• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Processing,microstructure and mechanical properties of bimodal size SiCp reinforced AZ31B magnesium matrix composites

    2015-02-16 00:38:15*
    Journal of Magnesium and Alloys 2015年2期

    *

    aCollege of Engineering,Shenyang Agricultural University,Shenyang 110866,PR China

    bLiaoning Provincial Gem Quality Supervision and Inspection Center,Shenyang 110000,PR China

    cCollege of Chemical Engineering and Materials Science,Eastern Liaoning University,Dandong 118003,PR China

    Processing,microstructure and mechanical properties of bimodal size SiCp reinforced AZ31B magnesium matrix composites

    M.J.Shena,*,M.F.Zhangb,W.F.Yingc

    aCollege of Engineering,Shenyang Agricultural University,Shenyang 110866,PR China

    bLiaoning Provincial Gem Quality Supervision and Inspection Center,Shenyang 110000,PR China

    cCollege of Chemical Engineering and Materials Science,Eastern Liaoning University,Dandong 118003,PR China

    The bimodal size SiC particulates(SiCp)reinforced magnesium matrix composites with different ratios of micron SiCp and nano SiCp(MSiCp:N-SiCp=14.5:0.5,14:1,and 13.5:1.5)were prepared by semisolid stirring assisted ultrasonic vibration method.The AZ31B alloy and all as-cast SiCp/AZ31B composites were extruded at 350°C with the ratio of 12:1.Microstructural characterization of the extruded M14+N1(MSiCp:N-SiCp=14:1)composite revealed the uniform distribution of bimodal size SiCp and signifcant grain refnement.Optical Microscopy(OM)observation showed that,compared with the M14.5+N0.5(M-SiCp:N-SiCp=14.5:0.5)composite,there are more recrystallized grains in M14+N1(M-SiCp:N-SiCp=14:1)and M13.5+N1.5(M-SiCp:N-SiCp=13.5:1.5)composites,but in comparison to the M13.5+N1.5 composite,the average grain size of the M14+N1 composite is slightly decreased.The evaluation of mechanical properties indicated that the yield strength and ultimate tensile strength of the M14+N1 composite were obviously increased compared with other composites.

    Magnesium matrix composite;Microstructure;Mechanical properties

    1.Introduction

    The SiCp reinforced magnesium matrix composites (MMCs)have obtained superior mechanical and physical properties in comparison to the unreinforced alloy,such as high specifc strength,high hardness,well wear resistance and low coeffcient of thermal expansion(CTE).Therefore,many research works about the preparation methods and processing technique of the SiCp reinforced metal matrix composites have been published in recent years.In general,the SiCp reinforced magnesium matrix composites are fabricated by disintegrated melt deposition,expensive powder metallurgy, friction stir processing and mechanical milling methods.

    Single and various sizes SiCp reinforced magnesium matrix composites are considered as excellent structural materials to be applied in the aerospace and automobile industry.Moustafa [1]had successfully prepared aluminium matrix composites reinforced with various sizes of SiCp by squeeze casting method under the protection of argon gas.Moreover,he also found that the large-sized particles reinforced composites had much lower porosity density,higher relative density and superior mechanical properties comparing with the small-sized particles reinforced composites,which can be ascribed to the good interface bonding between the matrix and the reinforcement.Deng et al.[2]fabricated the submicron-SiCp/ AZ91 magnesium matrix composites by using stir castingmethod,and found thatthe addition of submicron-SiCp(2 vol.%)led to a simultaneous improvement in the thermal stability,micro-hardness,elastic modulus and 0.2% yield strength.Wang et al.[3]fabricated the 10 vol.%SiCp/ Mg-Zn-Ca composites by using stir casting method,and found that the addition of micron-SiCp resulted in signifcant improvement on tensile properties of Mg-Zn-Ca alloy due to the coeffcient of thermal expansion mismatch between the matrix and the particles,effective load transferand Hall-Petch strengthening mechanisms.Therefore,we can know that the addition of SiCp has a signifcant effect on the mechanical properties and microstructures of the metal matrix composites.In fact,our previous works have shown that the mechanical properties and damping capacities of the matrix alloys reinforced with micron or nano SiCp were greatly improved[4-6].The above-mentioned considerations have led us to conceive a magnesium matrix composite reinforced with bimodal size SiC particles,and recently our work has suggested that the superior mechanical properties were obtained in the micron and submicron SiCp reinforced magnesium matrix composites[7].However,so far there are still no detailed works have been reported about the infuence of micron and nano bimodal sizes SiCp on microstructures and mechanical properties of MMCs.Therefore,our present main work is to study the effect of volume ratios of micron SiCp and nano SiCp on the microstructures and mechanical properties of bimodal size SiCp/AZ31B composites,and explain the strengthening reason ofthebimodalsizeSiCp/AZ31B composites.

