• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase stability,elastic properties and electronic structures of Mg-Y intermetallics from frst-principles calculations

    2015-02-16 00:38:08ChenTngMPeng
    Journal of Magnesium and Alloys 2015年2期

    **J.Chen,K.TngM.P.Peng

    aKey Laboratory of Lightweight and Reliability Technology for Engineering Vehicle,The Education Department of Hunan Province,Changsha University of Science and Technology,Changsha 410114,China

    bKey Laboratory of Effcient and Clean Energy Utilization,College of Hunan Province,Changsha University of Science and Technology,Changsha 410114,China

    cCollege of Materials Science and Engineering,Hunan University,Changsha 410082,China

    Phase stability,elastic properties and electronic structures of Mg-Y intermetallics from frst-principles calculations

    J.Zhanga,b,*,C.Maoa,*,C.G.Longa,J.Chenb,K.Tanga,M.J.Zhanga,P.Pengc

    aKey Laboratory of Lightweight and Reliability Technology for Engineering Vehicle,The Education Department of Hunan Province,Changsha University of Science and Technology,Changsha 410114,China

    bKey Laboratory of Effcient and Clean Energy Utilization,College of Hunan Province,Changsha University of Science and Technology,Changsha 410114,China

    cCollege of Materials Science and Engineering,Hunan University,Changsha 410082,China

    The phase stability,elastic properties and electronic structures of three typical Mg-Y intermetallics including Mg24Y5,Mg2Y and MgY are systematically investigated using frst-principles calculations based on density functional theory.The optimized structural parameters including lattice constants and atomic coordinates are in good agreement with experimental values.The calculated cohesive energies and formation enthalpies show that either phase stability or alloying ability of the three intermetallics is gradually enhanced with increasing Y content.The single-crystal elastic constantsCijof Mg-Y intermetallics are also calculated,and the bulk modulusB,shear modulusG,Young's modulusE, Poisson ratiovand anisotropy factorAof polycrystalline materials are derived.It is suggested that the resistances to volume and shear deformation as well as the stiffness of the three intermetallics are raised with increasing Y content.Besides,these intermetallics all exhibit ductile characteristics,and they are isotropic in compression but anisotropic to a certain degree in shear and stiffness.Comparatively,Mg24Y5presents a relatively higher ductility,while MgY has a relatively stronger anisotropy in shear and stiffness.Further analysis of electronic structures indicates that the phase stability of Mg-Y intermetallics is closely related with their bonding electrons numbers below Fermi level. Namely,the more bonding electrons number below Fermi level corresponds to the higher structural stability of Mg-Y intermetallics.

    Magnesium alloys;Intermetallics;Phase stability;Elastic properties;Electronic structure

    1.Introduction

    Magnesium alloys have been attracted extensive attention and gained increasing applications in transportation felds due to their low density,high specifc strength and good stiffness. However,the widespread uses of magnesium alloys still remain obstacle fortheir low creep resistance,poorcorrosionresistance and poor deformation ability[1].In order to improve the comprehensive properties of magnesium alloys,many experimental attempts have been performed and some signifcant progresses have been achieved in recent decades.It was shown that magnesium alloys added with rare earth(RE)elements exhibit higher mechanical properties, better thermal stability and corrosion properties as well as improved deformability[2-5].

    The yttrium(Y)is one typical representation of RE elements,which has been reported as an effective alloyingaddition to prepare high performance Mg-RE based alloys [6-8].It is known from Mg-Y phase diagram that Y possesses a high solid solubility in Mg of 12.5wt.%,which induces the remarkable solution strengthening effects. Additionally,Mg-Y alloys have three different intermetallic phases across different temperature ranges with increasing content of Y,i.e.Mg24Y5,Mg2Y and MgY[9].These intermetallics exhibit precipitate strengthening effects during decomposition of Mg-Y supersaturated solid solutions.Both solution and precipitate strengthening result in the enhanced mechanical properties and thermal stability of Mg-Y based alloys.Also the addition of Y element to magnesium alloys can lead to high corrosion resistance and deformability.The improved corrosion properties are mainly attributed to the formation of stable anti-oxide layer containing Y element on the surface of alloys[10].The enhanced deformability is mainly originated from the contribution of Y element on texture weakening[11].

    Evidently,Y element plays important roles in improving the comprehensive performances of magnesium alloys.The investigations on Mg-Y based alloys are very important, especially for studying the effects of Y element on the properties of magnesium alloys.To data,although some experimental studies associated with Mg-Y based alloys have been performed[10-13],the systematic studies on the physical characteristics such as phase stability,elastic properties and electronic structures of Mg-Y intermetallics are scare due to the diffculties of experimental measurements.Considering the important roles of Mg-Y intermetallics in mechanical properties and thermal stability of magnesium alloys,their physical properties mentioned above should be thoroughly investigated and discussed.In this paper,a systematic study on the stability,elastic and electronic properties of Mg24Y5, Mg2Y and MgY intermetallics in Mg-Y based alloys is performed using frst-principles calculations based on density functional theory(DFT).The results will allow for providing usefuldata forunderstanding these intermetallicsand designing the high performance Mg-Y based alloys.

