year palaeoenvironmental record inferred from stable isotope and trace element compositions of ostracode and plant caryopses in sediments of Cattle Pond,Dongdao Island,South China Sea [J].Journal of Paleolimnology,40(4):987 - 1002.

    Liu X D,Sun L G,Xie Z Q,et al.2005.A 1300-year record of penguin populations at Ardley Island in the Antarctic,as deduced from the geochemical data in the ornithogenic lake sediments [J].Arctic Antarctic and Alpine Research,37(4): 490 - 498.

    Liu X D,Sun L G,Yin X B.2008b.Heavy metal distributions and source tracing in the lacustrine sediments of Dongdao Island,South China Sea [J].Acta Geologica Sinica(English Edition),82(5): 1002 - 1014.Liu X D,Zhao S P,Sun L G,et al.2006.Geochemical evidence for the variation of historical seabird population on Dongdao Island of the South China Sea [J].Journal of Paleolimnology,36(3): 259 - 279.

    Martinez-Cortizas A,Pontevedra-Pombal X,Garcia-Rodeja E,et al.1999.Mercury in a Spanish peat bog: Archive of climate change and atmospheric metal deposition [J].Science,284(5416): 939 - 942.

    Michelutti N,Liu H,Smol J,et al.2009.Accelerated delivery of polychlorinated biphenyls(PCBs)in recent sediments near a large seabird colony in Arctic Canada [J].Environmental Pollution,157(10): 2769 - 2775.

    Miller C V,F(xiàn)oster G D,Majedi B F.2003.Baseflow and stormflow metal fluxes from two small agricultural catchments in the Coastal Plain of the Chesapeake Bay Basin,United States [J].Applied Geochemistry,18(4):483 - 501.

    Ni Q,Jiang J Y,Ma Z D,et al.2005.Heavy metal pollution in lakes in the industrial park—a case study of Lake Moshuihu,Wuhan [J].Safety and Environmental Engineering,12(1): 13 - 16.

    Nriagu J O.1994.Mercury Pollution from the Past Mining of Gold and Silver in the America [J].Science of the Total Environment,149(3): 167 - 181.

    Otero X L,F(xiàn)ernandez-Sanjurjo M J.2000.Mercury in faeces and feathers of yellow-legged gulls(Larus cachinnans)and in soils from their breeding sites(Cies Islands-NW Spain)in the vicinity of a chlor-alkali plant [J].Fresenius Environmental Bulletin,9(1 - 2):56 - 63.

    Pastor A,Hernandez F,Peris M A,et al.1994.Levels of Heavy-Metals in Some Marine Organisms from the Western Mediterranean Area(Spain)[J].Marine Pollution Bulletin,28(1): 50 - 53.

    Sun L G,Xie Z Q.2001.Changes in lead concentration in Antarctic penguin droppings during the past 3,000 years [J].Environmental Geology,40(10): 1205 - 1208.

    Sun L G,Liu X D,Zhao S P,et al.2007.Sedimentary records:catastrophic marine f ooding event occurred on Dongdao Island of South China Sea around 1024 AD [J].Journal of University of Science and Technology of China,37(8):986 - 994.

    Sun L G,Xie Z Q,Zhao J L.2000.Palaeoecology— A 3,000-year record of penguin populations [J].Nature,407(6806): 858 - 858.

    Sun L G,Yin X B,Liu X D,et al.2006.A 2000-year record of mercury and ancient civilizations in seal hairs from King George Island,West Antarctica [J].Science of the Total Environment,368(1): 236 - 247.

    Trichet J,F(xiàn)ikri A.1997.Organic matter in the genesis of high-island atoll peloidal phosphorites: The lagoonal link [J].Journal of Sedimentary Research,67(5):891 - 897.

    Xie Z Q,Sun L G.2003.Fluoride content in bones of Adelie penguins and environmental media in Antarctica [J].Environmental Geochemistry and Health,25(4): 483 - 490.Yan H,Sun L G,Oppo D W,et al.2011a.South China Sea hydrological changes and Pacific Walker Circulation variations over the last millennium [J].Nature Communications,2(293),doi: 10.1038/ncomms 1297.

