• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microstructure and room temperature tensile properties of 1 μm-SiCp/AZ31B magnesium matrix composite

    2015-02-16 00:38:14WngZhngZhng
    Journal of Magnesium and Alloys 2015年2期

    ,X.J.Wng,M.F.Zhng,B.H.Zhng,*

    aCollege of Engineering,Shenyang Agricultural University,Shenyang 110866,PR China

    bSchool of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,PR China

    cLiaoning Provincial Gem Quality Supervision and Inspection Center,Shenyang 110000,PR China

    Microstructure and room temperature tensile properties of 1 μm-SiCp/AZ31B magnesium matrix composite

    M.J.Shena,X.J.Wangb,M.F.Zhangc,B.H.Zhanga,*,M.Y.Zhengb,K.Wub

    aCollege of Engineering,Shenyang Agricultural University,Shenyang 110866,PR China

    bSchool of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,PR China

    cLiaoning Provincial Gem Quality Supervision and Inspection Center,Shenyang 110000,PR China

    In the present study,AZ31B magnesium matrix composites reinforced with two volume fractions(3 and 5 vol.%)of micron-SiC particles(1 μm)were fabricated by semisolid stirring assisted ultrasonic vibration method.The as-cast ingots were extruded at 350°C with the extrusion ratio of 15:1 at a constant ram speed of 15 mm/s.The microstructure of the composites was investigated by optical microscopy, scanning electron microscope and transmission electron microscope.Microstructure characterization of the composites showed relative uniform reinforcement distribution and signifcant grain refnement.The presence of 1 μm-SiC particles assisted in improving the elastic modulus and tensile strength.The ultimate tensile strength and yield strength of the 5 vol.%SiCp/AZ31B composites were simultaneously improved.

    Magnesium matrix composite;Microstructure;Mechanical properties

    1.Introduction

    Development of new structural materials with higher strength-to-weight ratios is one of the biggest challenges in transportation industry to reduce fuel consumption and to reduce green house gas emissions[1-4].Magnesium based alloys have been attracting much attention as light weight materials due to their high specifc strength,good castability, good machinability,and high damping capacity[5].However, the application of magnesium is limited because of its low strength,poor room temperature ductility and toughness[6]. The addition of stiffer phases such as ceramic particles, whiskers or fbers into magnesium alloys can overcome their demerit and lead to an increase in specifc strength,specifc modulus and wear resistance[7].Among the reinforcement, SiC particles reinforced magnesium-matrix composites exhibit high strength and elastic modulus,near-isotropic as well as excellent high-temperature creep resistant properties, numerous studies have been made on SiC particles reinforced magnesium matrix composites[8].Wang et al.[9]fabricated 10 μm-SiCp/Mg-Zn-Ca composite by stir casting method, and it was found that the addition of micron SiC particulates resulted in signifcant improvement on tensile properties of SiCp/Mg-Zn-Ca composite due to the coeffcient of thermal expansion mismatch between the matrix and the particulates, load transfer effect and Hall-Petch strengthening mechanisms.Saravanan et al.[10]fabricated pure magnesium-30 vol.%SiCp(~40 μm)particle composite using melt stir technique,and it was found that the addition of SiCp led to a simultaneous improvement in 0.2%yield strength,ultimate tensile strength and stiffness of the pure magnesium.

    Uniform dispersion of the fne reinforcements and fne grain size of the matrix contribute to improving the mechanical properties of the particles reinforced composites.Further, the mechanical properties of the composite tend to improve with increasing volume fraction and decreasing particle size of the reinforcements[11,12].Saberi's[13]research illustrated that the smaller ceramic particulates with a little amount volume fraction have signifcant infuence on microstructure and mechanical properties of particulate reinforced magnesium matrix composites.Nie et al.[14]study illustrated that a little amount of SiC nanoparticles(~60 nm)had great effect on grain refnement of AZ91D magnesium alloy,and it was found that the 0.2%yield strength and ultimate tensile strength increased with the increasing of SiC nanoparticle content, however,decreased as the SiC nanoparticulate content overrun 1.5 vol.%.Deng et al.[15]fabricated submicron-SiCp/AZ91D composites by stir casting method,and it was found that both the ultimate tensile strength and yield strength of the AZ91D magnesium alloy increased with the increase of smaller-sized submicron SiCp content.However,when the submicron SiCp(~0.2 μm)content exceeded 2 vol.%,the agglomeration regions appeared in the composites,and the mechanical propertieswere obviously decreased.Asaresult,the enhancement of modulus was restricted due to lower volume fraction of particles.Some studies indicate that mechanical properties of 3 vol.%and 5 vol.%SiCp(1 μm)/AZ91 composites decrease compared with that the 1 vol.%SiCp(1 μm)/ AZ91 composite due to the increase of agglomerates of 1 μm-SiCp[16,17].Obviously,the smaller ceramic particulates have signifcant infuence on microstructure and mechanical properties of magnesium matrix composites.However,a few works had been done on the infuence of 1 μm-SiCp on microstructure and mechanical properties of magnesium matrix composites,especially the composites prepared by semisolid stirring assisted ultrasonic vibration method still not have been researched in open documents.And it is also extremely challenging for the traditional method to uniformly disperse 3 vol.%and 5 vol.%of 1 μm-SiCp in magnesium melts.

    Accordingly,the primary aim of the present study was initiated to fabricate magnesium matrix composites reinforced with 1 μm-SiC particles by introducing semisolid stirring assisted ultrasonic vibration,and then studies the effect of the presence of 3 vol.%and 5 vol.%SiC particles on the microstructure and mechanical properties of magnesium matrix composite.