    2.Calculation models and methodology

    Mg24Y5phase is a cubic compound with space groupI-43m(No.217)andcI58 symmetry[14].Its unit cell contains 2 formula units as shown in Fig.1a.The lattice constants area=b=c=11.257 ?.There are two kinds of unequivalent Mg(Mg1 and Mg2)and Y(Y1 and Y2)atoms in Mg24Y5unit cell.The Mg1,Mg2,Y1 and Y2 atoms are located on the 24g,24g,2aand 8csites,respectively.Mg2Y phase is a hexagonal compound with space groupP63/mmc(No.194) andhP12 symmetry[14].Its unit cell contains 4 formula units as shown in Fig.1b.The lattice constants area=b=6.037 ? andc=9.752 ?.There are also two kinds of unequivalent Mg(Mg1 and Mg2)atoms but one kind of Y atoms in Mg2Yunit cell.The Mg1,Mg2 and Yare located on the 2a,6hand 4fsites,respectively.Similar to Mg24Y5,MgY phase is also a cubic compound with space groupPm-3m(No.221)andcP2 symmetry[14].Its unit cell contains 1 formula unit as shown in Fig.1c.The lattice constants area=b=c=3.796 ?.There is one kind of Mg and Yatoms in MgY unit cell.The Mg and Y atoms occupy the 1aand 1bsites,respectively.

    The calculations are performed using a frst-principles plane-wave pseudopotential method based on density functional theory(DFT)[15].Ultrasoft pseudopotentials[16]in reciprocal space are used.The orbitals of Mg 2p63s2and Y 4s24p64d15 s2are treated as valence electrons.The Perdew-Wang(PW91)generalized gradient approximation(GGA) [17]is adopted for the exchange-correction functional.The cutoff energy of plane wave basis is set as 310 eV for all phases.The special points sampling integration over the brillouin zone is employed by using the Monkhorst-Pack method [18]with 2×2×2,4×4×2 and 6×6×6 specialk-point meshes for Mg24Y5,Mg2Y and MgY phases,respectively.A fnite basis set correction and the Pulay scheme of density mixing[19,20]are applied for evaluation of energy and stress. The cell parameters including lattice constants and atomic coordinates of all phases are fully relaxed according to the total energy and force using the Broyden-Flecher-Goldfarb-Shanno(BFGS)scheme[21]based on the convergence criteria of optimization(energy of 2.0×10-5eV/atom,force of 0.05 eV/?,stress of 0.1 GPa and displacement of 0.002 ?). The calculations of single-point energy,elastic properties and electronic structures are followed by cell optimization.By increasing the cutoff energy of plane wave to 380 eV and the k-point meshes to 3×3×3,5×5×4 and 8×8×8 for Mg24Y5,Mg2Yand MgY phases,respectively,their respective total energies and lattice constants are changed by less than 0.02 eV/atom and 0.09%,respectively.Therefore,the present calculations are precise enough to represent the ground-state properties of these intermetallics.

    3.Results and discussions

    3.1.Structural properties

    Starting from experimentally available structural parameters,the lattice constants and atomic coordinates of Mg24Y5, Mg2Yand MgY phases are estimated from the minimized total energy with breaking their symmetries.The calculated results are listed in Table 1.It is found that the optimized structures of three phases retain their respective space groups.The equilibrium lattice constants of crystal cells and atomic coordinates are also consistent with experimental values[14]. The maximal deviation of lattice constants calculated here relative to the experimental results is only 0.58%(avalue of Mg2Y),suggesting that the calculations in the present work are highly reliable.

    In general,the structural stability of crystal is closely associated with its cohesive energy.A higher cohesive energy indicates the crystal combines frmly and is uneasy to decompose.In other words,the stability is good[22].In order to understand the structural stabilities of Mg-Yintermetallics, their cohesive energiesEcohare calculated using Equation(1) [22]:

    Fig.1.The crystal cell models of Mg24Y5(a),Mg2Y(b)and MgY(c)intermetallics.

    whereEtot(MgmYn)represents the total energies per formula unit of MgmYn(Mg24Y5,Mg2Y and MgY)intermetallics.(Mg)and(Y)represent the total energies of single Mg and Y atoms in free state,respectively.The subscriptsmandnrepresent the atomic numbers of Mg and Y within MgmYncrystal cells,respectively.The calculated results ofEcohare plotted as shown in Fig.2.It can be found that theEcohvalues of the three intermetallics increase in the order ofMg24Y5,Mg2Y and MgY.This means that the structural stabilities of Mg-Y intermetallics are enhanced with increasing Y content.

    Table 1The calculated lattice constants(in ?)and atomic coordinates of Mg24Y5,Mg2Y and MgY intermetallics.

    Fig.2.The calculated cohesive energies(a)and formation enthalpies(b)of Mg24Y5,Mg2Y and MgY intermetallics.

    Besides,the alloying ability of crystal can be evaluated by its formation enthalpy.Commonly,a negative formation enthalpy means crystal can be formed and exist stably. Furthermore,a lower formation enthalpy corresponds to a stronger alloying ability of crystal[23].In order to assess the alloying abilities of Mg-Y intermetallics,their formation enthalpies ΔHformare further calculated using Equation(2) [23]:

    3.2.Mechanical properties

    The elastic constants determine the response of a crystal to external forces,as characterized by bulk modulus,shear modulus,Young's modulus,and Poisson's ratio,and obviously play an important part in determining the mechanical properties of the materials[24].Therefore,it is essential to investigate the elastic constants to understand the mechanical properties of Mg-Y intermetallics.A stress-strain approach is employed to calculate elastic properties in the present work [25].According to the generalized Hook's law,a linear relationship exists between stress(σ)and strain(ε).Thus,proportional elastic constantCijcan be written as Equation(3):

    In order to obtain each independent elastic constant,an appropriate number of strain patterns are imposed on crystal cell with a maximum strain value of 0.003 in the present calculations.The calculated independentCijvalues of the three Mg-Y intermetallics are listed in Table 2.For Mg24Y5and MgY with cubic structure as well as Mg2Y with hexagonal structure,their mechanical stability criteria can be expressed as Equations(4)and(5)respectively:

    Cubic structure[26]:

    Hexagonal structure[26]:

    From Table 2,it can be derived that the calculated elastic constants satisfy the above corresponding criteria,indicating the mechanical stability of Mg-Y intermetallics.