    2.Experimental procedure

    An ingot of AZ31B magnesium alloy with a nominal composition of Mg-2.8Al-0.8Zn-0.3Mn was used as the matrix alloy,and two sizes of SiC particles(nano and micron)were employed as the reinforcements in the present work.The average sizes of micron and nano SiC particles(respectively denoted as“M-SiCp and N-SiCp”)are about 10 μm and 60 nm.Three kinds of designations for the bimodal size SiCp/ AZ31B composites were summarized in Table 1.The bimodal size SiCp reinforced AZ31B magnesium matrix composites were fabricated with a molten metal of magnesium by semisolid stirring assisted ultrasonic vibration method.In each experiment,about 1 kg of AZ31B alloy were first melt at 720°C and then cooled to 620°C.Subsequently,the micron and nano SiC particles were added into semi-solid melt,the molten slurry of SiCp and the AZ31B alloy was stirred in a protective atmosphere of CO2and SF6to avoid burning.After semisolid stirring for 10 min,the mixture of melt and bimodalsize SiCp was rapidly reheated to 720°C,and then the slurry was ultrasonically processed at 500 W power level for 20 min before removing the ultrasonic probe from the melt.After the ultrasonic vibration,the melt mixture of SiCp and the AZ31B alloy was poured into a preheated steel mould(450°C)and allowed to solidify under 100 MPa pressure to obtain bimodal size SiCp/AZ31B composite ingots without porosity.The cast billets were homogenized at 400°C for 12 h before hot extrusion,and then produced about 25 cm of rods at 350°C with an extrusion ratio of 12:1.

    Table 1Composites designations.

    The microstructures of the samples were observed by using Optical Microscopy(OM)(PMG-3,Olympus,Japan),Scanning Electron Microscope(SEM)(Quanta 200FEG,FEI Co.Ltd.,USA)and Transmission Electron Microscopy(TEM) (HR-TEM,Tecnai G2F30,USA).The phase compositions of the SiCp/AZ31B composite,reinforcement and AZ31B alloy were examined with X-ray Diffraction(XRD)(D/max-rB, Rigaku,Japan)using a Cu Kα source.For the SEM and OM study,the specimens were sectioned parallel to extrusion direction and prepared by the conventional mechanical grinding, polishing and etched in acetic picral[2 ml acetic acid+2 g picric acid+20 ml ethanol(95%)].The average grain size of each sample was obtained by using the mean linear intercept method.The room temperature tensile tests were carried out on an Instron Series 5569 test machine with the tensile rate of 0.5 mm/min.In this experiment,the average tensile data of each sample were obtained from 3 to 5 tests at the same condition.The dimensions of tensile specimens were given in our previous work[4].

    3.Result and discussion

    3.1.Phase composition analysis

    Fig.1.XRD patterns of SiCp,matrix alloy and SiCp/AZ31B composites.

    Fig.1 shows the X-ray diffraction patterns of the AZ31B alloy,reinforcement and SiCp/AZ31B composite.According to the XRD patterns,compared with the ASTM cards,it can be concluded that the micron SiC particle is α-SiCp with hexagonal structure,while nano SiC particle is β-SiCp with facecentered cubic structure.No matter how much the nano SiCp content is,the bimodal size SiCp/AZ31B composite is only composed of Mg and α-SiC phases.The intensity of peaks corresponding to the AZ31B alloy and M-SiCp is very strong. Unexpectedly,as the main part of the bimodal size SiCp/ AZ31B composites,no peaks associated with β-SiCp appear in the XRD pattern.This is probably due to XRD can only detect compositions of phases present at concentrations greater than 5%.

    3.2.Microstructure observation

    Fig.3.Grain sizes of AZ31B alloy and SiCp/AZ31B composites after hot extrusion.

    Fig.2.Optical micrographs of as-extruded alloy and SiCp/AZ31B composites.(a)AZ31B alloy,(b)M14.5+N0.5 composite,(c)M14+N1 composite,(d) M13.5+N1.5 composite.

    Fig.2 shows the optical micrographs of the monolithic AZ31B alloy and bimodal size SiCp/AZ31B composites after hot extrusion.Fig.3 shows the average grain sizes of the AZ31B alloy and bimodal size SiCp/AZ31B composites. Compared with the AZ31B alloy,the grain sizes of all the asextruded bimodal size SiCp/AZ31B composites are much smaller.This indicates that the addition of the bimodal size SiCp has a signifcant infuence on reducing grain size of the matrix.When the total volume fraction of SiCp is 15%,the grains of the M14+N1 and the M13.5+N1.5 composites are much fner than that of the M14.5+N0.5 composite.However,in comparison to the M13.5+N1.5 composite,the average grain size of the M14+N1 composite is slightly decreased.This reveals that the grain size of the matrix in the bimodal size SiCp/AZ31B composites frstly decreased and then increased when the volume fraction of nano SiCp increased from 0.5 vol.%to 1.5 vol.%.Moreover,the presence of fner equiaxed grains indicates that the dynamic recrystallization(DRX)occurred in the bimodal size SiCp/AZ31B composite during hot extrusion.Compared with the M14.5+N0.5 composite,the DRX grains of the M14+N1 and the M13.5+N1.5 composites become much fuller,and the scale of grain size distribution is reduced,as shown in Fig.2(c)and(d).However,the fne-grained and large-grained zones between the SiCp can be observed in the M13.5+N1.5composites.When the nano SiCp content is 1 vol.%,the average size of the obtained grains is the smallest in the present composites,which can be explained as follows:(1)The addition of nano SiCp has a signifcant pinning effect on grain boundary,which can inhibit or delay the recrystallization grain growth of the matrix.(2)The size of nano SiCp is obviously smaller than the size of micron SiCp.Therefore,With the increase of nano SiCp volume fraction,the amount of SiCp also increased when the total volume fraction of SiCp is 15%, which can introduce the larger driving force and much more stored energy to promote DRX nucleation of matrix[8].As a result,this can effectively restrict the grain growth during the hot extrusion.When the volume fraction of nano SiCp increased to 1.5%,the agglomeration zones appeared,and the average grain size of the M13.5+N1.5 composite was slightly increased.However,the N-SiCp cannot be clearly found because of the lower magnifcation.Therefore,the SEM analysis is required in this present work,as shown in Fig.4. Thiswillresultthatthe average grain size ofthe M13.5+N1.5 composite was slightly larger than that of the M14+N1 composite in present work.(3)The added micron SiCp may stimulate nucleation at the early stage of deformation and then restrict the grain growth during the hot deformation[9].In addition,we can observe that the sizes of grains around micron SiCp are smaller than that far away from micron SiCp zones.The reason is that the large-sized micron SiCp are favourable to grain refnement by promoting DRX nucleation[7].