    2.Experimental procedures

    2.1.Materials

    AZ31B magnesium alloy was selected as the matrix alloy and its chemical compositions(wt.%)are given as follows:Al-2.7,Zn-0.8,Mn-0.21,Si-0.01,Ni-0.002,Fe-0.001,Be-0.0015 and Mg-balance.The SiC particles with the average size of 1 μm were used as the reinforcement.

    2.2.Fabrication of the magnesium matrix composite

    The AZ31B magnesium matrix composites reinforced with two volume fractions(3 and 5 vol.%)of 1 μm-SiCp were fabricated by semisolid stirring assisted ultrasonic vibration method.The whole fabrication process was conducted in a protective atmosphere of CO2and SF6to avoid burning.In each experiment,about 1 kg of AZ31B matrix alloy was frst melted at 720°C,and then cooled to 625°C which made the matrix alloy in the semi-solid condition.The 1 μm-SiCp which were preheated to 650°C were quickly added into the semisolid melt,and then slurry was stirred for 20 min.After semisolid stirring for 20 min,the mixture of the melt and 1 μm-SiCp were rapidly reheated to 720°C,and then the melt was ultrasonically processed at 500 W power level for 20 min before the ultrasonic probe was removed from the slurry.After the ultrasonic vibration,the melt was poured into a preheated steel mould(450°C)and solidifed under a 100 MPa pressure.

    2.3.Secondary processing

    The cast billets were cut into the samples with the size of φ 60 mm×h35 mm and homogenized at 400°C for 12 h before the extrusion.And then the SiCp/AZ31B composite was extruded at 350°C with an extrusion ratio of 15:1.In order to identify the effect of 1 μm-SiCp on AZ31B matrix alloy,the monolithic AZ31B alloy was also developed by the same fabrication process.

    2.4.Microstructure characterization

    The optical microscopy(OM)(P-3,Olympus,Japan), scanning electron microscopy(SEM)(Quanta 200FEG,FEI Co.Ltd.,USA)and transmission electron microscopy(TEM) (HR-TEM,Tecnai G2F30,USA)were applied to study the evolution of the matrix and particles.Samples for microstructure analysis were prepared by the conventional mechanical polishing and etching using 4%oxalic acid for 10 s. The specimens for SEM were ground and polished to investigate reinforcement distribution.The specimens for TEM were prepared by grinding-polishing to produce a foil with 50 μm thickness and then ion-thinned.The average grain size of each sample was obtained by using the mean linear intercept method.

    2.5.Mechanical properties testing

    Room temperature tensile test was carried out at a tensile rate of 0.5 mm per minute by Instron-1186 tension machine. Each material was cut into three samples parallel to the extrusion direction with standard dog-bone shape used for repeat tensile tests.The dimensions of the tensile specimens are given in previous woks[14].The elastic modules were calculated according to the slope of the initial inclined part of the strain-stress curve.

    3.Results and discussion

    3.1.Microstructures

    Optical microstructures of the as-cast AZ31B alloy and SiCp/AZ31B composite are shown in Fig.1.Fig.2 shows the grain size of AZ31B alloy and SiCp/AZ31B composites with 3 vol.%and 5 vol.%SiCp.The grains of the matrix in the SiCp/AZ31B composites are refned as shown in Fig.1(b)and (c),which suggests that the presence of 1 μm-SiCp results in a much fner grain structure in as-cast SiCp/AZ31B composites. Compared with the 3 vol.%SiCp/AZ31B composite,the grains in 5 vol.%SiCp/AZ31B composite are more refned.In addition,it is noted that the grain boundaries of the matrix alloy are decorated with a cluster of SiC particles,at the same time few 1 μm-SiC particles captured within the magnesium grains can be also observed.The reason for this is that most of the SiC particles are pushed ahead by liquid-solid interface during solidifcation[18,19].When impinged with other growing grains,these particles are clustered in the intergranular regions.This is very normal for metal matrix composites fabricated by semisolid stirring assisted ultrasonic vibration method.Wang et al.'s study[20]on dynamic recrystallization(DRX)behavior of particle reinforced AZ91D magnesium matrix composites indicated that the necklace particle distribution signifcantly promotes pile-up of dislocations at grain boundaries,and it was found that the necklace particle distribution may signifcantly infuence DRX behavior of matrix alloy.

    Fig.1.Optical micrographs of as-cast AZ31B alloy and SiCp/AZ31B magnesium matrix composites:(a)AZ31B alloy;(b)3vol.%SiCp/AZ31B composite;(c) 5vol.%SiCp/AZ31B composite.

    Fig.2.Grain size of as-cast AZ31B alloy and SiCp/AZ31B composites with different volume fractions.

    Fig.3 is the SEM micrographs of the SiCp/AZ31B composites.With increasing the volume content of 1 μm-SiCp,the amount of 1-μm SiCp increases.The macro-clusters of particles were not observed,but most particles were segregated along grain boundaries in the micro-scale level,which is the typical necklace particles distribution.This kind of particles segregation is bad to the mechanical properties of the composites.Therefore,it is necessary to redistribute particles and eliminate cast defects using hot deformation.

    Fig.3.SEM micrographs of as-cast SiCp/AZ31B magnesium matrix composites:(a)3vol.%SiCp/AZ31B composite;(b)5vol.%SiCp/AZ31B composite.

    Fig.4.Optical micrographs of AZ31B alloy and SiCp/AZ31B magnesium matrix composites after hot extrusion:(a)AZ31B alloy;(b)3vol.%SiCp/AZ31B composite;(c)5vol.%SiCp/AZ31B composite.

    Fig.5.Grain size of AZ31B alloy and SiCp/AZ31B composites after hot extrusion.