    Based on the independent single-crystal elastic constants of Mg-Y intermetallics,their bulk modulus(B),shear modulus (G),Young's modulus(E)and Poisson's ratio(v)for polycrystalline crystal can be deduced.For all crystal structures, the polycrystalline modulus can be estimated by two approximation methods,i.e.the Voigt and Reuss methods[27],and they can be expressed as Equations(6)-(9):

    Table 2The calculated elastic constants(Cij)(in GPa)of single-crystal Mg24Y5,Mg2Y and MgY intermetallics.

    whereSijare the elastic compliance constants.VandRrepresent the Voigt and Reuss bounds.They provide the maximum(Voigt)and minimum(Reuss)limits of the polycrystalline elastic modulus.The average of the voigt and Reuss bounds are Voigt-Reuss-Hill(VRH)average[27],which is considered as the best estimate of the theoretical polycrystalline elastic modulus.They can be expressed as Equations(10)and(11)respectively:

    Additionally,the Young's modulus(E)and Poisson's ratio (v)can also be calculated from the bulk modulus(B)and shear modulus(G)using Equations(12)and(13)[25]respectively:

    The calculated results are listed in Table 3.Commonly,the bulk modulus is assumed to be a measure of resistance to volume change by applied pressure[28].A larger bulk modulus corresponds to a stronger resistance to volume change by applied pressure.Additionally,the shear modulus is an indication of resistance to reversible deformations upon shear stress[28].A larger shear modulus corresponds to a more notable directional bonding between atoms.From Table 3,it is seen that eitherBVRHorGVRHvalues of the three intermetallics increase in the order of Mg24Y5,Mg2Y and MgY, suggesting that the resistances to volume and shear deformation of Mg-Y intermetallics are enhanced with increasing Y content.Furthermore,the Young's modulus is assumed to be a measure of stiffness of materials[28].A larger Young's modulus corresponds to a stiffer material.Obviously,the stiffness of the three Mg-Y intermetallics is also raised with increasing Y content.

    The quotient of shear modulus to bulk modulus,i.e.G/B,of crystalline phases proposed by Pugh[28]can be considered as an indication of the extent of fracture range in materials. According to the Pugh criterion,a high or lowG/Bvalue is associated with brittleness or ductility.Commonly,a material is regarded as brittle ifG/Bvalue is above 0.57,and vice versa. From Table 3,the values of the three Mg-Y intermetallics are all less than 0.57,suggesting they are all ductile.Comparatively,Mg24Y5phase exhibits the biggest ductility.Besides, the Poisson's ratio can refect the stability of a crystal against shear,which usually ranges from-1 to 0.5[28].The smaller value of Poisson's ratio corresponds to the more stable against shear of crystal.The calculated results in Table 3 show that the three Mg-Y intermetallics are all unstable against shear owing to their close values to 0.5.Comparatively,Mg24Y5phase presents the best plasticity,which keeps consistent with the analytical result fromG/B.

    Elastic anisotropy of crystals refects a different bonding character in different directions and has an important implication since it correlates with the possibility to induce microcrack in materials.Chung and Buessem introduced a concept of percent elastic anisotropy which is a measure of elastic anisotropy possessed by the crystal under consideration [24].The percentage anisotropy in compression,shear and stiffness are defned as Equations(14)-(16)respectively:

    whereB,GandEare the bulk,shear and Young's modulus, respectively.The subscriptsVandRrepresent the Voigt and Reuss bounds.For the three expressions,a value of zero represents elastic isotropy and a value of 1(100%)is the largest possible anisotropy.The calculated anisotropy factors ofAB,AGandAEare also listed in Table 3.Clearly,the three Mg-Y intermetallics nearly exhibit isotropy in compression,but present anisotropy to a certain degree in shear and stiffness. Comparatively,MgY phase has a relatively strong anisotropy in shear and stiffness.

    3.3.Electronic structures

    To reveal the nature of bonding interactions within Mg-Y intermetallics and understand their structural stability mechanism,the total and partial density of states per atom of Mg24Y5,Mg2Y and MgY are calculated and compared as shown in Fig.3.In these fgures,the Fermi level(EF)is set as zero and used as a reference.From Fig.3(a)-(c),it can be found that the three Mg-Y intermetallics all exhibit metallic properties.Their bonding peaks are mainly located in energy region fromEFto-7 eV,and mainly originate from the contribution of valence electron numbers of Y(4s),Y(5s), Y(4p),Y(4d),Mg(3s)and Mg(2p)orbits.Further comparison of total densities of states of the three Mg-Y intermetallics per atom is performed as shown in Fig.3d.The bonding electrons numbers of these intermetallics are calculated by integrating the total densities of states belowEF,and the calculated values are 2.1656,2.3202 and 2.4274electrons/atom for Mg24Y5,Mg2Y and MgY respectively.Commonly,the bonding electrons number belowEFcan be used to characterize and judge the structural stability of crystal,the more bonding electrons number belowEFmeans the higher structural stability of crystal[29].Therefore,the sequence of structural stability for the three Mg-Y intermetallics is: MgY>Mg2Y>Mg24Y5,which is consistent with the results from energetic point of view.