    Some researchers have published about the effect of particle sizes on DRX during hot deformation.The M-SiCp could stimulate dynamic recrystallization of magnesium alloy during hot extrusion,which caused the obvious grains refnement [10].However,the N-SiCp(~60 nm)could delay or hinder recrystallization of magnesium alloy,which was due to the pin grain boundary effect of fner particles(<1 μm)during hot deformation[11].We previous work also has indicated the sameconclusiononsubmicron-SiCpreinforcedAZ91D magnesium matrix composite[12].In the present researches, the grains of bimodal size SiCp/AZ31B composites have been signifcantly refned.This can be attributed to the recrystallization nucleation of M-SiCp and the pinning effect of N-SiCp.

    The SEM graphs of the bimodal size SiCp/AZ31B composites at low and high magnifcation are shown in Fig.4.The white and grey phases represent M-SiCp and the matrix at low magnifcation,respectively.It can be seen that the distribution of micron SiCp becomes relative homogeneous in the bimodal size SiCp/AZ31B composites at low magnifcation,which suggests that the hot extrusion has a signifcant effect on improving the distribution of M-SiCp.The reason for such homogeneous distribution of particles is that the hot extrusion can impel the matrix fow into the reinforcement clusters.This because of fow velocity of the matrix is faster than that of MSiCp.From Fig.4 it also can be seen that most of SiC particles were distributed along the extrusion direction,this reason may be that the strong plastic deformation of the matrix impel SiCp to distribute along the extrusion direction during hot extrusion. The morphology and the distribution of N-SiCp in the SiCp/ AZ31B composites are shown in high magnifcation graphs. With increasing the volume fraction of N-SiCp,the amount of N-SiCp was gradually increased.It can also be found that the N-SiC particles were homogeneous distributed in the matrix when nano SiCp content did not overrun 1 vol.%,as shown in Fig.4(d)and(e).However,the particles cluster zone and the N-SiCp rich region appeared with the volume fraction of NSiCp increased to 1.5%,as shown in Fig.4(f).Compared with the M14.5+N0.5 and the M14+N1 composites,the wettability between the N-SiCp and the matrix in the M13.5+N1.5 composite is poor,as shown in higher magnifcation SEM micrograph(in Fig.4(f)).It illustrates that the poor interfacial bonding existed between the N-SiCp and thematrix in the M13.5+N1.5 composite.Moreover,when the volume fraction of N-SiCp increased to 1.5%,the agglomerating of nano SiCp causes the rich of micron SiCp.The images are shown in Fig.4(f).

    Fig.4.SEM micrographs of as-extruded SiCp/AZ31B composites.(a)M14.5+N0.5 composite,(b)M14+N1 composite,(c)M13.5+N1.5 composite,(d)high magnifcation of(a),(e)high magnifcation of(b),(f)high magnifcation of(c).

    Fig.5.Tensile properties of AZ31B alloy and SiCp/AZ31B composites after hot extrusion.

    3.3.Mechanical properties

    The tensile properties of the AZ31B alloy and bimodal size SiCp/AZ31B composites after hot extrusion are shown in Fig.5.Compared with the AZ31B alloy,the yield strength and ultimate tensile strength of the bimodal size SiCp/AZ31B composites were obviously increased,while the elongation to fracture was decreased.The enhancement of yield strength is mainly attributed to the low degree of porosity,relative homogeneous distribution of particles and grain refnement which lead to transfer of applied tensile load to the SiCp in the present work.

    It also can be found from Fig.5 that the yield strength and ultimate tensile strength of bimodal size SiCp/AZ31B composites frstly increased and then decreased with increasing the content(vol.%)of nano SiCp when the total volume fraction of SiCp is 15%.It could be attributed to the signifcant grain refnement when 1 vol.%of nano SiCp were added.The decrease of grain size leads to increasing the yield strength of the matrix,which can be described by Hall-Petch relation [13]:σy=σ0+Ky/d1/2,where σ0andKyare material constants,dis the average grain size,and σyis the yield strength. In addition,the multidirectional thermal stress generated at the interface between the particle and the matrix,this is attributed to the great difference on coeffcient of thermal expansion (CTE)berween the SiCp and the matrix.And the addition of micron and nano SiCp may induce high dislocation density in the composite[14,15].The above reasons lead to the increase of the yield strength in the bimodal size SiCp/AZ31B composites.However,the yield strength value of the SiCp/AZ31B composite was reduced when the volume fraction of nano SiCp increased from 1 vol.%to 1.5 vol.%.This could be attributed to the signifcant increase of the agglomerating zones with the nano SiCp content further increased,as shown in Fig.4(f).We previous work has reported that SiCpagglomeration would weak the strengthened effect of the reinforcements[16].Moreover,the poor interfacial bonding and wettability appeared when nano SiCp content increased from 1 vol.%to 1.5 vol.%,which is also the reason for reducing the yield strength of the matrix.