    Yan H,Sun L G,Wang Y H,et al.2010.A 2000-year record of copper pollution in South China Sea derived from seabird excrements: a potential indicator for copper production and civilization of China [J].Journal of Paleolimnology,44(2): 431 - 442.

    Yan H,Wang Y H,Cheng W H,et al.2011b.Millennial mercury records derived from ornithogenic sediment on Dongdao Island,South China Sea [J].Journal of Environmental Sciences,23(9): 1415 - 1423.

    Zhao S P,Sun L G,Liu X D,et al.2007.Using Sr/Ca and Mg/Ca ratios as source indicators of ornithogenic lacustrine sedments on coral island [J].Quaternary Sciences,27(1): 149 - 156.

    Temporal and spatial distribution characteristics of heavy metals Hg,Cd,Cu,Zn and Se on Dongdao Island,South China Sea

    YAN Hong1,2,ZHANG Wen-chao1,LIU Cheng-cheng1,LI Ming1,ZHAO San-ping2,SUN Li-guang2
    (1.State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of
    Sciences,Xi'an 710061,China; 2.Institute of Polar Environment,School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China)

    The biovector transport of heavy metals and other contaminants in polar areas has been widely recognized,but its role in the movement of heavy metals from marine to terrestrial ecosystems in low latitudes remains less studied.In this study,we analyzed the temporal and spatial distributions of heavy metals Hg,Cd,Cu,Zn,and Se in a tropic coral reef island,Dongdao Island,South China Sea.The results indicated that seabird droppings are the major source of elements P,Hg,Cd,Cu,Zn,and Se in the surface soils and lake sediments.The concentrations of Hg,Cd,Cu,Zn,and Se in the historical booby droppings over the past millennium were calculated and the results suggested that these heavy metals have been rapidly increasing since AD 1800,the time of the Industrial Revolution.Except Cd,the contamination levels of heavy metals in the soils and sediments of Dongdao Island are presently low; however the current 50000 red-footed boobies are generating more droppings and aggravating the heavy metal pollution on the island.Theseseabirds are not polluters per se; they are just inadvertent vectors of the pollutants that are released to the environment by human activities.

    heavy metals; soil and sediment; red-footed booby; biovector transport; pollution

    YAN Hong,E-mail: yanhong@ieecas.cn

    X53;X825

    A

    1674-9901(2015)05-0330-11

    Received Date:2015-09-16

    Foundation Item:Natural Science Foundation of China(NSFC)(41522305,41403018,41176042); the West Light Foundation of the Chinese Academy of Sciences(29Y42909101); the Youth Innovation Promotion Association CAS