    4.Conclusions

    Using frst-principles calculations method based on density functional theory(DFT),the phase stability,elastic properties and electronic structures of Mg-Y intermetallics including Mg24Y5,Mg2Y and MgY are systematically investigated.The main conclusions are summarized as the following:

    1)Either phase stability or alloying ability of Mg-Y intermetallics is gradually enhanced with increasing Y content.

    2)The resistances to volume and shear deformation as well as the stiffness of Mg-Y intermetallics are enhanced with increasing Y content.

    3)Mg-Y intermetallics all exhibit ductile characteristics, and they are isotropic in compression but anisotropic to a certain degree in shear and stiffness.Comparatively,Mg24Y5presents a relatively higher ductility,while MgY phase has a relatively strong anisotropy in shear and stiffness.

    4)The phase stability of Mg-Y intermetallics is closely related with their bonding electrons numbers below Fermi level.The more bonding electrons number below Fermi level corresponds to the higher structural stability of Mg-Y intermetallics.

    Acknowledgments

    This work was fnancially supported by the National Natural Science Foundation of China(No.51401036),the Hunan ProvincialNaturalScience Foundation ofChina (No. 14JJ3086),the Research Foundation of Education Bureau of Hunan Province(No.12B001)and the Key Laboratory of Effcient and Clean Energy Utilization,College of Hunan Province(No.2015NGQ005).

    [1]H.E.Friedrich,B.L.Mordike,Magnesium Technology(Metallurgy, Design Data,Applications),Springer,Berlin,2006.

    [2]Y.D.Wang,G.H.Wu,W.C.Liu,S.Pang,Y.Zhang,W.J.Ding,Mater. Sci.Eng.A 594(2014)52-61.

    [3]L.Li,J.Alloys Comp 555(2013)255-262.

    [4]G.Ben-Hamu,D.Eliezer,K.S.Shin,S.Cohen,J.Alloys Comp.431 (2007)269-276.

    [5]J.E.Saal,C.Wolverton,Acta Mater.68(2014)325-338.

    [6]A.D.Sudholz,K.Gusieva,X.B.Chen,B.C.Muddle,M.A.Gibson, N.Birbilis,Corro.Sci.53(2011)2277-2282.

    [7]D.L.Zhang,B.L.Zheng,Y.Z.Zhou,S.Mahajan,E.J.Lavernia,Scr. Mater.76(2014)61-64.

    [8]S.Sandl¨obes,M.Fri′ak,J.Neugebauer,D.Raabe,Mater.Sci.Eng.A 576 (2013)61-68.

    [9]L.L.Rokhlin,Magnesium Alloys Containing Rare Earth Metals,Taylor&Francis,London,UK,2003.

    [10]H.Ardelean,A.Seyeux,S.Zanna,Corro.Sci.73(2013)196-207.

    [11]L.B.Tong,X.H.Li,J.Zhang,Mater.Sci.Eng.A 563(2013)177-183.

    [12]R.Cottam,J.Robson,G.Lorimer,B.Davis,Mater.Sci.Eng.A 485 (2008)375-382.

    [13]C.Zlotea,M.Sahlberg,P.Moretto,Y.Andersson,J.Alloys Comp.489 (2010)375-378.

    [14]P.Villars,L.D.Calvert,Pearson's Handbook of Crystallographic Data for Intermetallic Phases,ASM,Metals Park,Ohio,1985.

    [15]M.D.Segall,L.D.Lindanp,M.J.Probert,C.J.Pickard,P.J.Hasnip, S.J.Clark,M.C.Payne,J.Phys.Condens.Matter 14(2002)2717-2744.

    [16]D.Vanderbilt,Phys.Rev.B 41(1990)7892-7895.

    [17]J.P.Perdew,K.Burke,M.Ernzerhof,Phys.Rev.Lett.77(1996)3865-3868.

    [18]H.J.Monkhorst,J.D.Pack,Phys.Rev.B 13(1976)5188-5192.

    [19]B.Hammer,L.B.Hansen,J.K.N?rskov,Phys.Rev.B 59(1999) 7413-7421.

    [20]G.P.Francis,M.C.Payne,J.Phys,Condens.Matter 2(1990)4395-4404.

    [21]T.Fischer,J.Almlof,J.Phys.Chem.96(1992)9768-9774.

    [22]Y.K.Han,J.Jung,J.Chem.Phys.121(2004)8500-8502.

    [23]N.A.Zarkevich,T.L.Tan,D.D.Johnson,Phys.Rev.B 75(2007)104203.

    [24]P.Ravindran,L.Fast,P.A.Korzhavyi,B.Johansson,J.Wills, O.Eriksson,J.Appl.Phys.84(1998)4891.

    [25]W.Zhou,L.J.Liu,B.L.Li,P.Wu,Q.G.Song,Comp.Mater.Sci.46 (2009)921-931.

    [26]D.C.Wallace,Thermodynamics of Crystals,Wiley,New York,1972.

    [27]J.H.Westbrook,R.L.Fleischer,Basic Mechanical Properties and Lattice Defects of Intermetallic Compounds,Wiley,New York,2000.

    [28]M.M.Wu,L.Wen,B.Y.Tang,L.M.Peng,W.J.Ding,J.Alloys Comp. 506(2010)412-417.

