• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Taguchi optimization of process parameters in friction stir processing of pure Mg

    2015-02-16 00:38:16*
    Journal of Magnesium and Alloys 2015年2期

    *

    School of Metallurgy and Materials,College of Engineering,University of,Tehran,PO Box 1155-4563,Tehran,Iran

    Taguchi optimization of process parameters in friction stir processing of pure Mg

    D.Ahmadkhaniha*,M.Heydarzadeh Sohi,A.Zarei-Hanzaki,S.M.Bayazid,M.Saba

    School of Metallurgy and Materials,College of Engineering,University of,Tehran,PO Box 1155-4563,Tehran,Iran

    Taguchi experimental design technique was applied to determine the most infuential controlling parameters of FSP such as tool rotational speed,travel speed,tilt angle and penetration depth on hardness value of Mg.In this case,9 combinations of these 4 essential processing parameters were set and Taguchi's method followed exactly.Signal to noise ratio(S/N)analysis showed that maximum hardness achieved when rotational and travel speeds,penetration depth and tilt angel were chosen as 1600 rpm,63 mm/min,0.1 mm and 2°,respectively.In addition, analysis of variance(ANOVA)technique indicated that tilt angle and rotational as well as travel speed are the signifcant infuential parameters in the hardness value of the treated samples,respectively.Finally a model for hardness values based on FSP parameters was calculated by design expert which was also confrmed by experimental results.

    Mg;FSP;Hardness;Taguchi;ANOVA;Design-expert

    1.Introduction

    Magnesium and its alloys have received considerable attention as biodegradable implants during recent years. However,their biomedical applications are still limited due to their poor mechanical and corrosion resistance[1,2].High degradation rate of Mg based materials deteriorates their mechanical integrity during the healing process.Many techniques have been applied to improve corrosion resistance of magnesium alloys,such as alloy modifcation[3],producing composites[4,5]and surface treatment[6-8]. Among this variety of methods,the one which can improve both corrosion and mechanical properties of magnesium would be more promising.Previous studies have shown that the grain refnement can enhance mechanical properties [9,10]and corrosion resistance simultaneously[11-13]. Different severe plastic deformations have been used to modify the structure of materials[14-17].Friction stir processing(FSP),which can signifcantly refne structure [18,19]and fabricate composites[20,21]can be considered as a severe plastic deformation to modify the structure of materials.FSP requires a precise design of process parameters in order to achieve a defect free workpiece that is consistently reproducible.Since magnesium holds hexagonal close packed structure,the successful achievement of fne grains in Mg by FSP might be very sophisticated due to its limited slip systems.In addition,there are several FSP parameters that affect the structure and mechanical properties of Mg;therefore,a large number of experiments should be done to achieve a fne grained Mg structure with enhanced mechanical properties.

    Jayaraman et al.[22]determined optimum welding condition for maximizing tensile stress of cast aluminum alloys byANOVA and signal to noise ratio.S.Rajakumar et al.[23] focused on the development of empirical relationship to predict tensile strength of friction stir welded AA 1100 aluminum alloy joints.The results showed that rotational speed is more sensitive than tool hardness,followed by axial force,shoulder diameter,pin diameter and welding speed on tensile strength. Lakshminarayanan et al.[24]indicated that the rotational speed,welding speed and axial force are the most infuential parameters on the tensile strength of aluminum alloy joints. Nourani et al.[25]confrmed that Taguchi's orthogonal design can be successfully used to minimize both the HAZ distance to the weld line and the peak temperature in aluminum alloys.M. Salehi et al.[26]applied design of experiment(DOE)to determine the most important factors of friction stir processing which infuence ultimate tensile strength(UTS)of AA6061/ SiC nanocomposites.Analysis of variance revealed that the rotational speed has signifcant impact.The statistical results depicted that higher UTS achieves by threaded pin,higher rotational and lower the transverse speed.

    This work has been conducted to fnd optimal FSP parameters,such as rotational(W)and travel(V)speeds,tool penetration depth(PD)and tilt angle(Θ)in order to fabricate fne grained magnesium workpiece.Analysis of variance (ANOVA)along with the Taguchi technique and design-expert software was used to interpret experimental data.

    2.Experimental design and procedure

    The Design-Expert,statistical software along with Taguchi design with L9 orthogonal array which composed of 3 columns and 4 rows were employed to optimize the FSP parameters(Table 1).The selected FSP parameters for this study were:rotational speed(W),travel speed(V),tilt angle(Θ)and penetration depth(PD).The Taguchi method was applied to the experimental data and thesignal to noise ratio(S/N)for each level of process parameters is measured based on the S/N analysis.Regardless of the category of the quality characteristic,a higher S/N ratio corresponds to a better quality characteristic.Therefore,theoptimalleveloftheprocess parameters is the level with the highest S/N ratio[27].A detailed ANOVA framework for assessing the signifcance of the process parameters is also provided.The optimal combination of the process parameters can be then predicted. Finally,a model for hardness values based on FSP parameters is offered by design expert.