    猜你喜歡
    鳥糞極地金屬元素
    110 k V復(fù)合I型絕緣子鳥糞閃絡(luò)影響因素研究
    寧夏電力(2022年3期)2022-08-23 02:09:16
    極地恐龍生存賽
    可怕的極地雪融
    奧秘(2022年6期)2022-07-02 13:01:13
    固體廢物中金屬元素檢測方法研究進展
    云南化工(2021年8期)2021-12-21 06:37:08
    鳥糞石法脫氮除磷的影響因素與應(yīng)用研究
    微波消解-ICP-MS法同時測定牛蒡子中8種重金屬元素
    中成藥(2018年11期)2018-11-24 02:57:28
    西班牙人除鳥糞有絕招
    極地之星
    鳥糞中"建筑師"
    環(huán)境監(jiān)測中重金屬元素分析方法探析
    河南科技(2014年8期)2014-02-27 14:08:07
    国产女主播在线喷水免费视频网站| 久久国产精品大桥未久av| 亚洲精品,欧美精品| 一本—道久久a久久精品蜜桃钙片| 亚洲情色 制服丝袜| 夜夜骑夜夜射夜夜干| 黑人巨大精品欧美一区二区蜜桃 | 中文字幕免费在线视频6| 国产又色又爽无遮挡免| 男女免费视频国产| 一级毛片 在线播放| 卡戴珊不雅视频在线播放| a 毛片基地| 精品人妻一区二区三区麻豆| 国产av码专区亚洲av| 99热国产这里只有精品6| 欧美国产精品一级二级三级| 国产片内射在线| videosex国产| 色网站视频免费| 中文天堂在线官网| 亚洲精品久久久久久婷婷小说| 少妇人妻 视频| 美女大奶头黄色视频| 欧美三级亚洲精品| 免费高清在线观看视频在线观看| 亚洲av男天堂| 午夜av观看不卡| 汤姆久久久久久久影院中文字幕| 成人黄色视频免费在线看| av又黄又爽大尺度在线免费看| 又粗又硬又长又爽又黄的视频| 夫妻午夜视频| 亚洲av男天堂| 亚洲少妇的诱惑av| 亚洲国产毛片av蜜桃av| 日日摸夜夜添夜夜爱| 亚洲,一卡二卡三卡| 大片免费播放器 马上看| 亚洲精品日本国产第一区| 涩涩av久久男人的天堂| 三级国产精品欧美在线观看| 日韩三级伦理在线观看| 欧美日韩av久久| 欧美97在线视频| 久久人妻熟女aⅴ| 一级毛片 在线播放| 国模一区二区三区四区视频| 天天影视国产精品| 日韩人妻高清精品专区| 精品久久蜜臀av无| 久久人人爽av亚洲精品天堂| 97精品久久久久久久久久精品| 三级国产精品片| av视频免费观看在线观看| 国产永久视频网站| 亚洲国产精品一区三区| 中文字幕亚洲精品专区| 成人亚洲欧美一区二区av| 亚洲美女视频黄频| 婷婷色综合www| 午夜福利视频在线观看免费| 亚洲精品aⅴ在线观看| 久久人人爽人人爽人人片va| 秋霞在线观看毛片| 欧美日本中文国产一区发布| 亚洲av成人精品一二三区| 嫩草影院入口| 亚洲av成人精品一区久久| 九九在线视频观看精品| 黄片无遮挡物在线观看| 久久 成人 亚洲| 国产深夜福利视频在线观看| 夜夜看夜夜爽夜夜摸| 免费不卡的大黄色大毛片视频在线观看| av电影中文网址| 国产色爽女视频免费观看| 中文字幕人妻丝袜制服| 男女国产视频网站| 特大巨黑吊av在线直播| 成人亚洲欧美一区二区av| 99久久中文字幕三级久久日本| 日韩免费高清中文字幕av| 国产色爽女视频免费观看| 成年美女黄网站色视频大全免费 | 蜜桃久久精品国产亚洲av| 久久久久久久久久久免费av| 国产精品人妻久久久影院| 夜夜骑夜夜射夜夜干| 黄色欧美视频在线观看| 欧美亚洲 丝袜 人妻 在线| 美女xxoo啪啪120秒动态图| 国产精品国产三级国产专区5o| 国产精品不卡视频一区二区| 视频区图区小说| 