    Fig.6.Fracture surface of the SiCp/AZ31B composites.(a)M14.5+N0.5 composite,(b)M14+N1 composite,(c)M13.5+N1.5 composite.

    3.4.Fracture observation

    The fracture surface of bimodal size SiCp/AZ31B composites is shown in Fig.6,it indicates that the composites brittle fractured during room temperature tensile.The relatively low strain as seen in the tensile properties(Fig.5)is the indication of the premature failure due to interface debonding between the M-SiCp and matrix.Many debonded M-SiCp are present on the fracture surface of composite,which are the main reasons for poor ductility of the SiCp/AZ31B composites in the present work.Therefore,the interface debonding of MSiCp results in the brittle fracture of the bimodal size SiCp/ AZ31B composites.Moreover,N-SiCp clusters as shown in Fig.6(c)also is the main reasons for fast failure,which leads to poor mechanical properties of the M13.5+N1.5 composite. The SEM observation on the fractured surfaces of the M13.5+N1.5 composites is consistent with the obtained distribution of N-SiCp given in the previous section.

    4.Conclusions

    The infuence of volume ratio of bimodal size SiCp on microstructures and mechanical properties of the SiCp/AZ31B composites fabricated by semisolid stirring assisted ultrasonic vibration was investigated,and the main conclusions can be summarized as follows:

    (1)The addition of bimodal size SiCp leads to the signifcant refnement of the matrix grains in the SiCp/AZ31B composite.Compared with the M14.5+N0.5 composite,the DRX of the M14+N1 and the M13.5+N1.5 composites become much fuller,and the size of the grains is also reduced.However,the average grain size of the M14+N1 compositeisslightly decreased compared with the M13.5+N1.5 composite.

    (2)The nano SiC particles were homogeneous distributed in the matrix when the nano SiCp content did not overrun 1 vol.%.However,the particles cluster zone and the NSiCp rich region appeared with the volume fraction of the N-SiCp increased to 1.5%.

    (3)Both of the yield strength and ultimate tensile strength frstly increased and then decreased with the increase of nano SiC particles volume fractions,while the elongation to fracture was gradually decreased when the total volume fraction of SiCp is 15%.

    (4)The increase in the yield strength of the bimodal size SiCp/AZ31B composites is attributed to the uniform distribution of the bimodal size SiCp and the obvious grain refnement,while this grain refnement is caused by the combination effect of the dynamic recrystallization and the pinning effect on grain boundary.

    [1]S.F.Moustafa,Z.Abdel-Hamid,A.M.Abd-Elhay,Mater.Lett.53(2002) 244-249.

    [2]K.K.Deng,K.Wu,Y.W.Wu,K.B.Nie,M.Y.Zheng,J.Alloys Compd. 504(2010)542-547.

    [3]X.J.Wang,K.B.Nie,X.S.Hu,Y.Q.Wang,X.J.Sa,K.Wu,J.Alloys Compd.532(2012)78-85.

    [4]K.K.Deng,K.Wu,X.J.Wang,Y.W.Wu,X.S.Hu,M.Y.Zheng, W.M.Gan,H.G.Brokmeier,Mater.Sci.Eng.A 527 (2010) 1630-1635.

    [5]H.Ferkel,B.L.Mordike,Mater.Sci.Eng.A 298(2001)193-199.

    [6]B.W.Chua,L.Lu,M.Lai,Compos.Struct.47(1999)595-601.

    [7]K.K.Deng,C.J.Wang,X.J.Wang,Y.W.Wu,K.B.Nie,K.Wu,Composites Part A 43(2012)1280-1284.

    [8]V.Kevorkuan,Mater.Sci.Tech.19(2003)1386-1390.

    [9]J.Lan,Y.Yang,X.C.Li,Mater.Sci.Eng.A 386(2004)284-290.

    [10]X.J.Wang,K.B.Nie,X.S.Hu,X.J.Sa,K.Wu,M.Y.Zheng,Mater.Sci. Eng.A 534(2012)60-67.

    [11]K.B.Nie,X.J.Wang,X.S.Hu,L.Xu,K.Wu,M.Y.Zheng,Mater.Sci. Eng.A 528(2011)5278-5282.

    [12]K.K.Deng,X.J.Wang,C.J.Wang,J.Y.Shi,X.S.Hu,K.Wu,Mater.Sci. Eng.A 553(2012)74-79.

    [13]W.S.Miller,F.J.Humphreys,Scr.Metal.Mater.25(1991)33-38.

    [14]Y.Yang,J.Lan,X.C.Li,380,Mater.Sci.Eng.A(2004)378-383.

    [15]S.F.Hassan,M.Gupta,Mater.Sci.Tech.20(2005)1383-1388.

    [16]K.K.Deng,X.J.Wang,W.M.Gan,Y.W.Wu,K.B.Nie,K.Wu, M.Y.Zheng,H.G.Brokmeier,Mater.Sci.Eng.A 528(2011) 1707-1712.