    As cast Mg workpieces(100×50×7 mm)were prepared and FSP were applied on the surface of the workpieces using a conventional miller machine.A triangle FSP tool withshoulder diameter of 20 mm was machined from H13 tool steel.A Vickers microhardness tester(HV-5,Laizhou Huayin Testing Instrument Co.Ltd)with an applied load of 200 gf for 10 s was used to measure the hardness of the workpieces.In this study,the hardness value of stir zone which experiences the highest strain and heat input by FSP,is determined for optimizing the FSP parameters.

    Table 1FSP parameters and design levels.

    3.Results and discussion

    3.1.Signal to noise ratio(S/N)analysis

    Signal to noise ratios(S/N)for each control factor were calculated,in order to minimize the variances in hardness values.The signals indicate that the effect on the average responses and noises are calculated by the infuence on the deviations from the average responses,which will disclose the sensitiveness of the experiment output to the noise factors.The appropriate S/N ratio must be chosen according to previous knowledge,expertize and understanding of the process.When the target is determined and there is static design,it is possible to choose the S/N ratio based on the goal of the design.In this study,the S/N ratio was chosen based on the criterion thehigher-the-better,to minimize the responses and it was calculated according to Eq.(1)[27];

    where n is repetitions that in this study is equal to 3 and Yiis the hardness result for the ith experiment.

    The Taguchi experimental results are summarized in Table 2 and presented in Fig.1.

    As is seen in Fig.1,the highest hardness was achieved when W,V,Θ and PD were chosen according to level 3,3,2, and 1,respectively.

    FSP encourages recrystallization phenomena due to high strain and heat input and refnes the structure.Higher strain and lower heat input result in fner microstructure and enhance hardness value.Induced strain rate and heat input during FSP can be calculated by Eq.(2)[18]and Eq.(3)[28].Too high value of rotational to travel speed ratio(W/V)for a relativelysoft material such as pure Mg tends to generate high amounts of heat according to Arbegast and Hartley equation(Eq.(2)) [18].

    Table 2Standard orthogonal arrays of 9 different groups following Taguchi's suggestion.

    Fig.1.The effect of parameters(a)W,(b)V,(c)PD,(d)Θ on hardness and S/N ratio of the responses.

    where the exponent α and the constant K are in the range of 0.04-0.06 and 0.65 to 0.75,respectively,Tm(°C)is the melting point,T is the achieved temperature,W and V are rotational and travel speed,respectively.Meanwhile,with increasing W,strain rate(3°)is increased according to Eq.(3), [28].

    where re and Le are the average radius and depth of the dynamically recrystallized zone.Rm is about half of the rotational speed(W).Increasing PD,induces higher force to the materials.Θ determines the interface of shoulder and material.Higher Θ results in less interface and results in less friction of two surfaces.On the other hand,higher PD increases the interface of material with FSP tool and enhances stress as well as heat input.Therefore,a good combination of FSP parameters can result in fner structure and higher hardness.

    3.2.ANOVA analysis of variance

    Analysis of variance(ANOVA)test was performed to identify the most effective process parameters which affect the hardness of FSPed materials.The ANOVA results and dynamic response table for S/N ratio are listed in Tables 3 and 4, respectively.Precision of a parameter estimation is based on the number of independent samples of information which can be determined by degree of freedom(DOF).The degree of freedom is equal to the number of experiments minus the number of additional parameters estimated for that calculation.

    The results of ANOVA indicate that Θ,V,Wand PD are the process parameters that have signifcant contribution on the hardness values of FSPed materials,respectively.

    In addition,a numerical model by design expert has been developed and the analysis of variance(ANOVA)by design expert is presented in Table 5.The R2coeffcient indicates thegoodness of ft for the model.In this case,the value of the coeffcient(R2=0.9997)indicates that 99.97%of the total variability is explained by the model after considering the signifcant factors.The F-value of 434.96 implies the model is signifcant.There is only a 3.69%chance that a“Model FValue”this large could occur due to noise.Values of“Prob>F”less than 0.05 indicate model terms are signifcant. In this case C(tilt angle),AB(rotational×travel speeds)are signifcant model terms.Values greater than 0.1 indicate the model terms are not signifcant.

    Table 3Analysis of Variance for SN ratios.

    Table 4Response table for signal to noise ratios(dynamic response).

    Table 5ANOVA for response surface reduced 2FI model.