好男人视频免费观看在线| videos熟女内射| 欧美三级亚洲精品| 久久久久人妻精品一区果冻| 国产片特级美女逼逼视频| 中文乱码字字幕精品一区二区三区| 国产一区二区在线观看av| 国产精品免费大片| 亚洲av电影在线观看一区二区三区| 五月天丁香电影| 中文字幕亚洲精品专区| 成人综合一区亚洲| av有码第一页| 亚洲色图 男人天堂 中文字幕 | 2021少妇久久久久久久久久久| 亚洲精品日本国产第一区| 熟妇人妻不卡中文字幕| 精品久久久噜噜| 熟女av电影| 在线天堂最新版资源| 欧美日韩视频精品一区| 99久久中文字幕三级久久日本| 大陆偷拍与自拍| 天天操日日干夜夜撸| 免费播放大片免费观看视频在线观看| 免费av中文字幕在线| 美女福利国产在线| 91精品国产九色| 久久精品国产鲁丝片午夜精品| 视频中文字幕在线观看| 99久久精品国产国产毛片| 校园人妻丝袜中文字幕| 国产亚洲精品久久久com| 国产乱来视频区| 秋霞伦理黄片| 国产伦理片在线播放av一区| 欧美最新免费一区二区三区| 久久免费观看电影| 日韩av在线免费看完整版不卡| 男女免费视频国产| 国产一区二区在线观看日韩| 久久ye,这里只有精品| 王馨瑶露胸无遮挡在线观看| 91成人精品电影| 国产精品99久久久久久久久| 国产精品成人在线| 久久综合国产亚洲精品| 黄色视频在线播放观看不卡| 18禁动态无遮挡网站| 精品一品国产午夜福利视频| 久久久久久久久久成人| 中文字幕人妻丝袜制服| 看非洲黑人一级黄片| 丰满乱子伦码专区| 91精品伊人久久大香线蕉| 亚洲少妇的诱惑av| 人人妻人人爽人人添夜夜欢视频| 亚洲精品久久久久久婷婷小说| 亚洲国产欧美在线一区| 精品卡一卡二卡四卡免费| 十八禁高潮呻吟视频| 欧美日本中文国产一区发布| 日韩不卡一区二区三区视频在线| 欧美日韩国产mv在线观看视频| 91成人精品电影| 亚洲欧美精品自产自拍| 久久99精品国语久久久| xxxhd国产人妻xxx| 人妻系列 视频| 久久精品熟女亚洲av麻豆精品| 国产欧美亚洲国产| 久久精品久久久久久噜噜老黄| 亚洲av电影在线观看一区二区三区| 日韩一区二区三区影片| 人妻一区二区av| 国产一区二区在线观看日韩| xxxhd国产人妻xxx| 麻豆乱淫一区二区| 久久亚洲国产成人精品v| 日本色播在线视频| 久久午夜福利片| 天天影视国产精品| 亚洲精品亚洲一区二区| 久久午夜综合久久蜜桃| 狂野欧美白嫩少妇大欣赏| 日本欧美视频一区| 日韩av不卡免费在线播放| 亚洲精品乱久久久久久| 午夜福利影视在线免费观看| 十八禁高潮呻吟视频| 老司机影院毛片| 亚洲av福利一区| 老司机影院成人| 中文字幕人妻熟人妻熟丝袜美| 日韩,欧美,国产一区二区三区| 街头女战士在线观看网站| 又粗又硬又长又爽又黄的视频| 男男h啪啪无遮挡| 久久久久久久大尺度免费视频| 午夜福利,免费看| 男人操女人黄网站| 好男人视频免费观看在线| 人妻系列 视频| 国产精品国产av在线观看| 欧美xxⅹ黑人| 亚洲综合色网址| 性色avwww在线观看| 一级爰片在线观看| 男女啪啪激烈高潮av片| 校园人妻丝袜中文字幕| 亚洲国产精品国产精品| 日本-黄色视频高清免费观看| 多毛熟女@视频| 亚洲欧美日韩另类电影网站| 涩涩av久久男人的天堂| 永久网站在线| 日韩三级伦理在线观看| 亚洲欧美日韩另类电影网站| 中文字幕久久专区| 狠狠婷婷综合久久久久久88av| 搡女人真爽免费视频火全软件| 午夜福利影视在线免费观看| 午夜免费观看性视频| 久久免费观看电影| 亚洲av成人精品一二三区| 夜夜骑夜夜射夜夜干| 久久精品国产a三级三级三级| 插逼视频在线观看| 一级毛片 在线播放| 综合色丁香网| 亚洲人与动物交配视频| 