    Received 8 February 2015;accepted 8 May 2015 Available online 20 June 2015

    *Corresponding author.Tel./fax:+86 2431530612.

    E-mail addresses:smjiekaka@163.com(M.J.Shen),yingweifengneu@ 163.com(W.F.Ying).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University.

    http://dx.doi.org/10.1016/j.jma.2015.05.002.

    2213-9567/Copyright 2015,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright 2015,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    亚洲国产精品成人久久小说| 国产女主播在线喷水免费视频网站| 国产真实伦视频高清在线观看| 精品久久久久久久久av| 久久久色成人| 精品人妻一区二区三区麻豆| 夫妻性生交免费视频一级片| 国内揄拍国产精品人妻在线| 免费观看性生交大片5| 亚洲成人久久爱视频| 亚洲人成网站在线播| 国产成人一区二区在线| 久久久午夜欧美精品| 国产av不卡久久| 18禁在线无遮挡免费观看视频| 久久精品久久久久久久性| 国产伦精品一区二区三区四那| av福利片在线观看| 久久久久久伊人网av| 丝袜美腿在线中文| 日日啪夜夜爽| 波野结衣二区三区在线| 少妇人妻久久综合中文| 啦啦啦中文免费视频观看日本| 国产乱来视频区| 成人午夜精彩视频在线观看| 婷婷色麻豆天堂久久| 亚洲精品乱久久久久久| 毛片女人毛片| 欧美一级a爱片免费观看看| 国产老妇女一区| 少妇人妻 视频| 免费观看性生交大片5| 久久99热6这里只有精品| 国产在线男女| 国产精品福利在线免费观看| 校园人妻丝袜中文字幕| 久久久久久久久久久丰满| 一本久久精品| 亚洲美女搞黄在线观看| 在线天堂最新版资源| 亚洲怡红院男人天堂| 一个人观看的视频www高清免费观看| 一级av片app| 中文资源天堂在线| 国产极品天堂在线| 午夜亚洲福利在线播放| 亚洲精品国产av蜜桃| 日韩,欧美,国产一区二区三区| 国产 一区精品| 在线观看美女被高潮喷水网站| 国产精品国产三级国产专区5o| 久热这里只有精品99| 亚洲精品aⅴ在线观看| 五月玫瑰六月丁香| 国产美女午夜福利| 午夜免费观看性视频| 国产精品一区二区性色av| 各种免费的搞黄视频| 国产亚洲精品久久久com| 男女那种视频在线观看| 身体一侧抽搐| 欧美国产精品一级二级三级 | 九九久久精品国产亚洲av麻豆| 少妇猛男粗大的猛烈进出视频 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 尾随美女入室| 91aial.com中文字幕在线观看| 一级毛片久久久久久久久女| 亚洲人成网站在线播| 国产白丝娇喘喷水9色精品| 男女下面进入的视频免费午夜| 一区二区三区四区激情视频| 97在线人人人人妻| 国产精品一区二区性色av| 一级片'在线观看视频| 在线免费十八禁| 久久精品熟女亚洲av麻豆精品| 三级国产精品欧美在线观看| 激情 狠狠 欧美| 免费在线观看成人毛片| 岛国毛片在线播放| 一本色道久久久久久精品综合| 日本一二三区视频观看| 亚洲av中文字字幕乱码综合| 久久国产乱子免费精品| 亚洲欧美日韩卡通动漫| 最近最新中文字幕大全电影3| 免费观看av网站的网址| a级毛片免费高清观看在线播放| 狂野欧美白嫩少妇大欣赏| 亚洲av中文字字幕乱码综合| av国产免费在线观看| 亚洲,一卡二卡三卡| 国产91av在线免费观看| 国产av码专区亚洲av| 亚洲自偷自拍三级| 国产淫片久久久久久久久| 秋霞伦理黄片| 国产真实伦视频高清在线观看| 国产高清有码在线观看视频| 国产 一区 欧美 日韩| 亚洲欧美一区二区三区黑人 | 精品久久久久久电影网| 下体分泌物呈黄色| 在线精品无人区一区二区三 | 在线观看一区二区三区激情| 永久网站在线| 成人漫画全彩无遮挡| 婷婷色av中文字幕| 女人久久www免费人成看片| 菩萨蛮人人尽说江南好唐韦庄| 最后的刺客免费高清国语| 国产日韩欧美在线精品| 欧美精品一区二区大全| 久久久精品94久久精品| 欧美极品一区二区三区四区| 成人毛片60女人毛片免费| 亚洲国产欧美人成| 韩国高清视频一区二区三区| 在线a可以看的网站| 