    The“Pred R-Squared”of 0.9544 is in reasonable agreement with the“Adj R-Squared”of 0.9974.The“adequate precision”measures the signal to noise ratio.A ratio greater than 4 is desirable.The ratio of 66.554 indicates an adequate signal. This model can be used to navigate the design space.

    The fnal mathematical model in terms of actual factors as determined by design expert software is written in Eq.(4).

    Fig.2.Effects of FSP parameters on hardness value(a)infuence of W and V,(b)infuence of Θ and V,(c)perturbation plots.

    Fig.3.The graph of the predicted versus the experimental data.

    The effect of processing parameters on the hardness values is shown in Fig.2.The hardness value is found to rise as rotational and travel speeds are increased(Fig.2a);while in mediate limits of rotational and travel speeds,the hardness values are decreased.The surface plot(Fig.2b)discloses the interaction between the tilt angle and the travel speed effect on hardness values.Hardness value is found to increase as tilt angle is increased at high travel speed.In addition,it is shown in Fig.2b that effect of tilt angle variation on hardness value is much more signifcant at high travel speed than low travel speed.Fig.2c demonstrates perturbation plots which illustrate the effect of the FSP parameters on hardness value for an optimization design,this graph shows how the response changes as each factor moves from a chosen reference point, with all other factors held constant at the reference value[29]. A steep slope or curvature of a factor indicates that the response is sensitive to that factor.Hence,the plot shows that tilt angle is mostly affected the hardness value followed by rotational and travel speeds.

    To validate the model,a set of experiments were performed. The graph of the predicted versus the experimental data is shown in Fig.3.The graph shows that there is a good agreement between the model and the experimental data.Therefore, the model can be used to predict hardness values of friction stir processed pure Mg.

    4.Conclusion

    The present study was aimed to identify the optimal and most infuencing FSP parameters on hardness of pure Mg by conducting minimum number of experiments using Taguchi orthogonal array.Various combinations of processing parameters were considered to evaluate the relative importance of parameters.FSP parameters including W = 1600 rpm, V=63 mm/min,PD=0.1,Θ=2°have been found to be the optimal parameters.In addition,a numerical model has been developed by design expert and it was shown that tilt angle and rotational speed as well as travel speed have the most signifcant effect on hardness value of FSPed Mg.

    [1]F.Witte,Acta Biomater.6(2010)1680-1692.

    [2]M.P.Staigera,A.M.Pietaka,J.Huadmaia,G.Dias,Biomaterials 27 (2006)1728-1734.

    [3]E.Zhang,L.Yang,J.Xua,H.Chen,Acta Biomater.6(2010) 1756-1762.

    [4]A.Feng,Y.Han,Mater.Des.32(2011)2813-2820.

    [5]K.Abdelrazek Khalil,A.A.Almajid,Mater.Des.36(2012)58-68.

    [6]H.Hornberger,S.Virtanen,A.R.Boccaccini,Acta Biomater.8(2012) 2442-2455.

    [7]L.Li,J.Gao,Y.Wang,Surf.Coat.Technol.185(2004)92-98.

    [8]Y.Wang,M.Wei,J.Gao,Mater.Sci.Eng.C 29(2009)1311-1316.

    [9]Y.J.Kwon,I.Shigematsu,N.Saito,Mater.Trans.45(2004)2304-2311.

    [10]W.M.Gana,M.Y.Zhenga,H.Changa,X.J.Wanga,X.G.Qiaoa,K.Wua, B.Schwebkeb,H.G.Brokmeierb,J.Alloys Compd.470(2009) 256-262.

    [11]H.Wang,Y.Estrin,H.Fu,G.Song,Z.Zu′berov′a,Adv.Eng.Mater.9 (2007)967-972.

    [12]Y.Chino,T.Hoshika,M.Mabuchi,Mater.Trans.47(2006)1040-1046.

    [13]G.Ben Hamua,D.Eliezer,L.Wagner,J.Alloys Compd.46(2009) 222-229.

    [14]J.H.Gao,S.K.Guan,Z.W.Ren,Y.F.Sun,S.J.Zhu,Mater.Lett.65(2011) 691-693.

    [15]H.Seop Hana,Y.Minghuia,H.Kwang Seoka,J.Young Byunb,P.Ryung Chac,S.Jo Yangd,Y.Chan Kima,J.Mech.Behav.Biomed.Mater.20 (2013)54-60.

    [16]Q.Penga,X.Lia,N.Maa,R.Liua,H.Zhang,J.Mech.Behav.Biomed. Mater.10(2012)128-137.

    [17]C.op't Hoog,N.Birbilis,Y.Estrin,Adv.Eng.Mater.10(2008)579-582.