五月天丁香电影| 亚洲三级黄色毛片| 我的老师免费观看完整版| 黑人高潮一二区| 2021少妇久久久久久久久久久| 久久久久久人妻| 国产在线免费精品| 2022亚洲国产成人精品| 91久久精品国产一区二区三区| 国产亚洲精品久久久com| 美女中出高潮动态图| 超色免费av| 亚洲综合精品二区| 伦理电影大哥的女人| 多毛熟女@视频| 国产在线一区二区三区精| 最新的欧美精品一区二区| 国语对白做爰xxxⅹ性视频网站| 熟女av电影| 国产欧美另类精品又又久久亚洲欧美| 久久精品国产亚洲av天美| freevideosex欧美| 人妻少妇偷人精品九色| 亚洲成人av在线免费| 精品久久国产蜜桃| 午夜影院在线不卡| 亚洲av男天堂| 黑人巨大精品欧美一区二区蜜桃 | 哪个播放器可以免费观看大片| 精品一区二区三区视频在线| 免费高清在线观看日韩| av国产精品久久久久影院| 亚洲丝袜综合中文字幕| 爱豆传媒免费全集在线观看| 乱人伦中国视频| 国产精品偷伦视频观看了| 久久国内精品自在自线图片| 十八禁网站网址无遮挡| 9色porny在线观看| 两个人免费观看高清视频| 国产伦精品一区二区三区视频9| 国产视频内射| 这个男人来自地球电影免费观看 | 精品人妻偷拍中文字幕| 老司机影院成人| 国产免费现黄频在线看| av国产精品久久久久影院| 国产av一区二区精品久久| 桃花免费在线播放| av线在线观看网站| 街头女战士在线观看网站| 简卡轻食公司| 你懂的网址亚洲精品在线观看| 国产黄片视频在线免费观看| 在线播放无遮挡| 免费播放大片免费观看视频在线观看| 国精品久久久久久国模美| 午夜福利视频在线观看免费| 91aial.com中文字幕在线观看| 精品一区二区三区视频在线| 全区人妻精品视频| 国产免费一区二区三区四区乱码| av有码第一页| 日日爽夜夜爽网站| 欧美日本中文国产一区发布| 国产综合精华液| 午夜视频国产福利| 日韩三级伦理在线观看| 丝袜喷水一区| 日日撸夜夜添| 中文字幕亚洲精品专区| 五月伊人婷婷丁香| 国产精品久久久久久精品古装| 国产精品 国内视频| 亚洲国产最新在线播放| 免费av不卡在线播放| 黄色怎么调成土黄色| 欧美变态另类bdsm刘玥| 大片电影免费在线观看免费| 午夜影院在线不卡| 精品久久蜜臀av无| 午夜影院在线不卡| 大码成人一级视频| 免费黄频网站在线观看国产| 亚洲av男天堂| 精品亚洲成国产av| 中国三级夫妇交换| 成年av动漫网址| 精品熟女少妇av免费看| 国产成人a∨麻豆精品| 日韩在线高清观看一区二区三区| 亚洲怡红院男人天堂| 国产精品久久久久久精品电影小说| 免费高清在线观看日韩| videossex国产| 亚洲国产日韩一区二区| 午夜免费鲁丝| 亚洲精品美女久久av网站| 男女国产视频网站| 18+在线观看网站| 国国产精品蜜臀av免费| 少妇的逼水好多| 中文精品一卡2卡3卡4更新| 乱人伦中国视频| 26uuu在线亚洲综合色| 妹子高潮喷水视频| 免费高清在线观看视频在线观看| 国产精品一二三区在线看| 久久免费观看电影| 97精品久久久久久久久久精品| 满18在线观看网站| 亚洲欧美中文字幕日韩二区| 亚洲av欧美aⅴ国产| 欧美 亚洲 国产 日韩一| 美女脱内裤让男人舔精品视频| 国产成人免费无遮挡视频| 国产在线视频一区二区| 高清不卡的av网站| 日韩熟女老妇一区二区性免费视频| 久久99热这里只频精品6学生| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲人成77777在线视频| av国产精品久久久久影院| 91精品三级在线观看| 18禁在线播放成人免费| 色5月婷婷丁香| 成人18禁高潮啪啪吃奶动态图 | 