    [29]J.Nyl′en,F.J.Garcìa,B.D.Mosel,R.P¨ottgen,U.H¨aussermann,Solid State Sci.6(2004)147-155.

    Received 10 December 2014;revised 25 January 2015;accepted 17 March 2015 Available online 16 May 2015

    *Corresponding authors.Key Laboratory of Lightweight and Reliability Technology for Engineering Vehicle,The Education Department of Hunan Province,Changsha University of Science and Technology,Changsha 410114, China.Tel./fax:+86 731 85258646.

    E-mail addresses:zj4343@163.com(J.Zhang),1305648099@qq.com(C. Mao).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University.

    http://dx.doi.org/10.1016/j.jma.2015.03.003.

    2213-9567/Copyright 2015,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright 2015,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    日日摸夜夜添夜夜添av毛片 | 成人永久免费在线观看视频| 国产探花在线观看一区二区| 天堂网av新在线| 欧美国产日韩亚洲一区| 在线看三级毛片| 成人性生交大片免费视频hd| 99热这里只有是精品在线观看| 成年免费大片在线观看| 欧美中文日本在线观看视频| 中出人妻视频一区二区| 亚洲图色成人| 亚洲国产精品久久男人天堂| bbb黄色大片| 午夜激情福利司机影院| 国内精品久久久久久久电影| 简卡轻食公司| 亚洲国产精品成人综合色| 极品教师在线免费播放| 淫秽高清视频在线观看| 国产私拍福利视频在线观看| 国产91精品成人一区二区三区| 久久99热这里只有精品18| 国产精品av视频在线免费观看| 久久亚洲精品不卡| 亚洲精品一区av在线观看| 在线观看av片永久免费下载| 国产免费一级a男人的天堂| 国产爱豆传媒在线观看| 一进一出抽搐gif免费好疼| 少妇人妻一区二区三区视频| av国产免费在线观看| 亚洲成人中文字幕在线播放| 亚洲av.av天堂| 有码 亚洲区| 男女之事视频高清在线观看| 色精品久久人妻99蜜桃| 日韩欧美精品免费久久| 国产成人av教育| 欧美另类亚洲清纯唯美| 欧美xxxx性猛交bbbb| av女优亚洲男人天堂| 国产亚洲av嫩草精品影院| 性插视频无遮挡在线免费观看| 欧美日韩乱码在线| 中国美女看黄片| 一级黄片播放器| 欧美丝袜亚洲另类 | 国内精品美女久久久久久| 亚洲 国产 在线| 午夜福利欧美成人| 国产黄a三级三级三级人| 日日干狠狠操夜夜爽| 我要搜黄色片| 男女之事视频高清在线观看| 美女xxoo啪啪120秒动态图| 两个人的视频大全免费| 国产女主播在线喷水免费视频网站 | 色哟哟哟哟哟哟| 免费在线观看影片大全网站| 熟女电影av网| 亚洲中文字幕一区二区三区有码在线看| 亚洲av二区三区四区| 小说图片视频综合网站| 亚洲经典国产精华液单| 亚洲经典国产精华液单| 欧美区成人在线视频| 日本-黄色视频高清免费观看| 99国产极品粉嫩在线观看| 美女免费视频网站| 国产精品免费一区二区三区在线| 国产一区二区在线av高清观看| 久久6这里有精品| 国产真实乱freesex| 亚洲一区高清亚洲精品| 直男gayav资源| 成人一区二区视频在线观看| 熟妇人妻久久中文字幕3abv| 久久精品91蜜桃| 在线天堂最新版资源| 12—13女人毛片做爰片一| 亚洲成人中文字幕在线播放| 国产欧美日韩精品亚洲av| 国产伦人伦偷精品视频| 最近在线观看免费完整版| 51国产日韩欧美| 国产v大片淫在线免费观看| 精品久久久久久成人av| 成人综合一区亚洲| 日日摸夜夜添夜夜添av毛片 | 欧美性猛交╳xxx乱大交人| 一边摸一边抽搐一进一小说| xxxwww97欧美| 国产又黄又爽又无遮挡在线| 午夜日韩欧美国产| 91狼人影院| 尾随美女入室| 亚洲中文字幕日韩| 国产精品无大码| 国产高清视频在线观看网站| 久久久久久久精品吃奶| 国产亚洲欧美98| 亚洲天堂国产精品一区在线| 亚洲午夜理论影院| 成人国产综合亚洲| 在线观看av片永久免费下载| 