    Optical micrographs of SiCp/AZ31B magnesium matrix composites after hot extrusion are shown in Fig.4.Fig.5 shows the average grain sizes of the as-extruded AZ31B alloy and SiCp/AZ31B composites.Compared with Figs.1 and 2, much smaller grain size can be found in the as-extruded samples.The resultsofmicrostructure characterization reveal the presence of nearly equiaxed grains in both monolithic alloy and composites,as shown in Fig.4.It illustrates that the DRX takes place during the hot extrusion.Combining Figs.4 and 5,it can be seen clearly that the addition of 1 μm-SiCp has signifcant effect on reducing grain size during hot extrusion.In addition,the effect of 1 μm-SiCp content on the grain size of composites is shown in Fig.4.Compared with the 3 vol.%SiCp/AZ31B composite,the grains in 5 vol.%SiCp/ AZ31B composite are more refned after hot extrusion.The minimum value of grain size obtained in 5 vol.%SiCp/AZ31B composite could be explained as follows:(1)1 μm-SiCp can refne grain size by promoting DRX nucleation during hot extrusion,and the addition of 1 μm SiCp could restrict the grain growth during hot extrusion.(2)The effect of restriction is enhanced as the content of 1 μm-SiCp increased to 5%. Moreover,compared with matrix alloy,the average grain size decreases signifcantly when 1 μm SiCp content is 3 vol.%,but the recrystallization is not full.From Fig.4(C)it also can be seen that the grains around 1 μm-SiC particles and in the deformation zone are smaller,while the grains away from these regions are larger.This indicates that dynamic recrystallization is sensitive to the particle content on a local scale in the composite.Therefore,the effect of particle on promoting DRX nucleation is very weak due to lower particle contents, which results in larger average grain size and asymmetrical grain distribution(as shown in Fig.4(b)and(C)).It is well known that the amount of SiC particles increase with the increasing of volume fraction of micron SiC particulates,thus the DRX nucleation effect of 5 vol.%SiCp/AZ31B composite stronger than that of 3 vol.% SiCp/AZ31B composites. Therefore,the recrystallization becomes much fuller and the minimum value of grain size obtained in the 5 vol.%SiCp/ AZ31B composite.

    Fig.6.SEM micrographs of SiCp/AZ31B magnesium matrix composites after hot extrusion:(a)3vol.%SiCp/AZ31B composite;(b)high magnifcation of(a);(c) 5vol.%SiCp/AZ31B composite;(d)high magnifcation of(c).

    Fig.6 shows the SEM micrographs of the SiCp/AZ31B composites after hot extrusion.The 1 μm-SiC particle clusters which are initially present in some areas in the as-cast composite disappear in the as-extruded composite,as shown in Fig.6(a)and(c),which means that the particle distribution condition in SiCp/AZ31B composite is improved by the application of hot extrusion.And the 1 μm-SiCp distribute relative homogeneous in composite.This can be explained as follows:(1)1 μm-SiC particulates were well dispersed in the matrix during semisolid stirring assisted ultrasonic vibration process(preparation technology).(2)The hot extrusion deformation can impel the matrix alloy fow into the reinforcement clusters(secondary processing).The reason is that the fow velocity of the matrix alloy is faster than that of SiC particles. Therefore,the distribution of SiC particles has been signifcantly improved in the present work.The high magnifcation of 5%SiCp/AZ31B and 3%SiCp/AZ31B composites are shown in Fig.6(b)and(d).It indicates that the good interfacial bonding exists between matrix and SiC particulates in the composite.In addition,the agglomerating regions are not observed in the composite with higher volume fraction of 1 μm-SiC particles,and the image is shown in Fig.6(d).

    Fig.7 shows the TEM microstructure of the extruded 5 vol.%SiCp/AZ31B composite.It can be found that a good interfacial bonding exists between the 1 μm-SiCp and the matrix,as shown in Fig.7(a).At higher magnifcation,as shown in Fig.7(b),the interfacial reaction products are not found in the interface between a 1 μm-SiCp and the matrix.

    3.2.Mechanical properties

    Fig.8 shows the ultimate tensile strength(σUTS),yield strength(0.2%σYS)and elongation to fracture of the AZ31B alloy and the SiCp/AZ31B magnesium matrix composites.It can be seen from Fig.8 that the σUTSand σYSof the AZ31B alloy and the SiCp/AZ31B composites were improved through extrusion process.The increased σYSof the monolithic AZ31B alloy may be attributed to the grain refned by DRX during hot extrusion.For the SiCp/AZ31B composite,the distribution of 1 μm-SiCp in the extrusion condition was improved obviously and the hole between the reinforcement and the matrix was also eliminated in the as-cast composite after hot extrusion. The σUTSand σYSof the SiCp/AZ31B composite are much higher than that of the matrix alloy at the same extrusion condition,as shown in Fig.8.The reasons for this may be that the addition of SiC particles is not only favorable to load transfer and restraining crack extension,but also has a signifcant effect on grain refnement.In addition,it also can be seen from Fig.8 that the σUTSand σYSof the 5 vol.%SiCp/ AZ31B composite were simultaneously enhanced comparing with the AZ31B alloy and the 3 vol.% SiCp/AZ31B composites.

    Fig.7.TEM micrographs of SiCp/AZ31B composite:(a)1 μm-SiC particles;(b)interface between 1 μm-SiC particle and matrix alloy.