一本色道久久久久久精品综合| 伊人久久国产一区二区| 成人国语在线视频| 国产日韩欧美在线精品| 一级片'在线观看视频| 亚洲av成人精品一区久久| 97超视频在线观看视频| 一级爰片在线观看| 免费久久久久久久精品成人欧美视频 | 日本av手机在线免费观看| 亚洲国产精品999| 青春草亚洲视频在线观看| 国产av一区二区精品久久| 色哟哟·www| 亚洲丝袜综合中文字幕| 国产亚洲最大av| 久久毛片免费看一区二区三区| 男女高潮啪啪啪动态图| 日韩成人伦理影院| 黄色怎么调成土黄色| 精品少妇黑人巨大在线播放| 啦啦啦视频在线资源免费观看| 岛国毛片在线播放| 久久国产亚洲av麻豆专区| 亚洲国产日韩一区二区| 国产精品久久久久久av不卡| 亚洲av二区三区四区| 18禁在线无遮挡免费观看视频| 免费av不卡在线播放| av国产久精品久网站免费入址| 成人亚洲欧美一区二区av| 精品久久久精品久久久| 男女免费视频国产| 国产精品久久久久久精品电影小说| 亚洲精品aⅴ在线观看| 人妻少妇偷人精品九色| 国产精品国产三级专区第一集| 麻豆乱淫一区二区| 亚洲天堂av无毛| 亚洲av不卡在线观看| 亚洲精品日韩av片在线观看| 内地一区二区视频在线| 桃花免费在线播放| 男女无遮挡免费网站观看| 一级a做视频免费观看| 人妻 亚洲 视频| 久久久久国产精品人妻一区二区| 国产黄频视频在线观看| 中文字幕制服av| 最新中文字幕久久久久| av在线app专区| 最近最新中文字幕免费大全7| 91成人精品电影| 日韩中文字幕视频在线看片| 日韩欧美一区视频在线观看| 日韩强制内射视频| 91精品三级在线观看| 国产av国产精品国产| 女性生殖器流出的白浆| 春色校园在线视频观看| 久久久久久久久久久久大奶| 一级黄片播放器| 国产午夜精品久久久久久一区二区三区| 国产精品一二三区在线看| 欧美日韩视频精品一区| 99久久人妻综合| 成人国产av品久久久| 少妇人妻 视频| av在线app专区| 国产精品人妻久久久影院| 久久婷婷青草| 18禁在线播放成人免费| 性高湖久久久久久久久免费观看| 亚洲欧美清纯卡通| 国产永久视频网站| 婷婷色av中文字幕| 精品一区二区免费观看| 大又大粗又爽又黄少妇毛片口| 欧美另类一区| 亚洲精品美女久久av网站| 男男h啪啪无遮挡| 一级毛片黄色毛片免费观看视频| av女优亚洲男人天堂| 亚洲精品视频女| 久久精品久久久久久久性| 少妇被粗大猛烈的视频| 久久久a久久爽久久v久久| 亚洲内射少妇av| 国产精品人妻久久久久久| 天美传媒精品一区二区| 亚洲成人av在线免费| 女性被躁到高潮视频| 视频在线观看一区二区三区| 女的被弄到高潮叫床怎么办| 亚洲一级一片aⅴ在线观看| 日韩精品免费视频一区二区三区 | 在线观看美女被高潮喷水网站| 国产成人午夜福利电影在线观看| 亚洲精品乱久久久久久| 啦啦啦中文免费视频观看日本| 久久97久久精品| 多毛熟女@视频| 丰满饥渴人妻一区二区三| 国产成人精品无人区| 9色porny在线观看| 精品一区二区三卡| 我的女老师完整版在线观看| 婷婷成人精品国产| 18在线观看网站| 亚洲国产色片| 美女脱内裤让男人舔精品视频| 一区二区三区四区激情视频| 男女无遮挡免费网站观看| 成人国语在线视频| 嘟嘟电影网在线观看| 亚洲精品久久久久久婷婷小说| av女优亚洲男人天堂| 日韩av在线免费看完整版不卡| 欧美亚洲日本最大视频资源| 日日撸夜夜添| 久久久欧美国产精品| 国产黄片视频在线免费观看| 中文字幕人妻丝袜制服| 麻豆乱淫一区二区| 亚洲国产av新网站| 成年女人在线观看亚洲视频| 国产黄片视频在线免费观看| 欧美三级亚洲精品| 久久99热6这里只有精品| 成人国产麻豆网| 