    [18]R.S.Mishra,Z.Y.Ma,Mater.Sci.Eng.R 50(2005)1-78.

    [19]P.Asadi,M.K.Besharati Givi,N.Parvin,A.Araei,M.Taherishargh, S.Tutunchilar,Int.J.Adv.Manuf.Technol.63(2012)9-12.

    [20]A.Shahi,M.Heydarzadeh Sohi,D.Ahmadkhaniha,M.Ghambari,Int.J. Adv.Manuf.Technol.75(2014)1331-1337.

    [21]P.Asadi,G.Faraji,M.Besharati,Int.J.Adv.Manuf.Technol.51(2010) 247-260.

    [22]M. Jayaraman, R. Sivasubramanian, V. Balasubramanian, A.K.Lakshminarayanan,J.Sci.Ind.Res.68(2009)36-43.

    [23]S.Rajakumar,C.Muralidharan,V.Balasubramanian,Int.J.Microstruct. Mater.Prop.6(2011)132-156.

    [24]A.K.Lakshminarayanan,V.Balasubramanian,Trans.Nonferrous Met. Soc.China 18(2008)548-554.

    [25]M.Nourani,A.S.Milani,S.Yannacopoulos,Engineering 3(2011) 144-155.

    [26]M.Salehi,M.Saadatmand,J.Aghazadeh Mohansedi,Trans.Nonferrous Met.Soc.China 22(2012)1055-1063.

    [27]R.K.Roy,A Primer on the Taguchi Method,Van Nostrand Reinhold,NY, 1990,pp.100-154.

    [28]C.I.Chang,C.J.Lee,J.C.Huang,Scr.Mater.51(2004)509-514.

    [29]S.T.Manavalan,R.Muralidharan,J.Sep.Sci.30(2007)3143-3315.

    Received 9 March 2015;revised 10 April 2015;accepted 16 April 2015 Available online 13 May 2015

    *Corresponding author.Tel.:+98 9126174090.

    E-mail address:ahmadkhany@ut.ac.ir(D.Ahmadkhaniha).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University.

    http://dx.doi.org/10.1016/j.jma.2015.04.002.