    Some works had indicated that the strength of the particles reinforced composites was signifcantly enhanced because of the improvement of particulates distribution[21].Moreover, the magnesium alloy belongs to hexagonal close packed structure and its yield strength depends on the grain size. According to the classic Hall-Petch relation: σy=σo+Kyd-1/2,whereKyis material constant,σyand d are respectively the yield strength and average grain size,and σois experimentally derived constant[22].The yield strength of the materials is increased with reducing the grain size.The grains of the matrix in the 5 vol.%SiCp/AZ31B composite are obviously refned after hot extrusion(as shown in Fig.4).As a result,the yield strength of the 5 vol.%SiCp/AZ31B composite was enhanced.In addition,the good interfacial bonding between the reinforcement and the matrix after hot extrusion was also contributed to the increase of mechanical properties.

    The elastic modulus of AZ31B matrix is improved due to the addition of 1 μm-SiC particulates,as shown in Fig.9. Compared with the 3 vol.%SiCp/AZ31B composite,the elastic modulus of 5 vol.%SiCp/AZ31B composite is more higher.The increased elastic modulus of AZ31B alloy is mainly attributed to the high modulus of introduced 1 μm-SiC particles and good interfacial bonding between 1 μm-SiC particles and matrix.It may be noted that good interfacial bonding between matrix and reinforcement leads to a signifcant enhance in internal stress between 1 μm-SiC particles and matrix resulting in the enhancement of elastic modulus.

    Fig.8.Tensile properties of the AZ31B alloy and as-extruded SiCp/AZ31B composites.

    4.Conclusion

    Magnesium matrix composites reinforced with 1 μm-SiCp have been successfully fabricated by semisolid stirring assisted ultrasonic vibration method.The microstructures and tensile properties of SiCp/AZ31B composites are experimentally investigated and the main conclusions can be summarized as follows:

    (1)The grains of matrix in the SiCp/AZ31B composite exhibit obvious refnement compared with the as-cast AZ31B alloy.Most of the 1 μm-SiCp are distributed along grain boundaries in both 3 vol.%and 5 vol.%SiCp/AZ31B composites while some dispersed 1 μm-SiCp are inside the grains of matrix in the SiCp/AZ31B composites.

    (2)Large scale dynamic recrystallization is observed in the extruded 5 vol.%1 μm-SiCp/AZ31B composite with an average grain size of~3 μm.The grain size gradually decreased as the 1 μm-SiCp contents increased to 5 vol.%.

    Fig.9.Elastic modulus of composites and AZ31B alloy.

    (3)1 μm-SiC particles have signifcant effect on refning grain size through stimulating DRXed nucleation during hot extrusion.The grains around 1 μm-SiCp are smaller,whilethe grains far away from the 1 μm-SiCp particles,which means that dynamic recrystallization is sensitive to the particle content on a local scale in the present composite.

    (4)Compared with the extruded AZ31B matrix alloy and 3 vol.%1 μm-SiCp/AZ31B composite,the ultimate tensile strength and yield strength of the 5 vol.%1 μm-SiCp/ AZ31B composite are much higher,while the elongation to fracture is slightly small.The increase of yield strength of the 5 vol.%SiCp/AZ31B composite is due to the uniformity distribution of 1 μm-SiCp,the obvious refnement of the matrix grains and good interfacial bonding between matrix and reinforcement in present study.

    Acknowledgments

    This work was supported by‘National Natural Science Foundation of China’’(Grant No.51101043),‘Key Project of Science and Technology Department of Heilongjiang Province of China’’(Grant No.GC12A109)and‘the Fundamental Research Funds for the Central Universities’’(Grant No. HIT.NSRIF.201130).

    [1]J.E.Gray,B.Luan,J.Alloys Compd.336(2002)88-113.

    [2]D.M.Smith,J.A.Eady,L.M.Hogan,D.W.Irwin,Met.Trans.A 22 (1991)575-584.

    [3]M.J.Shen,X.J.Wang,M.F.Zhang,Appl.Surf.Sci.259(2012)362-366.

    [4]M.Hitchcock,Z.Fan,Mater.Sci.Forum 519(2006)1747-1752.

    [5]B.Niroumand,K.Xia,Mater.Sci.Eng.A 283(2000)70-75.

    [6]P.J.Uggowitzer,H.Kaufmann,Steel Res.Int.75(2004)525-530.

    [7]K.K.Deng,C.J.Wang,J.Y.Shi,Y.W.Wu,K.Wu,Mater.Chem.Phys. 134(2012)581-584.

    [8]Z.Fan,G.Liu,M.Hitchcock,Mater.Sci.Eng.A 413(2005)229-235.

    [9]X.J.Wang,K.B.Nie,X.S.Hu,Y.Q.Wang,X.J.Sa,K.Wu,J.Alloys. Compd.532(2012)78-85.

    [10]R.A.Saravanan,M.K.Surappa,Mater.Sci.Eng.A 276(2000)108-116.

    [11]P.Falank,B.Niroumand,Scr.Mater.53(2005)53-57.

    [12]D.Apelian,Q.Y.Pan,M.Findon,Die Cast.Eng.48(2004)22-28.

    [13]M.C.Flemings,Metal.Mater.Trans.B 22(1991)269-293.

    [14]K.B.Nie,X.J.Wang,K.Wu,X.S.Hu,M.Y.Zheng,Mater.Sci.Eng.A 540(2012)123-129.

    [15]K.K.Deng,K.Wu,Y.W.Wu,K.B.Nie,M.Y.Zheng,J.Alloys Compd. 504(2010)542-547.

    [16]K.B.Nie,X.J.Wang,K.Wu,L.Xu,M.Y.Zheng,X.S.Hu,Mater.Sci.47 (2012)138-144.

    [17]K.B.Nie,X.J.Wang,K.Wu,X.S.Hu,M.Y.Zheng,L.Xu,Mater.Sci. Eng.A 528(2011)8709-8714.