国产免费又黄又爽又色| 久久人人爽av亚洲精品天堂| 精品国产一区二区三区久久久樱花| 简卡轻食公司| 精品久久久久久久久亚洲| 久久久国产欧美日韩av| 在线观看国产h片| 国产免费现黄频在线看| 欧美日韩av久久| 一区在线观看完整版| 国产亚洲精品第一综合不卡 | 成人漫画全彩无遮挡| 久久久国产精品麻豆| 国产老妇伦熟女老妇高清| av播播在线观看一区| 97在线人人人人妻| 久久ye,这里只有精品| 久久久国产精品麻豆| 亚洲国产精品成人久久小说| 婷婷色综合大香蕉| 成人综合一区亚洲| 最近中文字幕高清免费大全6| 九九在线视频观看精品| 日韩一区二区三区影片| 亚洲综合色惰| 在线播放无遮挡| 美女内射精品一级片tv| 亚洲精品乱码久久久久久按摩| 亚洲国产成人一精品久久久| 高清av免费在线| 国产在线视频一区二区| 五月天丁香电影| 亚洲天堂av无毛| 在线观看一区二区三区激情| 人人澡人人妻人| 一级毛片黄色毛片免费观看视频| 国产精品一二三区在线看| 色婷婷av一区二区三区视频| 午夜免费男女啪啪视频观看| 精品卡一卡二卡四卡免费| 91午夜精品亚洲一区二区三区| 国产爽快片一区二区三区| 一级片'在线观看视频| 国产在线视频一区二区| 中文乱码字字幕精品一区二区三区| 国产 一区精品| 久久久a久久爽久久v久久| 一级二级三级毛片免费看| 欧美日韩综合久久久久久| 一级黄片播放器| 少妇人妻久久综合中文| 两个人免费观看高清视频| 91精品伊人久久大香线蕉| 国产永久视频网站| 丝瓜视频免费看黄片| 多毛熟女@视频| 成人亚洲精品一区在线观看| 久久久久国产精品人妻一区二区| 亚洲怡红院男人天堂| 亚洲人成网站在线观看播放| 国模一区二区三区四区视频| 超色免费av| 老女人水多毛片| 伦理电影免费视频| 九九在线视频观看精品| 妹子高潮喷水视频| 自拍欧美九色日韩亚洲蝌蚪91| 不卡视频在线观看欧美| 中文乱码字字幕精品一区二区三区| 婷婷色综合大香蕉| 日韩一区二区视频免费看| 黄色毛片三级朝国网站| 91午夜精品亚洲一区二区三区| 久久久久久久久久久丰满| 久久久久人妻精品一区果冻| 一级毛片黄色毛片免费观看视频| 免费看av在线观看网站| 一级片'在线观看视频| 亚洲中文av在线| 久久久久国产精品人妻一区二区| 国产成人91sexporn| 亚洲国产精品999| 热99国产精品久久久久久7| 日本午夜av视频| 日韩一区二区视频免费看| 美女内射精品一级片tv| 亚洲精品,欧美精品| 亚洲av成人精品一区久久| 国精品久久久久久国模美| 母亲3免费完整高清在线观看 | 亚洲婷婷狠狠爱综合网| 免费高清在线观看视频在线观看| 国产高清三级在线| 久久97久久精品| 日韩av不卡免费在线播放| 涩涩av久久男人的天堂| 久久久久久久精品精品| 母亲3免费完整高清在线观看 | 日韩欧美精品免费久久| 欧美日韩在线观看h| 国产淫语在线视频| 大片免费播放器 马上看| 国产精品偷伦视频观看了| 国产免费又黄又爽又色| 91精品伊人久久大香线蕉| 超色免费av| 成人综合一区亚洲| 丝袜美足系列| 成人手机av| 黄色欧美视频在线观看| 国产成人a∨麻豆精品| 只有这里有精品99| 亚洲三级黄色毛片| 精品卡一卡二卡四卡免费| 中文欧美无线码| 在线观看免费视频网站a站| 99九九在线精品视频| 欧美日韩视频精品一区| 日韩欧美一区视频在线观看| 性色avwww在线观看| 免费观看a级毛片全部| 考比视频在线观看| 99国产综合亚洲精品| 婷婷色av中文字幕| 欧美国产精品一级二级三级| 人体艺术视频欧美日本| 美女视频免费永久观看网站| 一级毛片电影观看| 免费观看在线日韩| 蜜桃久久精品国产亚洲av| 亚洲情色 制服丝袜| 久久99一区二区三区|