日韩三级伦理在线观看| 亚洲成人一二三区av| h日本视频在线播放| 97超视频在线观看视频| 99热6这里只有精品| 在线精品无人区一区二区三 | 18禁在线无遮挡免费观看视频| 日本一本二区三区精品| 亚洲一区二区三区欧美精品 | 大陆偷拍与自拍| 大码成人一级视频| 色视频www国产| 国产白丝娇喘喷水9色精品| 18禁裸乳无遮挡动漫免费视频 | 亚洲熟女精品中文字幕| 一区二区三区乱码不卡18| 天堂网av新在线| 亚洲一区二区三区欧美精品 | 制服丝袜香蕉在线| 一级毛片久久久久久久久女| 男女那种视频在线观看| 国产 一区精品| 欧美成人一区二区免费高清观看| 小蜜桃在线观看免费完整版高清| 精品国产乱码久久久久久小说| 久久午夜福利片| 午夜精品一区二区三区免费看| 久久精品人妻少妇| 美女内射精品一级片tv| 少妇的逼水好多| 成人黄色视频免费在线看| 一个人观看的视频www高清免费观看| 真实男女啪啪啪动态图| 中文欧美无线码| 六月丁香七月| 国产精品人妻久久久久久| 看非洲黑人一级黄片| 插阴视频在线观看视频| 国产成人一区二区在线| 中文精品一卡2卡3卡4更新| 免费在线观看成人毛片| 三级男女做爰猛烈吃奶摸视频| xxx大片免费视频| 最近的中文字幕免费完整| 成人高潮视频无遮挡免费网站| 菩萨蛮人人尽说江南好唐韦庄| 中文乱码字字幕精品一区二区三区| 尾随美女入室| 777米奇影视久久| 最近2019中文字幕mv第一页| 看十八女毛片水多多多| 丰满乱子伦码专区| 高清在线视频一区二区三区| 国产精品无大码| 一区二区三区免费毛片| 亚洲av中文字字幕乱码综合| 少妇人妻 视频| 亚洲国产色片| 久久久久久久久久久免费av| 久久影院123| 九九爱精品视频在线观看| 亚洲av日韩在线播放| 国产综合精华液| 直男gayav资源| 成人毛片60女人毛片免费| 观看美女的网站| 真实男女啪啪啪动态图| 欧美bdsm另类| 下体分泌物呈黄色| 九草在线视频观看| 激情五月婷婷亚洲| 成人亚洲精品av一区二区| 午夜福利在线观看免费完整高清在| 国产视频首页在线观看| 国产亚洲av片在线观看秒播厂| 午夜福利在线在线| 国模一区二区三区四区视频| 亚洲性久久影院| 免费电影在线观看免费观看| 国产一级毛片在线| 欧美精品人与动牲交sv欧美| 亚洲综合精品二区| 精品酒店卫生间| 九色成人免费人妻av| 国产精品伦人一区二区| 久久热精品热| 99久久精品国产国产毛片| 国产在线男女| 一区二区av电影网| 一级黄片播放器| 国产高清不卡午夜福利| 久久久久久久午夜电影| 丝袜喷水一区| 亚洲熟女精品中文字幕| 国产中年淑女户外野战色| 黄色日韩在线| 在线观看美女被高潮喷水网站| av在线老鸭窝| 国内揄拍国产精品人妻在线| 国产69精品久久久久777片| 欧美三级亚洲精品| 亚洲国产精品成人综合色| 秋霞伦理黄片| 国产欧美另类精品又又久久亚洲欧美| 丝瓜视频免费看黄片| 亚洲精品视频女| 性插视频无遮挡在线免费观看| 精品久久久久久久人妻蜜臀av| 久久久成人免费电影| 国产精品国产三级国产专区5o| 国产av码专区亚洲av| 青青草视频在线视频观看| 真实男女啪啪啪动态图| 亚洲怡红院男人天堂| 国产精品国产三级国产专区5o| 高清午夜精品一区二区三区| 午夜福利视频精品| 一个人看视频在线观看www免费| 国产成人精品婷婷| 久久精品国产a三级三级三级| 久久精品人妻少妇| 在线 av 中文字幕| 最近中文字幕2019免费版| 深爱激情五月婷婷| 亚洲人成网站在线观看播放| 中文精品一卡2卡3卡4更新| 欧美日韩亚洲高清精品| 亚洲欧美精品专区久久| 一级黄片播放器| av.在线天堂| 精品少妇久久久久久888优播| 欧美一级a爱片免费观看看| 久久精品国产自在天天线| 国产 精品1| 99精国产麻豆久久婷婷| 嫩草影院新地址| 中文字幕久久专区| 日日撸夜夜添| 蜜桃久久精品国产亚洲av| 日产精品乱码卡一卡2卡三| 2022亚洲国产成人精品| 成人无遮挡网站| 91狼人影院| 国产av不卡久久| 直男gayav资源| 国产一区二区三区av在线| 国产片特级美女逼逼视频| 三级经典国产精品| 国产亚洲最大av| 免费黄频网站在线观看国产| 亚洲欧美成人综合另类久久久| 亚洲欧美日韩另类电影网站 | 免费高清在线观看视频在线观看| 精品人妻熟女av久视频| 亚洲欧美精品自产自拍| 欧美日韩国产mv在线观看视频 | 精华霜和精华液先用哪个| 久久久久国产精品人妻一区二区| 男的添女的下面高潮视频| 久久久久久久精品精品| 18+在线观看网站| 免费不卡的大黄色大毛片视频在线观看| 国产一级毛片在线| 欧美日韩在线观看h| 国产淫片久久久久久久久| 