    2213-9567/Copyright 2015,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright 2015,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    女人高潮潮喷娇喘18禁视频| 黄色怎么调成土黄色| 国产亚洲av片在线观看秒播厂| 日本wwww免费看| 91av网站免费观看| 国产精品一二三区在线看| 国产黄频视频在线观看| 亚洲欧美日韩另类电影网站| 在线av久久热| 极品少妇高潮喷水抽搐| 中国国产av一级| 日本av免费视频播放| 午夜精品国产一区二区电影| 91麻豆av在线| 丝袜美腿诱惑在线| 50天的宝宝边吃奶边哭怎么回事| 亚洲成人国产一区在线观看| 丝袜美足系列| 亚洲色图 男人天堂 中文字幕| 亚洲成人国产一区在线观看| 丰满饥渴人妻一区二区三| 国产高清videossex| 99精品欧美一区二区三区四区| 国产精品久久久久久精品电影小说| 精品国内亚洲2022精品成人 | 日韩欧美免费精品| 午夜免费观看性视频| 丁香六月天网| 少妇粗大呻吟视频| 亚洲精品第二区| 午夜福利影视在线免费观看| 女人精品久久久久毛片| tocl精华| 亚洲七黄色美女视频| 久久中文看片网| 黑人巨大精品欧美一区二区蜜桃| 国精品久久久久久国模美| 美女主播在线视频| a级毛片在线看网站| 国产日韩欧美亚洲二区| 丝袜美足系列| 夜夜夜夜夜久久久久| 久久人妻熟女aⅴ| 国产精品麻豆人妻色哟哟久久| 亚洲国产精品成人久久小说| 久久久久久久精品精品| 亚洲人成电影免费在线| 一级,二级,三级黄色视频| 国内毛片毛片毛片毛片毛片| 久久精品国产亚洲av香蕉五月 | 成人亚洲精品一区在线观看| 精品国产一区二区三区四区第35| 欧美成人午夜精品| 99九九在线精品视频| 国产精品 欧美亚洲| 欧美日韩一级在线毛片| 亚洲欧美精品自产自拍| 中文字幕人妻丝袜一区二区| av在线老鸭窝| 在线观看www视频免费| 两性午夜刺激爽爽歪歪视频在线观看 | 久久人人爽av亚洲精品天堂| 别揉我奶头~嗯~啊~动态视频 | 精品久久久久久电影网| 黄频高清免费视频| 精品人妻熟女毛片av久久网站| 国产精品麻豆人妻色哟哟久久| 超碰97精品在线观看| 精品国产超薄肉色丝袜足j| 久久久精品区二区三区| 亚洲欧美日韩另类电影网站| 久久久精品区二区三区| av天堂在线播放| 欧美性长视频在线观看| 成人国产av品久久久| 亚洲 国产 在线| 欧美日韩精品网址| 制服人妻中文乱码| 国产精品 欧美亚洲| 欧美另类一区| 亚洲av电影在线观看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 大片电影免费在线观看免费| 中文字幕色久视频| 欧美日韩亚洲国产一区二区在线观看 | 国产精品影院久久| 成年人午夜在线观看视频| 亚洲情色 制服丝袜| 国产黄频视频在线观看| 久久久水蜜桃国产精品网| 国产亚洲av片在线观看秒播厂| 成人18禁高潮啪啪吃奶动态图| 叶爱在线成人免费视频播放| 日韩一区二区三区影片| 免费在线观看日本一区| 精品久久蜜臀av无| 亚洲一区二区三区欧美精品| 亚洲,欧美精品.| 每晚都被弄得嗷嗷叫到高潮| 色婷婷久久久亚洲欧美| 久久综合国产亚洲精品| 久9热在线精品视频| 精品久久久久久久毛片微露脸 | av视频免费观看在线观看| 亚洲中文字幕日韩| 精品高清国产在线一区| 男女高潮啪啪啪动态图| 制服诱惑二区| 成人亚洲精品一区在线观看| 青春草视频在线免费观看| 老熟妇仑乱视频hdxx| 欧美乱码精品一区二区三区| 亚洲精品国产一区二区精华液| 亚洲五月婷婷丁香| 男女之事视频高清在线观看| 成年动漫av网址| 亚洲精品中文字幕在线视频| 亚洲av成人一区二区三| 欧美大码av| 亚洲人成电影免费在线| 国产伦人伦偷精品视频| 精品乱码久久久久久99久播| 久久久国产欧美日韩av| a 毛片基地| 亚洲 欧美一区二区三区| 操美女的视频在线观看| 免费观看a级毛片全部| 俄罗斯特黄特色一大片| 午夜免费观看性视频| 老熟女久久久| 亚洲欧美激情在线| 中文字幕高清在线视频| 亚洲精品国产色婷婷电影| 在线av久久热| 免费高清在线观看视频在线观看| 在线天堂中文资源库| 美女午夜性视频免费| 丝瓜视频免费看黄片| 亚洲国产精品成人久久小说| 50天的宝宝边吃奶边哭怎么回事| 欧美另类亚洲清纯唯美| 精品一区二区三区四区五区乱码| 亚洲国产精品一区二区三区在线| 