    [18]K.K.Deng,X.J.Wang,M.Y.Zheng,K.Wu,Mater.Sci.Eng.A 527 (2013)1630-1635.

    [19]K.K.Deng,X.J.Wang,W.M.Gan,Y.W.Wu,K.B.Nie,K.Wu, M.Y.Zheng,H.G.Brokmeier,Mater.Sci.Eng.A 528(2011) 1707-1712.

    [20]X.J.Wang,X.S.Hu,K.B.Nie,K.K.Deng,K.Wu,M.Y.Zheng,Mater. Sci.Eng.A 545(2012)38-43.

    [21]M.J.Shen,X.J.Wang,C.D.Li,M.F.Zhang,X.S.Hu,M.Y.Zheng, K.Wu,Mater.Des.52(2013)1011-1017.

    [22]M.J.Shen,X.J.Wang,M.F.Zhang,X.S.Hu,M.Y.Zheng,K.Wu,Mater. Des.54(2014)436-442.

    Received 22 December 2014;revised 23 January 2015;accepted 17 March 2015 Available online 11 May 2015

    *Corresponding author.Tel./fax:+86 2431530612.

    E-mail addresses:smjiekaka@163.com(M.J.Shen),benhuazhang@163. com(B.H.Zhang).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University.

    http://dx.doi.org/10.1016/j.jma.2015.03.001.