色网站视频免费| av在线播放精品| 熟女av电影| 九色成人免费人妻av| 国产大屁股一区二区在线视频| av免费观看日本| 99热全是精品| freevideosex欧美| 99热6这里只有精品| av在线蜜桃| 免费观看无遮挡的男女| 国产欧美亚洲国产| 黄色怎么调成土黄色| 亚洲av中文字字幕乱码综合| 一级a做视频免费观看| 老女人水多毛片| 免费播放大片免费观看视频在线观看| 中文字幕制服av| 亚洲欧美精品专区久久| 久久精品久久久久久久性| 天天躁夜夜躁狠狠久久av| 久久久久九九精品影院| 欧美日韩综合久久久久久| 亚洲,一卡二卡三卡| 亚洲国产精品999| 国产黄a三级三级三级人| 中文字幕人妻熟人妻熟丝袜美| 精华霜和精华液先用哪个| 99热这里只有是精品在线观看| 午夜福利网站1000一区二区三区| 大香蕉97超碰在线| 国产午夜福利久久久久久| 国产成人a∨麻豆精品| 内射极品少妇av片p| 久久久精品94久久精品| 久久久欧美国产精品| 久久久国产一区二区| 免费黄频网站在线观看国产| 亚洲一级一片aⅴ在线观看| 熟妇人妻不卡中文字幕| 日韩伦理黄色片| 成人鲁丝片一二三区免费| 久久久午夜欧美精品| 午夜爱爱视频在线播放| 国产乱人视频| 国产淫片久久久久久久久| 免费观看在线日韩| 国产亚洲精品久久久com| 精品国产露脸久久av麻豆| 亚洲婷婷狠狠爱综合网| 人体艺术视频欧美日本| 一本久久精品| 天堂中文最新版在线下载 | 国产成人精品福利久久| 亚洲,一卡二卡三卡| 久久精品国产亚洲av涩爱| 欧美一区二区亚洲| 不卡视频在线观看欧美| 一区二区三区四区激情视频| 99久久九九国产精品国产免费| 午夜免费鲁丝| 国产成人精品福利久久| 嫩草影院入口| 插逼视频在线观看| 大香蕉97超碰在线| 1000部很黄的大片| 亚洲欧美中文字幕日韩二区| 成人毛片a级毛片在线播放| 国产精品熟女久久久久浪| 欧美三级亚洲精品| 麻豆成人午夜福利视频| 日韩一本色道免费dvd| 亚洲成人久久爱视频| 午夜福利高清视频| 少妇熟女欧美另类| 午夜日本视频在线| 国产精品国产三级国产专区5o| 午夜日本视频在线| 欧美3d第一页| av免费观看日本| 如何舔出高潮| 一区二区av电影网| 最近最新中文字幕大全电影3| 高清日韩中文字幕在线| 国产亚洲av片在线观看秒播厂| 色吧在线观看| 成人美女网站在线观看视频| 日本猛色少妇xxxxx猛交久久| 精品视频人人做人人爽| 国产亚洲午夜精品一区二区久久 | 嫩草影院新地址| 伊人久久精品亚洲午夜| 91久久精品国产一区二区成人| 少妇高潮的动态图| 最后的刺客免费高清国语| 美女脱内裤让男人舔精品视频| 97热精品久久久久久| 插逼视频在线观看| 国产淫片久久久久久久久| 亚洲av欧美aⅴ国产| 午夜爱爱视频在线播放| 国产精品国产三级专区第一集| 一级黄片播放器| 久久99精品国语久久久| 国产一级毛片在线| 九九久久精品国产亚洲av麻豆| 国产乱人偷精品视频| 我的女老师完整版在线观看| 成人美女网站在线观看视频| 一级毛片电影观看| 国产精品99久久久久久久久| 一个人观看的视频www高清免费观看| 成人亚洲精品一区在线观看 | 久久久久国产精品人妻一区二区| freevideosex欧美| 欧美成人精品欧美一级黄| 亚洲精品成人久久久久久| 久久久久久久国产电影| 亚洲av男天堂| 日韩视频在线欧美| 嫩草影院精品99| 尾随美女入室| 亚洲国产精品成人综合色| 波野结衣二区三区在线| 热99国产精品久久久久久7| 麻豆久久精品国产亚洲av| 成年人午夜在线观看视频| 国产高潮美女av| 51国产日韩欧美| 国产黄色免费在线视频| 成人二区视频| www.色视频.com| 99热这里只有是精品50| av一本久久久久| 亚洲,欧美,日韩| 久久精品久久精品一区二区三区| 国产白丝娇喘喷水9色精品| 亚洲国产最新在线播放| 高清午夜精品一区二区三区| 熟女人妻精品中文字幕| 少妇人妻一区二区三区视频| 久久精品国产鲁丝片午夜精品| 爱豆传媒免费全集在线观看| 小蜜桃在线观看免费完整版高清| 日本爱情动作片www.