中文精品一卡2卡3卡4更新| 最近最新免费中文字幕在线| 国产成人精品在线电影| av欧美777| 黑人巨大精品欧美一区二区蜜桃| 日韩欧美一区视频在线观看| www.999成人在线观看| 国产日韩欧美亚洲二区| 天天躁夜夜躁狠狠躁躁| 国产精品久久久久久精品电影小说| 久久久久久久精品精品| √禁漫天堂资源中文www| 国产一区二区在线观看av| 亚洲国产欧美一区二区综合| 视频区欧美日本亚洲| 一二三四社区在线视频社区8| 丝袜喷水一区| 国产无遮挡羞羞视频在线观看| 又黄又粗又硬又大视频| 免费在线观看日本一区| 精品欧美一区二区三区在线| 91国产中文字幕| 叶爱在线成人免费视频播放| 亚洲精品美女久久av网站| 久久狼人影院| 丝瓜视频免费看黄片| 国产一级毛片在线| 亚洲午夜精品一区,二区,三区| 国精品久久久久久国模美| 一级毛片电影观看| 狂野欧美激情性xxxx| 如日韩欧美国产精品一区二区三区| 男女之事视频高清在线观看| 最近中文字幕2019免费版| kizo精华| 日本欧美视频一区| 水蜜桃什么品种好| 日日夜夜操网爽| 亚洲精华国产精华精| 国产有黄有色有爽视频| 99国产综合亚洲精品| 中文字幕人妻丝袜一区二区| 一区福利在线观看| 亚洲第一av免费看| 久久久久久人人人人人| 日韩 亚洲 欧美在线| 一级a爱视频在线免费观看| 午夜日韩欧美国产| 国产老妇伦熟女老妇高清| av不卡在线播放| 国产精品99久久99久久久不卡| 亚洲国产欧美日韩在线播放| 涩涩av久久男人的天堂| 在线永久观看黄色视频| 亚洲中文av在线| 国产成人精品无人区| 后天国语完整版免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩一卡2卡3卡4卡2021年| 亚洲综合色网址| 色播在线永久视频| 成年人午夜在线观看视频| 手机成人av网站| 中文字幕制服av| 日韩视频在线欧美| 亚洲国产日韩一区二区| 亚洲一码二码三码区别大吗| 18在线观看网站| 国产欧美日韩综合在线一区二区| 香蕉国产在线看| 青草久久国产| 国产成人av教育| 久久久精品94久久精品| av电影中文网址| 日韩 亚洲 欧美在线| 热re99久久精品国产66热6| 12—13女人毛片做爰片一| 三上悠亚av全集在线观看| 女人高潮潮喷娇喘18禁视频| 成年动漫av网址| 亚洲精品美女久久久久99蜜臀| 久久女婷五月综合色啪小说| 亚洲国产精品一区二区三区在线| 丝袜人妻中文字幕| 黄色片一级片一级黄色片| 国产亚洲欧美精品永久| 欧美大码av| 91精品伊人久久大香线蕉| 在线 av 中文字幕| 国产亚洲一区二区精品| 亚洲国产毛片av蜜桃av| 国产精品二区激情视频| 黑丝袜美女国产一区| a级毛片在线看网站| 操美女的视频在线观看| 青青草视频在线视频观看| 色老头精品视频在线观看| 久久人人97超碰香蕉20202| 亚洲精品一二三| 亚洲av国产av综合av卡| 少妇人妻久久综合中文| 国产高清videossex| 亚洲国产欧美一区二区综合| 国产熟女午夜一区二区三区| 国产亚洲欧美精品永久| 精品少妇内射三级| 亚洲精品第二区| videos熟女内射| 国产有黄有色有爽视频| av福利片在线| 91麻豆av在线| 99久久99久久久精品蜜桃| 国产精品一二三区在线看| 精品视频人人做人人爽| 精品久久久久久久毛片微露脸 | 欧美日韩一级在线毛片| 国产精品一区二区在线不卡| 免费在线观看视频国产中文字幕亚洲 | 天堂俺去俺来也www色官网| 伊人久久大香线蕉亚洲五| 嫩草影视91久久| 男女午夜视频在线观看| 十八禁网站免费在线| 亚洲av电影在线进入| 18在线观看网站| 如日韩欧美国产精品一区二区三区| 制服人妻中文乱码| 50天的宝宝边吃奶边哭怎么回事| 日韩中文字幕欧美一区二区| 黄网站色视频无遮挡免费观看| 99精品欧美一区二区三区四区| 国产一区二区三区综合在线观看| 视频在线观看一区二区三区| 久久性视频一级片| 国产人伦9x9x在线观看| 午夜免费鲁丝| 国产精品久久久久成人av| 国产精品久久久久久精品电影小说| 蜜桃国产av成人99| 99国产极品粉嫩在线观看| 久久久国产欧美日韩av| 女性生殖器流出的白浆| 国产有黄有色有爽视频| av超薄肉色丝袜交足视频| 亚洲性夜色夜夜综合| 久久久久精品人妻al黑| 人人妻人人爽人人添夜夜欢视频| 美女高潮到喷水免费观看| 老鸭窝网址在线观看| 国产色视频综合| 亚洲精品乱久久久久久| 欧美国产精品一级二级三级| 亚洲精品久久午夜乱码| 