    2213-9567/Copyright 2015,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright 2015,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    日产精品乱码卡一卡2卡三| 水蜜桃什么品种好| 亚洲在线自拍视频| 亚洲成人av在线免费| 深夜a级毛片| 国产亚洲午夜精品一区二区久久 | 九九爱精品视频在线观看| 91狼人影院| 日韩一本色道免费dvd| 爱豆传媒免费全集在线观看| 美女cb高潮喷水在线观看| 亚洲精品国产av蜜桃| 伦精品一区二区三区| 国产免费一级a男人的天堂| av免费在线看不卡| 毛片女人毛片| 国产免费又黄又爽又色| 亚洲欧美一区二区三区黑人 | 国产激情偷乱视频一区二区| 国产免费一级a男人的天堂| 亚州av有码| 午夜福利在线观看吧| 久久久久久久国产电影| 久久久久国产网址| 久久精品夜夜夜夜夜久久蜜豆| 国产黄色小视频在线观看| 免费在线观看成人毛片| 伦精品一区二区三区| 日本与韩国留学比较| 97在线视频观看| 婷婷色综合www| videos熟女内射| 三级男女做爰猛烈吃奶摸视频| 国内揄拍国产精品人妻在线| 精品久久久精品久久久| 国产在视频线在精品| 国产白丝娇喘喷水9色精品| 亚洲成人中文字幕在线播放| 少妇猛男粗大的猛烈进出视频 | 日本熟妇午夜| 日韩伦理黄色片| 一区二区三区四区激情视频| 亚洲图色成人| 永久网站在线| 插逼视频在线观看| 亚洲av成人av| 成年人午夜在线观看视频 | 久久精品久久久久久噜噜老黄| 日本免费a在线| 麻豆av噜噜一区二区三区| 国产精品不卡视频一区二区| 欧美日韩在线观看h| 综合色丁香网| 欧美高清性xxxxhd video| 人妻制服诱惑在线中文字幕| 看非洲黑人一级黄片| 69人妻影院| 91精品国产九色| 免费大片黄手机在线观看| 亚洲熟女精品中文字幕| 免费观看性生交大片5| 成人二区视频| av天堂中文字幕网| xxx大片免费视频| 在线 av 中文字幕| 赤兔流量卡办理| 男女边摸边吃奶| 欧美另类一区| 欧美 日韩 精品 国产| 欧美激情国产日韩精品一区| 亚洲综合色惰| 插阴视频在线观看视频| 十八禁国产超污无遮挡网站| 22中文网久久字幕| 国产综合精华液| 欧美3d第一页| 少妇高潮的动态图| 日本wwww免费看| 欧美xxxx黑人xx丫x性爽| 亚洲精品一区蜜桃| 国产免费一级a男人的天堂| 国产精品三级大全| 免费看日本二区| 内射极品少妇av片p| 日韩欧美精品v在线| 观看美女的网站| 如何舔出高潮| 成年版毛片免费区| 精品一区二区免费观看| 亚洲欧美中文字幕日韩二区| 国产午夜精品一二区理论片| 久久99蜜桃精品久久| 一级毛片久久久久久久久女| 亚洲精品乱码久久久v下载方式| 国产精品1区2区在线观看.| 亚洲综合色惰| 午夜激情欧美在线| 看十八女毛片水多多多| 黑人高潮一二区| 人妻少妇偷人精品九色| 国产一区二区三区综合在线观看 | 亚洲欧美精品专区久久| 亚洲av电影在线观看一区二区三区 | 国产一区二区亚洲精品在线观看| 婷婷色av中文字幕| 人人妻人人澡人人爽人人夜夜 | 国产精品蜜桃在线观看| 肉色欧美久久久久久久蜜桃 | 能在线免费观看的黄片| 亚洲在久久综合| 亚洲av成人精品一二三区| 精品久久久精品久久久| 看黄色毛片网站| 2021天堂中文幕一二区在线观| 视频中文字幕在线观看| 亚洲天堂国产精品一区在线| 男人舔奶头视频| 日本爱情动作片www.在线观看| 亚洲不卡免费看| 欧美日韩综合久久久久久| 精品午夜福利在线看| 最近2019中文字幕mv第一页| 女人久久www免费人成看片| 一级毛片 在线播放| 精品欧美国产一区二区三| 国产激情偷乱视频一区二区| 国产午夜精品久久久久久一区二区三区| 久久99热这里只频精品6学生| 亚洲美女搞黄在线观看| 天天躁夜夜躁狠狠久久av| 亚洲av电影在线观看一区二区三区 | 国产大屁股一区二区在线视频| 免费观看av网站的网址| 免费看美女性在线毛片视频| 国产精品麻豆人妻色哟哟久久 | 国产精品蜜桃在线观看| 国产免费一级a男人的天堂| 搡老乐熟女国产| 亚洲人成网站在线播| 国产有黄有色有爽视频| 欧美日韩视频高清一区二区三区二| 18禁动态无遮挡网站| 老司机影院毛片| 日韩av免费高清视频| 亚洲人与动物交配视频| av福利片在线观看| 亚洲精品国产成人久久av| 免费看av在线观看网站| 欧美区成人在线视频| 国产av不卡久久| 久久99热6这里只有精品| 国产精品一区二区三区四区免费观看| 精品久久久久久久久av| 精品99又大又爽又粗少妇毛片| 国产老妇女一区| 一边亲一边摸免费视频| 午夜精品国产一区二区电影 | 蜜臀久久99精品久久宅男| 日本爱情动作片www.在线观看| videos熟女内射| 亚洲激情五月婷婷啪啪| 成人午夜高清在线视频| 啦啦啦韩国在线观看视频| 免费高清在线观看视频在线观看| 性色avwww在线观看| 国产欧美日韩精品一区二区| 久久久久精品久久久久真实原创| 国产精品一区www在线观看| 人妻一区二区av| 搡女人真爽免费视频火全软件| 久久久久网色| 国产成人一区二区在线| 日韩三级伦理在线观看| 青春草国产在线视频| 亚洲色图av天堂| 天堂√8在线中文| 韩国高清视频一区二区三区| 麻豆久久精品国产亚洲av| 青春草亚洲视频在线观看| 99热这里只有精品一区| 国产日韩欧美在线精品| 久久精品国产自在天天线| 一本一本综合久久| 国产毛片a区久久久久| 国产精品一区二区三区四区久久| 99热这里只有精品一区| 亚洲精品,欧美精品| 大片免费播放器 马上看| 精品一区二区三卡| 久久99蜜桃精品久久| 一区二区三区乱码不卡18| 午夜视频国产福利| 看非洲黑人一级黄片| 成年人午夜在线观看视频 | 日韩强制内射视频| 丝袜喷水一区| 美女主播在线视频| 国产黄色视频一区二区在线观看| 精品国产露脸久久av麻豆 | 欧美一级a爱片免费观看看| 久久99蜜桃精品久久| 国产在视频线精品| 少妇熟女aⅴ在线视频| 又粗又硬又长又爽又黄的视频| 亚洲一区高清亚洲精品| 国产高潮美女av| 国产av国产精品国产| 亚洲在线观看片| 婷婷色综合大香蕉| 亚洲最大成人手机在线| 白带黄色成豆腐渣| 激情五月婷婷亚洲| 又黄又爽又刺激的免费视频.