深夜a级毛片| 天堂√8在线中文| 夜夜爽天天搞| 日韩 亚洲 欧美在线| 在现免费观看毛片| 一本久久中文字幕| 精品久久久久久久末码| 嫩草影院新地址| 国国产精品蜜臀av免费| 我的女老师完整版在线观看| 欧美又色又爽又黄视频| 国产av一区在线观看免费| 可以在线观看的亚洲视频| 最近最新免费中文字幕在线| 免费看美女性在线毛片视频| 久久久久久久久久黄片| 悠悠久久av| 少妇熟女aⅴ在线视频| 观看免费一级毛片| 亚洲av不卡在线观看| 久久精品国产亚洲网站| 久久久久九九精品影院| 日本a在线网址| 精品久久久久久久久av| 亚洲一级一片aⅴ在线观看| 色噜噜av男人的天堂激情| 91久久精品电影网| 美女大奶头视频| 国产黄a三级三级三级人| 午夜老司机福利剧场| 欧美丝袜亚洲另类 | 国产主播在线观看一区二区| 嫩草影院精品99| 久久午夜亚洲精品久久| 亚洲男人的天堂狠狠| 中文字幕av在线有码专区| 一个人看视频在线观看www免费| 99视频精品全部免费 在线| 男人舔奶头视频| 在线免费观看的www视频| 啪啪无遮挡十八禁网站| x7x7x7水蜜桃| 日本在线视频免费播放| 久久久久精品国产欧美久久久| 小蜜桃在线观看免费完整版高清| 国产精品乱码一区二三区的特点| 欧美激情久久久久久爽电影| 在线观看av片永久免费下载| 国产蜜桃级精品一区二区三区| 精品一区二区三区av网在线观看| 午夜日韩欧美国产| 成人特级黄色片久久久久久久| 日韩中字成人| 听说在线观看完整版免费高清| 亚洲四区av| 亚洲成a人片在线一区二区| 久久精品国产亚洲av天美| 日韩在线高清观看一区二区三区 | 国内少妇人妻偷人精品xxx网站| 身体一侧抽搐| 一a级毛片在线观看| 少妇丰满av| 乱人视频在线观看| 国产欧美日韩一区二区精品| 九九爱精品视频在线观看| 真人做人爱边吃奶动态| 欧美不卡视频在线免费观看| 国内精品美女久久久久久| 香蕉av资源在线| 欧美黑人巨大hd| 久久精品国产99精品国产亚洲性色| 国产探花在线观看一区二区| 在线观看66精品国产| 一级a爱片免费观看的视频| 色哟哟·www| 精品欧美国产一区二区三| 久久久国产成人精品二区| 黄色欧美视频在线观看| 亚洲色图av天堂| 神马国产精品三级电影在线观看| 国产成年人精品一区二区| 欧美成人性av电影在线观看| 久久久色成人| 老师上课跳d突然被开到最大视频| 日韩在线高清观看一区二区三区 | 久久精品人妻少妇| 91麻豆精品激情在线观看国产| 深爱激情五月婷婷| 男女之事视频高清在线观看| 制服丝袜大香蕉在线| 欧美性感艳星| 久久精品影院6| 十八禁网站免费在线| 日本 av在线| 欧美日本亚洲视频在线播放| 欧美一区二区精品小视频在线| 久久香蕉精品热| 亚洲国产高清在线一区二区三| 99视频精品全部免费 在线| 国语自产精品视频在线第100页| av福利片在线观看| 色哟哟哟哟哟哟| av国产免费在线观看| 国产精品日韩av在线免费观看| 午夜老司机福利剧场| 色av中文字幕| 少妇的逼水好多| 亚洲av二区三区四区| 亚洲欧美日韩无卡精品| 听说在线观看完整版免费高清| 97超级碰碰碰精品色视频在线观看| 欧美高清成人免费视频www| 97碰自拍视频| 国产精品自产拍在线观看55亚洲| 热99re8久久精品国产| 中文字幕高清在线视频| 久久精品人妻少妇| 久久久精品欧美日韩精品| 久久99热6这里只有精品| 欧美日韩国产亚洲二区| 亚洲自拍偷在线| 91在线精品国自产拍蜜月| 如何舔出高潮| 国产黄片美女视频| 热99在线观看视频| 97热精品久久久久久| 在线播放国产精品三级| 麻豆成人av在线观看| 亚州av有码| 精品一区二区三区视频在线| 欧美潮喷喷水| 91午夜精品亚洲一区二区三区 | 午夜日韩欧美国产| 最好的美女福利视频网| 免费观看人在逋| 欧美丝袜亚洲另类 | 亚洲18禁久久av| 性色avwww在线观看| 国产成人a区在线观看| 两个人的视频大全免费| 99热网站在线观看| 午夜免费激情av| 精品午夜福利视频在线观看一区| 熟妇人妻久久中文字幕3abv| 少妇人妻一区二区三区视频| 99九九线精品视频在线观看视频| 久久久国产成人精品二区| 少妇高潮的动态图| 国产精品av视频在线免费观看| 女人十人毛片免费观看3o分钟| 99久国产av精品| 成年版毛片免费区| 99久久中文字幕三级久久日本| 嫁个100分男人电影在线观看| 欧美中文日本在线观看视频| 免费无遮挡裸体视频| avwww免费| 日韩高清综合在线| 中文字幕人妻熟人妻熟丝袜美| av天堂中文字幕网| 少妇丰满av| 在线观看午夜福利视频| 99热精品在线国产| 亚洲真实伦在线观看| 免费观看人在逋| 中文字幕免费在线视频6| 亚洲欧美日韩东京热| 国内揄拍国产精品人妻在线| 久久精品国产亚洲av天美| 中文资源天堂在线| 久久国产乱子免费精品| 国产伦人伦偷精品视频| 校园春色视频在线观看| 国产精品1区2区在线观看.