我要看黄色一级片免费的| 日韩 亚洲 欧美在线| 久久狼人影院| 亚洲男人天堂网一区| 香蕉丝袜av| 亚洲国产欧美一区二区综合| 国产欧美日韩一区二区精品| 国产97色在线日韩免费| 国产亚洲午夜精品一区二区久久| 午夜日韩欧美国产| 老熟妇乱子伦视频在线观看 | 国产亚洲av片在线观看秒播厂| h视频一区二区三区| 亚洲九九香蕉| 男女边摸边吃奶| 中文精品一卡2卡3卡4更新| 欧美大码av| 我要看黄色一级片免费的| 国产视频一区二区在线看| 18禁观看日本| 久热这里只有精品99| 老汉色av国产亚洲站长工具| 久久精品成人免费网站| 久久久国产成人免费| 男女国产视频网站| 看免费av毛片| www日本在线高清视频| 久久久久久免费高清国产稀缺| 十八禁高潮呻吟视频| 亚洲成av片中文字幕在线观看| 天天添夜夜摸| 精品熟女少妇八av免费久了| 老司机福利观看| 99久久99久久久精品蜜桃| 午夜激情av网站| 999久久久国产精品视频| 日韩 欧美 亚洲 中文字幕| 在线天堂中文资源库| 亚洲精华国产精华精| 人人妻人人澡人人看| av国产精品久久久久影院| 在线十欧美十亚洲十日本专区| 精品亚洲乱码少妇综合久久| 在线永久观看黄色视频| 日韩视频一区二区在线观看| 这个男人来自地球电影免费观看| 亚洲国产av新网站| 成人18禁高潮啪啪吃奶动态图| 搡老熟女国产l中国老女人| 成年av动漫网址| 午夜福利一区二区在线看| 久久精品国产亚洲av高清一级| 国产精品偷伦视频观看了| 亚洲综合色网址| 国产1区2区3区精品| 一级黄色大片毛片| 国产亚洲av片在线观看秒播厂| 亚洲国产精品999| 欧美精品一区二区大全| 久久久久精品国产欧美久久久 | 久久午夜综合久久蜜桃| 五月天丁香电影| 悠悠久久av| 两个人免费观看高清视频| 免费高清在线观看日韩| 汤姆久久久久久久影院中文字幕| 精品久久蜜臀av无| 啦啦啦视频在线资源免费观看| 欧美 日韩 精品 国产| 国产亚洲精品第一综合不卡| 国内毛片毛片毛片毛片毛片| 欧美成狂野欧美在线观看| 久久午夜综合久久蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品一区蜜桃| www.999成人在线观看| 国产精品久久久久久人妻精品电影 | avwww免费| 精品国产一区二区三区久久久樱花| 国产一区二区三区av在线| 欧美少妇被猛烈插入视频| 欧美人与性动交α欧美软件| 精品亚洲成国产av| 在线天堂中文资源库| 美女主播在线视频| 中文字幕最新亚洲高清| 亚洲av片天天在线观看| 一边摸一边做爽爽视频免费| 国产欧美亚洲国产| 制服诱惑二区| 国产成人免费无遮挡视频| 老熟妇乱子伦视频在线观看 | 欧美97在线视频| 亚洲欧美精品自产自拍| 伦理电影免费视频| 欧美日韩黄片免| 亚洲av日韩精品久久久久久密| 女人精品久久久久毛片| 精品少妇一区二区三区视频日本电影| 国产精品二区激情视频| 精品熟女少妇八av免费久了| 美女福利国产在线| 乱人伦中国视频| 精品久久久久久久毛片微露脸 | 美女福利国产在线| 日韩视频在线欧美| 麻豆av在线久日| 黄色怎么调成土黄色| 99国产极品粉嫩在线观看| 男女之事视频高清在线观看| 法律面前人人平等表现在哪些方面 | 亚洲伊人色综图| 国产福利在线免费观看视频| 欧美精品av麻豆av| 免费在线观看影片大全网站| 一个人免费在线观看的高清视频 | 午夜免费鲁丝| 精品人妻1区二区| 久久人妻熟女aⅴ| 久久久国产一区二区| 国产高清视频在线播放一区 | 国产av国产精品国产| 国产精品久久久av美女十八| 国产成人精品无人区| 丰满迷人的少妇在线观看| 女人被躁到高潮嗷嗷叫费观| 黄色视频,在线免费观看| 亚洲精品乱久久久久久| 777久久人妻少妇嫩草av网站| 国产av一区二区精品久久| 超色免费av| 啦啦啦视频在线资源免费观看| 午夜免费成人在线视频| 国产免费福利视频在线观看| 久久久精品94久久精品| 欧美日韩黄片免| 一个人免费在线观看的高清视频 | av国产精品久久久久影院| 老熟女久久久| 国产成人精品久久二区二区91| 欧美大码av| 欧美日韩国产mv在线观看视频| 丝袜美足系列| 两个人免费观看高清视频| 如日韩欧美国产精品一区二区三区| 丰满少妇做爰视频| 精品一品国产午夜福利视频| av福利片在线| 老司机影院成人| 深夜精品福利| 中文精品一卡2卡3卡4更新| 久久久久久久国产电影| 亚洲精品第二区| 国产成人精品在线电影| 国产亚洲欧美精品永久| 少妇粗大呻吟视频| 