| 蜜臀久久99精品久久宅男| 一级毛片我不卡| 中国美白少妇内射xxxbb| 美女国产视频在线观看| 韩国av在线不卡| 国产老妇女一区| 国产精品精品国产色婷婷| 日日啪夜夜爽| 26uuu在线亚洲综合色| 午夜爱爱视频在线播放| h日本视频在线播放| 国产一区二区亚洲精品在线观看| 日本一本二区三区精品| 看非洲黑人一级黄片| 国产精品一区www在线观看| 看十八女毛片水多多多| 一个人免费在线观看电影| 精品久久久噜噜| 精品久久久久久久久亚洲| 国产精品嫩草影院av在线观看| 搞女人的毛片| 丰满乱子伦码专区| 日韩视频在线欧美| 亚洲av成人精品一二三区| 亚洲精品成人av观看孕妇| 夜夜看夜夜爽夜夜摸| 亚洲av一区综合| 亚洲av成人精品一区久久| 中文欧美无线码| 国内精品宾馆在线| 波野结衣二区三区在线| 欧美性猛交╳xxx乱大交人| 国产日韩欧美在线精品| 日日撸夜夜添| 99热这里只有精品一区| 亚洲精品日韩av片在线观看| 亚洲成人久久爱视频| 亚洲成色77777| 久久久精品欧美日韩精品| 十八禁国产超污无遮挡网站| 久久精品久久久久久噜噜老黄| 少妇人妻精品综合一区二区| 日本免费在线观看一区| 天美传媒精品一区二区| 国产成人午夜福利电影在线观看| 一边亲一边摸免费视频| 亚洲精品一区蜜桃| 婷婷色综合大香蕉| 秋霞在线观看毛片| 男的添女的下面高潮视频| videossex国产| 久久久久免费精品人妻一区二区| 国产黄a三级三级三级人| 亚洲精品一区蜜桃| 亚洲欧美成人综合另类久久久| 国产麻豆成人av免费视频| 在线a可以看的网站| 亚洲欧洲日产国产| 欧美一级a爱片免费观看看| 搡女人真爽免费视频火全软件| 久久99热6这里只有精品| 两个人的视频大全免费| 国语对白做爰xxxⅹ性视频网站| 成人高潮视频无遮挡免费网站| 91久久精品国产一区二区三区| 国产大屁股一区二区在线视频| 婷婷色综合大香蕉| 99热全是精品| 22中文网久久字幕| 成人性生交大片免费视频hd| 亚洲av日韩在线播放| 大片免费播放器 马上看| 搞女人的毛片| 欧美日韩视频高清一区二区三区二| 秋霞伦理黄片| 黑人高潮一二区| 欧美成人午夜免费资源| 3wmmmm亚洲av在线观看| 久热久热在线精品观看| 亚洲成人精品中文字幕电影| 少妇熟女欧美另类| 日韩av不卡免费在线播放| 亚洲综合精品二区| 在线天堂最新版资源| 国精品久久久久久国模美| 国产亚洲精品av在线| 亚洲av成人av| 日韩视频在线欧美| 欧美精品国产亚洲| 亚洲av成人精品一区久久| 菩萨蛮人人尽说江南好唐韦庄| 极品教师在线视频| 精品人妻视频免费看| 秋霞在线观看毛片| 日产精品乱码卡一卡2卡三| 午夜爱爱视频在线播放| av网站免费在线观看视频 | 国产成人精品福利久久| 日日摸夜夜添夜夜爱| 国产精品不卡视频一区二区| 最近视频中文字幕2019在线8| 青春草视频在线免费观看| 精品一区二区免费观看| 精品久久久久久久久久久久久| 97人妻精品一区二区三区麻豆| 青春草国产在线视频| 日韩一本色道免费dvd| 日韩亚洲欧美综合| 大话2 男鬼变身卡| 2021少妇久久久久久久久久久| 国产黄片美女视频| 午夜福利在线观看吧| 看十八女毛片水多多多| 18禁在线无遮挡免费观看视频| 伊人久久精品亚洲午夜| av在线播放精品| 尾随美女入室| 免费大片18禁| 久久久久免费精品人妻一区二区| 久久综合国产亚洲精品| 人妻一区二区av| 乱人视频在线观看| 中国美白少妇内射xxxbb| or卡值多少钱| kizo精华| 男女国产视频网站| 中文资源天堂在线| 美女xxoo啪啪120秒动态图| 久久久精品免费免费高清| 精品午夜福利在线看| 真实男女啪啪啪动态图| 国产精品一区二区三区四区久久| 精品国内亚洲2022精品成人| 夫妻午夜视频| 精品久久久久久久人妻蜜臀av| 国产亚洲91精品色在线| av专区在线播放| 亚洲国产欧美在线一区| 日韩电影二区| 久久精品综合一区二区三区| 97超碰精品成人国产| 国产精品日韩av在线免费观看| av专区在线播放| 少妇的逼好多水| 欧美一级a爱片免费观看看| 亚州av有码| 国产一区有黄有色的免费视频 | 亚洲图色成人| 色吧在线观看| 夜夜爽夜夜爽视频| 亚洲欧洲日产国产| 日韩成人伦理影院| 嫩草影院新地址| 精品少妇黑人巨大在线播放| 91在线精品国自产拍蜜月| 天天一区二区日本电影三级| 国精品久久久久久国模美| 九草在线视频观看| 少妇猛男粗大的猛烈进出视频 | 亚洲国产精品专区欧美| 丝袜喷水一区| 有码 亚洲区| 成年女人在线观看亚洲视频 | 在线免费观看不下载黄p国产| 成人毛片a级毛片在线播放| 亚洲va在线va天堂va国产| 国产精品久久久久久久电影| 中文乱码字字幕精品一区二区三区 | 午夜亚洲福利在线播放| 少妇高潮的动态图| 欧美成人a在线观看| 成年版毛片免费区| 午夜免费激情av| 亚洲国产高清在线一区二区三| 国产亚洲精品久久久com| 大话2 男鬼变身卡| 97精品久久久久久久久久精品| 午夜日本视频在线| 美女高潮的动态| 国产 一区精品| 亚洲av不卡在线观看| 成人国产麻豆网| 亚洲不卡免费看| 亚洲av.av天堂| 老师上课跳d突然被开到最大视频| 色吧在线观看| 成人欧美大片| 欧美一区二区亚洲| 成年版毛片免费区| 大香蕉97超碰在线| av网站免费在线观看视频 | 天堂中文最新版在线下载 | 91精品国产九色| 久久精品久久久久久噜噜老黄| 丝瓜视频免费看黄片| www.色视频.com| 又黄又爽又刺激的免费视频.