| 97超视频在线观看视频| 欧美色视频一区免费| 看黄色毛片网站| 成人三级黄色视频| 久久亚洲真实| 人妻丰满熟妇av一区二区三区| ponron亚洲| 国产精品精品国产色婷婷| 91精品国产九色| 国产精品亚洲一级av第二区| 亚洲熟妇熟女久久| 又爽又黄无遮挡网站| 不卡视频在线观看欧美| 国产免费av片在线观看野外av| 免费观看的影片在线观看| 天堂av国产一区二区熟女人妻| 久久人人精品亚洲av| 亚洲国产精品成人综合色| 亚洲在线自拍视频| 欧美又色又爽又黄视频| 99国产精品一区二区蜜桃av| 中文在线观看免费www的网站| 免费在线观看影片大全网站| 偷拍熟女少妇极品色| 日本三级黄在线观看| 午夜福利在线观看免费完整高清在 | 三级毛片av免费| 一个人看视频在线观看www免费| 最新中文字幕久久久久| 色精品久久人妻99蜜桃| 联通29元200g的流量卡| 国产男靠女视频免费网站| 亚洲18禁久久av| 伦理电影大哥的女人| 成人国产麻豆网| 成人av在线播放网站| 熟女电影av网| 男人的好看免费观看在线视频| 少妇高潮的动态图| 一夜夜www| 国产精品不卡视频一区二区| 国产一区二区三区在线臀色熟女| 午夜免费男女啪啪视频观看 | 色精品久久人妻99蜜桃| 免费av不卡在线播放| 91在线精品国自产拍蜜月| 国产伦在线观看视频一区| 欧美一区二区国产精品久久精品| 真人做人爱边吃奶动态| 日日撸夜夜添| 观看免费一级毛片| 久久久久久久久久黄片| 淫妇啪啪啪对白视频| 久久久久久伊人网av| 亚洲avbb在线观看| 热99在线观看视频| 久久精品国产鲁丝片午夜精品 | 久久久精品大字幕| 长腿黑丝高跟| 亚洲欧美日韩高清在线视频| 波多野结衣高清作品| 欧美高清性xxxxhd video| 18禁黄网站禁片免费观看直播| 亚洲一区高清亚洲精品| 成人三级黄色视频| 人妻久久中文字幕网| 亚洲成人精品中文字幕电影| 欧美3d第一页| 18禁黄网站禁片免费观看直播| 成人鲁丝片一二三区免费| 亚洲精品在线观看二区| 免费在线观看成人毛片| 午夜影院日韩av| 国产视频内射| 亚洲国产精品sss在线观看| 麻豆av噜噜一区二区三区| 久久久午夜欧美精品| 一进一出抽搐动态| 婷婷精品国产亚洲av在线| 午夜激情欧美在线| 国产男靠女视频免费网站| 亚洲人成伊人成综合网2020| 亚洲 国产 在线| 国产成人aa在线观看| 一区二区三区高清视频在线| 国产成人av教育| 成人国产一区最新在线观看| 日本撒尿小便嘘嘘汇集6| 午夜福利在线在线| 免费看av在线观看网站| 国产精品无大码| 欧美中文日本在线观看视频| 久久精品国产自在天天线| 中文字幕精品亚洲无线码一区| 校园春色视频在线观看| 亚洲精品日韩av片在线观看| 老司机午夜福利在线观看视频| 亚洲欧美日韩无卡精品| 午夜福利成人在线免费观看| 黄色女人牲交| 国产精品一区二区免费欧美| 变态另类丝袜制服| 午夜日韩欧美国产| 国产精品精品国产色婷婷| 久久久久免费精品人妻一区二区| 一个人免费在线观看电影| 伊人久久精品亚洲午夜| 毛片一级片免费看久久久久 | 国产一区二区三区在线臀色熟女| 国产成人一区二区在线| 天美传媒精品一区二区| 免费无遮挡裸体视频| 亚洲五月天丁香| 在线观看66精品国产| 午夜老司机福利剧场| 亚洲国产高清在线一区二区三| 亚洲av免费高清在线观看| 我的老师免费观看完整版| 久9热在线精品视频| 老熟妇仑乱视频hdxx| 狂野欧美白嫩少妇大欣赏| 亚洲av中文av极速乱 | 亚洲美女视频黄频| 老女人水多毛片| 99热只有精品国产| 国产伦精品一区二区三区四那| 成年女人永久免费观看视频| 韩国av一区二区三区四区| 日本免费a在线| 欧美日韩瑟瑟在线播放| 午夜福利在线观看吧| 亚洲中文字幕日韩| 国产精品一区www在线观看 | 国产精品永久免费网站| 性欧美人与动物交配| 亚洲成人精品中文字幕电影| 国产精品久久电影中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 黄色欧美视频在线观看| 久久精品影院6| 啦啦啦韩国在线观看视频| 国产一区二区亚洲精品在线观看| 18+在线观看网站| 舔av片在线| 国产探花极品一区二区| 欧美zozozo另类| 日本成人三级电影网站| 真人一进一出gif抽搐免费| 国内少妇人妻偷人精品xxx网站| 国产中年淑女户外野战色| 亚洲自拍偷在线| 99热这里只有精品一区| 精品乱码久久久久久99久播| 99久久精品一区二区三区| 极品教师在线免费播放| 欧美日韩瑟瑟在线播放| 久久久久九九精品影院| 男女啪啪激烈高潮av片| 极品教师在线视频| 亚洲综合色惰| 啦啦啦韩国在线观看视频| 国产一区二区三区在线臀色熟女| 黄色配什么色好看| 春色校园在线视频观看| 亚洲精品亚洲一区二区| 99久国产av精品| 日韩欧美一区二区三区在线观看| 精品国内亚洲2022精品成人| 国产精品女同一区二区软件 | 国产欧美日韩一区二区精品| 国产男靠女视频免费网站| 特大巨黑吊av在线直播| 日日撸夜夜添| 波多野结衣巨乳人妻| 一个人免费在线观看电影| 亚洲av二区三区四区| 日本欧美国产在线视频| 此物有八面人人有两片| 欧美日韩亚洲国产一区二区在线观看| 97超视频在线观看视频| 亚洲午夜理论影院| 欧美成人a在线观看| 永久网站在线| 国内精品久久久久久久电影| 久久精品夜夜夜夜夜久久蜜豆| 国产免费男女视频| 床上黄色一级片| 在线观看舔阴道视频| 69av精品久久久久久| av.