一个人免费在线观看的高清视频 | 国产精品 欧美亚洲| 亚洲精品一区蜜桃| 青草久久国产| 老司机影院成人| 黄片小视频在线播放| 爱豆传媒免费全集在线观看| 蜜桃国产av成人99| 国产精品自产拍在线观看55亚洲 | 成人国产一区最新在线观看| 伊人亚洲综合成人网| 亚洲中文日韩欧美视频| 欧美黑人精品巨大| 一区二区av电影网| 精品福利观看| 国产一区二区三区在线臀色熟女 | 亚洲天堂av无毛| 久久青草综合色| 国产欧美日韩一区二区三 | 欧美另类亚洲清纯唯美| 又紧又爽又黄一区二区| 国产一区二区三区综合在线观看| 成人影院久久| 久久久久久久大尺度免费视频| 人人妻人人澡人人爽人人夜夜| 老司机午夜福利在线观看视频 | 国产97色在线日韩免费| 国产精品99久久99久久久不卡| 免费在线观看完整版高清| bbb黄色大片| 97人妻天天添夜夜摸| 亚洲男人天堂网一区| 国产区一区二久久| 侵犯人妻中文字幕一二三四区| 十八禁网站网址无遮挡| 夜夜夜夜夜久久久久| 丝袜脚勾引网站| 国产成人精品在线电影| av网站在线播放免费| 精品国产超薄肉色丝袜足j| 亚洲精品国产精品久久久不卡| 成人国产av品久久久| 熟女少妇亚洲综合色aaa.| 国产日韩欧美视频二区| av有码第一页| 国产成人欧美在线观看 | 嫩草影视91久久| 这个男人来自地球电影免费观看| 啦啦啦中文免费视频观看日本| 国产一区有黄有色的免费视频| 国产成人影院久久av| 丝袜美足系列| 久久久精品免费免费高清| 午夜精品久久久久久毛片777| a级毛片黄视频| 91精品三级在线观看| 夜夜夜夜夜久久久久| 一区二区三区激情视频| 99国产综合亚洲精品| 亚洲 欧美一区二区三区| av在线老鸭窝| 亚洲美女黄色视频免费看| 欧美人与性动交α欧美软件| 久久av网站| 多毛熟女@视频| 嫩草影视91久久| 午夜福利在线观看吧| 午夜91福利影院| 久久毛片免费看一区二区三区| 欧美黄色淫秽网站| 性色av一级| 亚洲国产精品一区二区三区在线| 日日爽夜夜爽网站| 日韩电影二区| 99久久国产精品久久久| 精品福利观看| 国产精品自产拍在线观看55亚洲 | 丝袜喷水一区| 亚洲美女黄色视频免费看| 曰老女人黄片| 日韩视频一区二区在线观看| 欧美大码av| 欧美黑人精品巨大| 久久久精品国产亚洲av高清涩受| 又紧又爽又黄一区二区| 亚洲七黄色美女视频| 黄色毛片三级朝国网站| 热99久久久久精品小说推荐| av片东京热男人的天堂| 另类精品久久| 一区二区三区精品91| 国产成+人综合+亚洲专区| 精品人妻熟女毛片av久久网站| 国产精品欧美亚洲77777| videos熟女内射| 欧美人与性动交α欧美精品济南到| a 毛片基地| 丝袜美腿诱惑在线| 色播在线永久视频| 高清视频免费观看一区二区| 91麻豆av在线| 国产亚洲av片在线观看秒播厂| 国产av又大| 国产精品免费视频内射| 狠狠婷婷综合久久久久久88av| 一区二区三区四区激情视频| 亚洲国产精品999| 亚洲avbb在线观看| 在线观看人妻少妇| e午夜精品久久久久久久| 婷婷成人精品国产| 伊人亚洲综合成人网| 欧美性长视频在线观看| 国产成人精品在线电影| 免费在线观看日本一区| kizo精华| 亚洲avbb在线观看| av在线老鸭窝| 少妇人妻久久综合中文| 免费在线观看影片大全网站| 久久精品亚洲av国产电影网| 国产精品久久久久久精品电影小说| 成在线人永久免费视频| 午夜91福利影院| 黄色视频不卡| 精品少妇久久久久久888优播| av欧美777| 久久久久国产一级毛片高清牌| 女人高潮潮喷娇喘18禁视频| 99热国产这里只有精品6| 动漫黄色视频在线观看| 丝袜人妻中文字幕| 亚洲欧美精品综合一区二区三区| 精品免费久久久久久久清纯 | 免费在线观看完整版高清| 一级毛片电影观看| 久久亚洲精品不卡| 国产精品免费大片| 精品一区二区三卡| 美女扒开内裤让男人捅视频| 亚洲一区中文字幕在线| 成年美女黄网站色视频大全免费| 丰满少妇做爰视频| 国产一区二区三区在线臀色熟女 | 夫妻午夜视频| 欧美午夜高清在线| 脱女人内裤的视频| 成在线人永久免费视频| 岛国在线观看网站| 精品福利永久在线观看| 欧美精品啪啪一区二区三区 | 久久香蕉激情| 亚洲精品中文字幕在线视频| 国产一区二区三区av在线| 亚洲精品在线美女| 亚洲美女黄色视频免费看| 丰满饥渴人妻一区二区三| 一区二区三区精品91| 国产精品一二三区在线看| 超色免费av| 丰满饥渴人妻一区二区三| 久久精品亚洲av国产电影网| 性色av一级|