| 中文精品一卡2卡3卡4更新| 精品一区二区三卡| 最近视频中文字幕2019在线8| 亚洲,欧美,日韩| 日日摸夜夜添夜夜爱| av福利片在线观看| 久久久久网色| 人人妻人人澡欧美一区二区| 99久国产av精品| 日韩不卡一区二区三区视频在线| 国产高清三级在线| a级毛片免费高清观看在线播放| 亚洲人成网站在线观看播放| 青青草视频在线视频观看| 一个人看视频在线观看www免费| 亚洲国产精品成人综合色| 黄色日韩在线| 2021少妇久久久久久久久久久| 男的添女的下面高潮视频| 国产精品国产三级国产专区5o| 亚洲精品日韩av片在线观看| 精品人妻一区二区三区麻豆| 国产成年人精品一区二区| 联通29元200g的流量卡| 欧美性感艳星| 国产黄片美女视频| 中文乱码字字幕精品一区二区三区 | 性色avwww在线观看| 麻豆久久精品国产亚洲av| 非洲黑人性xxxx精品又粗又长| 亚洲国产精品sss在线观看| 欧美高清性xxxxhd video| 国产精品国产三级国产av玫瑰| 可以在线观看毛片的网站| av在线天堂中文字幕| 精品少妇黑人巨大在线播放| 日韩欧美精品免费久久| 一区二区三区高清视频在线| 成人鲁丝片一二三区免费| 久久精品久久久久久噜噜老黄| videos熟女内射| 国产黄a三级三级三级人| 中国美白少妇内射xxxbb| 丝袜美腿在线中文| 午夜福利在线观看免费完整高清在| 久99久视频精品免费| 亚洲自拍偷在线| 午夜精品国产一区二区电影 | 成人漫画全彩无遮挡| 日本熟妇午夜| 亚洲欧美清纯卡通| 久久久午夜欧美精品| 一级av片app| 亚洲国产av新网站| 可以在线观看毛片的网站| 一级毛片久久久久久久久女| 色网站视频免费| 国产人妻一区二区三区在| 2021天堂中文幕一二区在线观| 亚洲久久久久久中文字幕| 亚洲18禁久久av| 亚洲国产日韩欧美精品在线观看| 91精品伊人久久大香线蕉| av.在线天堂| 亚洲成人久久爱视频| 美女大奶头视频| 亚洲天堂国产精品一区在线| 激情五月婷婷亚洲| 成年版毛片免费区| 久久久久精品性色| 欧美日韩精品成人综合77777| 真实男女啪啪啪动态图| 色哟哟·www| a级一级毛片免费在线观看| 99九九线精品视频在线观看视频| 国产男女超爽视频在线观看| 亚洲人与动物交配视频| 又大又黄又爽视频免费| 黄色欧美视频在线观看| 视频中文字幕在线观看| 肉色欧美久久久久久久蜜桃 | 国产成人一区二区在线| 亚洲国产最新在线播放| 亚洲精品亚洲一区二区| 丝瓜视频免费看黄片| 国产黄a三级三级三级人| 不卡视频在线观看欧美| 插阴视频在线观看视频| 免费高清在线观看视频在线观看| 久久久久久久久久久丰满| 国产亚洲午夜精品一区二区久久 | 男女下面进入的视频免费午夜| 亚洲av成人精品一区久久| 最近视频中文字幕2019在线8| 亚洲经典国产精华液单| 成人av在线播放网站| 国产真实伦视频高清在线观看| 亚洲国产精品国产精品| 国产一区二区亚洲精品在线观看| 女人久久www免费人成看片| 中文乱码字字幕精品一区二区三区 | 国产老妇伦熟女老妇高清| 免费看a级黄色片| 精品人妻一区二区三区麻豆| 久久久精品欧美日韩精品| 国产精品1区2区在线观看.| 乱系列少妇在线播放| 3wmmmm亚洲av在线观看| 免费人成在线观看视频色| 国产高清有码在线观看视频| 成人毛片60女人毛片免费| 亚洲一区高清亚洲精品| 国产成年人精品一区二区| 欧美+日韩+精品| 99久久精品国产国产毛片| 亚洲乱码一区二区免费版| 老女人水多毛片| 美女xxoo啪啪120秒动态图| 熟女电影av网| 干丝袜人妻中文字幕| 美女黄网站色视频| 国产精品99久久久久久久久| 午夜免费激情av| 中文欧美无线码| 99热这里只有是精品50| 日本爱情动作片www.在线观看| 国产免费福利视频在线观看| 久热久热在线精品观看| 2018国产大陆天天弄谢| 女人久久www免费人成看片| 国产成人aa在线观看| 国产精品av视频在线免费观看| 精品久久久久久久人妻蜜臀av| 国产精品久久久久久av不卡| 亚洲av中文av极速乱| 亚洲美女搞黄在线观看| 国产亚洲最大av| 精品不卡国产一区二区三区| 国产亚洲一区二区精品| 国产成年人精品一区二区| 伊人久久精品亚洲午夜| av女优亚洲男人天堂| 最新中文字幕久久久久| 日韩一区二区视频免费看| 国精品久久久久久国模美| 久久久久久九九精品二区国产| 欧美成人午夜免费资源| or卡值多少钱| 亚洲国产高清在线一区二区三| 成人二区视频| 九色成人免费人妻av| 国产黄片美女视频| 日韩一区二区三区影片| 亚洲精品色激情综合| 熟妇人妻久久中文字幕3abv| 精品欧美国产一区二区三| 日韩伦理黄色片| 看黄色毛片网站| 一本久久精品| 97人妻精品一区二区三区麻豆| 深爱激情五月婷婷| 国内精品美女久久久久久| 午夜福利成人在线免费观看| 国产黄a三级三级三级人| 国产精品1区2区在线观看.| 人妻系列 视频| 国产精品人妻久久久影院| 欧美激情久久久久久爽电影| 久99久视频精品免费| 免费av毛片视频| 熟妇人妻久久中文字幕3abv| 成人av在线播放网站| 精品一区二区免费观看| 伦精品一区二区三区| 亚洲国产精品成人久久小说| 99久久精品热视频| 高清视频免费观看一区二区 | 97人妻精品一区二区三区麻豆| 亚洲丝袜综合中文字幕| 午夜福利在线观看吧| 日韩欧美精品v在线| 一级毛片aaaaaa免费看小| 91精品伊人久久大香线蕉| 只有这里有精品99| 大又大粗又爽又黄少妇毛片口| 六月丁香七月| 国产一区二区三区av在线| 可以在线观看毛片的网站| 午夜老司机福利剧场| 国产 一区精品| 80岁老熟妇乱子伦牲交| 亚洲精品国产av成人精品| 黄片wwwwww| 亚洲欧美成人精品一区二区| 国产精品嫩草影院av在线观看| 婷婷六月久久综合丁香| 欧美人与善性xxx| 午夜爱爱视频在线播放| 我的女老师完整版在线观看| 日本熟妇午夜| 国产精品久久久久久精品电影小说 | av天堂中文字幕网| 男人狂女人下面高潮的视频| 色综合站精品国产| 免费观看av网站的网址|