在线天堂| 熟女人妻精品中文字幕| 亚洲成人精品中文字幕电影| 夜夜夜夜夜久久久久| 此物有八面人人有两片| 欧美丝袜亚洲另类 | 人妻丰满熟妇av一区二区三区| 淫秽高清视频在线观看| 成年版毛片免费区| 国产精华一区二区三区| 一区二区三区激情视频| 99riav亚洲国产免费| 亚洲成人久久性| 欧美丝袜亚洲另类 | 日本黄色片子视频| 成人三级黄色视频| 男女那种视频在线观看| 91久久精品国产一区二区三区| 看免费成人av毛片| 午夜免费激情av| 国产三级中文精品| 亚洲美女搞黄在线观看 | 亚洲欧美日韩高清专用| 亚洲自拍偷在线| 级片在线观看| 欧美性猛交黑人性爽| 成人高潮视频无遮挡免费网站| 嫁个100分男人电影在线观看| 嫩草影视91久久| 精品午夜福利视频在线观看一区| 亚洲自偷自拍三级| 久久久久久久久久成人| 男插女下体视频免费在线播放| 91午夜精品亚洲一区二区三区 | 国产高清视频在线观看网站| 国产伦一二天堂av在线观看| 久久久久国内视频| 欧美又色又爽又黄视频| 久久精品国产鲁丝片午夜精品 | 国内精品一区二区在线观看| 久久国内精品自在自线图片| 午夜免费成人在线视频| 久久精品国产鲁丝片午夜精品 | 黄色配什么色好看| 国产欧美日韩一区二区精品| 18禁黄网站禁片免费观看直播| av在线老鸭窝| 超碰av人人做人人爽久久| 小说图片视频综合网站| 国内精品久久久久久久电影| www.色视频.com| 99久久精品一区二区三区| 成人午夜高清在线视频| 我的老师免费观看完整版| 又爽又黄无遮挡网站| 日韩欧美三级三区| 国产精品亚洲美女久久久| 俺也久久电影网| 99国产极品粉嫩在线观看| 国产精品永久免费网站| 日韩强制内射视频| 看免费成人av毛片| 啪啪无遮挡十八禁网站| 国产精品1区2区在线观看.| 一区二区三区免费毛片| 精品不卡国产一区二区三区| 国模一区二区三区四区视频| 在线观看66精品国产| 国模一区二区三区四区视频| 精品不卡国产一区二区三区| 亚洲欧美清纯卡通| 国产极品精品免费视频能看的| 久久午夜亚洲精品久久| 一区二区三区高清视频在线| 亚洲国产色片| 老熟妇仑乱视频hdxx| 日韩 亚洲 欧美在线| 国产乱人视频| 99热6这里只有精品| 日本五十路高清| 又爽又黄无遮挡网站| 欧美日韩精品成人综合77777| 中文字幕免费在线视频6| 黄色女人牲交| 观看免费一级毛片| 哪里可以看免费的av片| 日日摸夜夜添夜夜添小说| 久久久精品欧美日韩精品| 亚洲va日本ⅴa欧美va伊人久久| 国产精品嫩草影院av在线观看 | 成人性生交大片免费视频hd| 精品国产三级普通话版| 午夜日韩欧美国产| 高清毛片免费观看视频网站| 国产一区二区三区av在线 | 直男gayav资源| a级毛片a级免费在线| 99视频精品全部免费 在线| 成年免费大片在线观看| 五月玫瑰六月丁香| 成人国产综合亚洲| 热99re8久久精品国产| 亚洲av.av天堂| 久久久久久久久久成人| 久久久国产成人免费| 久久亚洲精品不卡| netflix在线观看网站| 日本一二三区视频观看| 婷婷色综合大香蕉| 国产精品野战在线观看| 一边摸一边抽搐一进一小说| 午夜福利18| 99热精品在线国产| 最近最新免费中文字幕在线| 亚洲精品一区av在线观看| 亚洲av成人精品一区久久| 成人午夜高清在线视频| 97碰自拍视频| 国产色爽女视频免费观看| 91在线精品国自产拍蜜月| 在线观看av片永久免费下载| 国产在视频线在精品| 日本免费a在线| 老熟妇仑乱视频hdxx| 黄色丝袜av网址大全| 18禁在线播放成人免费| 1000部很黄的大片| 直男gayav资源| 超碰av人人做人人爽久久| 日韩欧美 国产精品| 黄色丝袜av网址大全| 国产伦人伦偷精品视频| 亚洲专区中文字幕在线| 老师上课跳d突然被开到最大视频| 国产黄色小视频在线观看| 老熟妇仑乱视频hdxx| 国产在视频线在精品| а√天堂www在线а√下载| 日本免费一区二区三区高清不卡| 中文字幕人妻熟人妻熟丝袜美| 亚洲av第一区精品v没综合| 亚洲专区中文字幕在线| 最近最新中文字幕大全电影3| 嫩草影院新地址| 日韩欧美国产一区二区入口| 久久久精品大字幕|