在线观看| h日本视频在线播放| 男插女下体视频免费在线播放| 亚洲欧美一区二区三区黑人 | 国产精品熟女久久久久浪| 22中文网久久字幕| 免费看日本二区| 亚洲国产av新网站| 国产色婷婷99| 久久ye,这里只有精品| 人人妻人人爽人人添夜夜欢视频 | 视频区图区小说| 伊人久久国产一区二区| 九色成人免费人妻av| 国产成人freesex在线| 中国国产av一级| 看免费成人av毛片| 亚洲精品国产av成人精品| 国内精品美女久久久久久| 97精品久久久久久久久久精品| 只有这里有精品99| 中文字幕免费在线视频6| 亚洲av男天堂| 精品久久久久久久人妻蜜臀av| 国产综合精华液| 成人亚洲精品一区在线观看 | 精品一区二区三区视频在线| 国产精品国产三级专区第一集| 欧美 日韩 精品 国产| 免费av毛片视频| 国产探花在线观看一区二区| 青青草视频在线视频观看| 一个人看的www免费观看视频| 亚洲四区av| 亚洲精品视频女| 欧美成人精品欧美一级黄| 日日撸夜夜添| 国产午夜精品一二区理论片| 国产av国产精品国产| 国产高清不卡午夜福利| 国产成人aa在线观看| 亚洲天堂av无毛| 别揉我奶头 嗯啊视频| 啦啦啦在线观看免费高清www| 97超碰精品成人国产| 亚洲色图综合在线观看| 全区人妻精品视频| 少妇人妻精品综合一区二区| 又大又黄又爽视频免费| 男女无遮挡免费网站观看| 嫩草影院精品99| 成人免费观看视频高清| 久久久色成人| 亚洲自拍偷在线| 尤物成人国产欧美一区二区三区| 九色成人免费人妻av| 亚洲在久久综合| 欧美日韩国产mv在线观看视频 | av一本久久久久| 黄色一级大片看看| 久久久色成人| 欧美日韩视频精品一区| 国产精品麻豆人妻色哟哟久久| av一本久久久久| 国产精品.久久久| 久久久久网色| av免费观看日本| 日本一本二区三区精品| 欧美一区二区亚洲| 国产熟女欧美一区二区| 免费在线观看成人毛片| www.色视频.com| 午夜视频国产福利| 69av精品久久久久久| 日本黄大片高清| 免费看av在线观看网站| 免费不卡的大黄色大毛片视频在线观看| 国产精品人妻久久久久久| 天天躁日日操中文字幕| 久久久亚洲精品成人影院| 极品教师在线视频| 国产成年人精品一区二区| 日韩在线高清观看一区二区三区| 国产免费一区二区三区四区乱码| 亚洲精品乱码久久久久久按摩| 亚洲av不卡在线观看| 国产成人精品婷婷| 国产欧美亚洲国产| 国产精品久久久久久精品电影小说 | 22中文网久久字幕| 免费黄网站久久成人精品| 日本猛色少妇xxxxx猛交久久| 看免费成人av毛片| 亚洲国产精品成人久久小说| 日韩伦理黄色片| 日韩电影二区| 日日摸夜夜添夜夜爱| 国产成人精品久久久久久| 久久99热6这里只有精品| 99久久中文字幕三级久久日本| 欧美老熟妇乱子伦牲交| 久久久久九九精品影院| 91aial.com中文字幕在线观看| 国产 一区 欧美 日韩| 美女xxoo啪啪120秒动态图| 欧美日韩综合久久久久久| 韩国av在线不卡| 亚洲av.av天堂| 中文资源天堂在线| 男插女下体视频免费在线播放| av播播在线观看一区| 国产 一区 欧美 日韩| 国产精品女同一区二区软件| 日本免费在线观看一区| 国产69精品久久久久777片| 爱豆传媒免费全集在线观看| 久久精品国产亚洲av涩爱| 日韩亚洲欧美综合| 看非洲黑人一级黄片| 秋霞伦理黄片| 嫩草影院入口| 蜜臀久久99精品久久宅男| 老女人水多毛片| 少妇裸体淫交视频免费看高清| 欧美三级亚洲精品| 如何舔出高潮| 精品久久国产蜜桃| av福利片在线观看| 久久99热6这里只有精品| 亚州av有码| 99re6热这里在线精品视频| 国产亚洲精品久久久com| 亚洲成人中文字幕在线播放| 日韩视频在线欧美| 在线观看免费高清a一片| 男人舔奶头视频| 老师上课跳d突然被开到最大视频| 偷拍熟女少妇极品色| 日本-黄色视频高清免费观看| 热re99久久精品国产66热6| 日韩三级伦理在线观看| 看免费成人av毛片| 亚洲人与动物交配视频| 国产精品一及| 99re6热这里在线精品视频| 国产淫片久久久久久久久| 日韩不卡一区二区三区视频在线| 97超碰精品成人国产| 免费观看的影片在线观看| 欧美日韩精品成人综合77777| 成人午夜精彩视频在线观看| 一级毛片我不卡| 国产精品成人在线| 国产淫语在线视频| 18禁在线无遮挡免费观看视频| 日本与韩国留学比较| 国产高清三级在线| 免费观看无遮挡的男女| 亚洲精品久久久久久婷婷小说| 国产一区有黄有色的免费视频| 亚洲欧美日韩卡通动漫| 亚洲av中文av极速乱| 日本一本二区三区精品| 丝袜美腿在线中文| 汤姆久久久久久久影院中文字幕| 国产大屁股一区二区在线视频| 久久精品久久精品一区二区三区| 男女啪啪激烈高潮av片| 男女那种视频在线观看| 一二三四中文在线观看免费高清| 日韩av在线免费看完整版不卡| 真实男女啪啪啪动态图| 欧美激情在线99| 日产精品乱码卡一卡2卡三| 欧美一级a爱片免费观看看| 午夜福利视频精品| 日本与韩国留学比较| 亚洲丝袜综合中文字幕| 精品久久久精品久久久| eeuss影院久久| 亚洲人成网站在线观看播放| 国产亚洲精品久久久com| 精品国产三级普通话版| 熟女av电影| 国产精品久久久久久精品电影小说 |