• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Ti addition on the microstructure and mechanical properties of Mg-Zn-Zr-Ca alloys

    2015-02-16 00:38:06*
    Journal of Magnesium and Alloys 2015年2期

    *

    College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China

    Effects of Ti addition on the microstructure and mechanical properties of Mg-Zn-Zr-Ca alloys

    Jingai Chen,Yan Sun,Jinshan Zhang*,Weili Cheng,Xiaofeng Niu,Chunxiang Xu

    College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China

    The effects of Ti additions(0,0.4,0.6,0.8,1.0,1.2 wt.%)on the microstructure and mechanical properties of as-cast and aging Mg-0.4%Zn-1.0%Zr-1.5%Ca(wt.%)alloys were investigated.The results indicated that minor Ti can effectively refne grains,while excessive Ti addition resulted in the grain coarsening.When the content of Ti was 0.8 wt.%,the as-cast alloy exhibited the fnest grain size of 39 μm which contributed to the optimal mechanical properties with Brinell hardness of 57.9 HB,ultimate tensile strength of 145 MPa and elongation of 3.2%.After T6 heat treatment,the continuous net-like Mg2Ca and Mg6Zn3Ca2phases changed to uniform massive T phases(ternary Mg-Zn-Ca phases)and dispersive halo-like precipitates(Mg2Ca and Mg6Zn3Ca2phases).The ultimate tensile strengths of the alloy at room temperature(RT),175°C and 200°C were correspondingly improved to 182 MPa,169 MPa and 141 MPa,respectively.

    Ti;Magnesium alloys;Microstructure;Mechanical properties;Heat treatment

    1.Introduction

    Magnesium(Mg)alloys,as the lightest metallic structural materials,have great potential for aircraft,automotive and electronic industries due to their low density and high specifc strength.1-3The heat resistance of Mg alloys can be improved signifcantly by rare-earth(RE)element addition.4Australian Magnesium Corporation,in collaboration with the Cooperative Research Center for Cast Metals Manufacturing(CAST CRC)has developed a heat resistant Mg-RE based alloy,AMSC15(Mg-0.4 wt.%Zn-1.0 wt.%Zr-1.0 wt.%RE-1.7 wt.% Nd),which has been specifcally developed to serve at elevated temperature as engine block.However,the RE element addition increases the cost and limits the wide applications of RE-added Mg alloys.Previous research6investigated the effects of Ca addition on the microstructure and mechanical properties of Mg-0.4%Zn-1.0%Zr-2.0%RE (wt.%)alloy.The result indicated that the alloy containing 1.5 wt.%Ca showed the best mechanical properties.After T6 heat treatment,the ultimate tensile strength at 20°C,175°C and 200°C reached to 186 MPa,166 MPa and 140 MPa, respectively,with the corresponding elongations of 3.5%, 11.4%and 10.3%,respectively.

    The alloy element Ti has been well accepted due to its effectiveness in grain refnement of not only Al-based and Mg-Al alloys,7-10but also Al-free Mg alloys.2,11,12Yang2demonstrated thatadditionsofminoramountsofTi (0.1-0.3 wt.%Ti)to Mg-3Sn-2Sr improved the creep properties of the cast alloy by refning the Mg-Sn phases. Buha11,12demonstrated that adding 0.8 wt.%Ti resulted in a pronounced grain-refning effect on Mg-Zn alloy.In addition, as a strong constitutional cooling element,Ti also can lead to grain refnement by accelerating nucleation.13However,as thestudy of Ti on the grain refnement of Mg-Zn-Zr based alloys is not suffcient,it would be effective to investigate the effect of Ti on the grain refnement of Mg-Zn-Zr based alloys.Therefore,the present work aims at replacing the RE element with Ti in the Mg-0.4%Zn-1.0%Zr-1.5%Ca-2.0%RE alloy to reduce the cost.It is also expected that Ti addition to Mg-0.4%Zn-1.0%Zr-1.5%Ca(wt.%)alloy is possibly benefcial to the microstructure refnement and properties improvement of the alloys.

    2.Experimental

    The Mg-0.4%Zn-1.0%Zr-1.5%Ca alloys with different Ti additions(0,0.4,0.6,0.8,1.0 and 1.2 wt.%)were processed under conventional casting condition by using pure Mg (99.9 wt.%),Zn(99.9 wt.%),Ti(99.9 wt.%),Mg-25 wt.%Ca master alloy and Mg-30 wt.%Zr master alloy.The alloys were melted in an electrical resistance furnace using a mild steel crucible under a mixed protection gas atmosphere of N2(97.4 vol.%)and CH2FCF3(2.6 vol.%).The melt was held at 740°C for 20 min to ensure the alloying elements to be completely dissolved and diffused.When the furnace temperature decreased to 710°C,the melted alloys were poured into a cylindrical steel mold which had been preheated to 200°C. The actual chemical compositions of the studied alloy are listed in Table 1,which were analysed by an inductivity coupled plasma atomic emission spectrometer.

    Samples were given a T6 heat-treatment,solution-treated at 500°C for 7 h and aged at 200°C for 20 h in a SX2-8-10 box type high-temperature electric resistance furnace,followed by water quenching.The microstructural characterization was carried out by using a Leica DM2500 M optical microscope (OM).JSU-6700F scanning electron microscopy(SEM) equipped with an Oxford energy dispersive X-ray spectrometer(EDS)was used to study the morphological and microchemical characterization of second phases.Herein,standard metallographic samples preparation techniques were applied using a solution of 4 vol.%HNO3+96 vol.%ethanol.Grain size was measured by the lineal intercept method.Phase constitution analyses were performed with a Y-2000 X-ray diffractometer(XRD),using monochromatic Cu Kα radiation. Brinell hardness was measured by a HB-3000 Brinell hardness testing machine with load of 62.5 kg and loading time of 30 s. Tensile tests were carried out by a DNS100 universal testing machine with a crosshead speed of 0.5 mm/min.Thermalproperty of the alloy was studied via a HCT-2 differential scanning calorimeter with a heating rate of 10oC/min.

    Table 1The actual chemical compositions of the Mg-0.4%Zn-1.0%Zr-1.5%Ca-Ti alloys(wt.%).

    3.Results and discussion

    3.1.Microstructure

    Fig.1 shows the microstructure of as-cast Mg-0.4%Zn-1.0%Zr-1.5%Ca alloys with different Ti additions.As shown in Fig.1(a),in Mg-0.4%Zn-1.0%Zr-1.5%Ca alloy,the α-Mg grains are mainly petal-like with the average size of about 82 μm.Some continuous network intermetallic phases and dispersive particle phases can be observed at the grain boundary and in the grain,respectively.Furthermore,the effect of Ti content on the grain size of as-cast Mg-0.4%Zn-1.0%Zr-1.5%Ca alloys has been studied.As shown in Fig.2, the grain size shows a trend that decreased frstly and then increased with the increasing of Ti content.When the content of Ti is 0.8 wt.%,the alloy shows the fnest grain size of 39 μm.However,the continuous network intermetallic phases and dispersive particle phases still exist.According to the achievements of Mark and David,14excellent segregation ability and effective nucleation particle are the key factors for grain refnement.Solute segregation tends to form intensive constitutional undercooling ahead of solid/liquid interface in diffusion layer,which promotes nucleation and limits the growth of α-Mg grain.Ti possesses strong segregation ability and low solid solubility in Mg matrix(0.02 wt.%at 650°C). Therefore,Ti atoms are rich in the solid/liquid interface during solidifcation,which leads to constitutional undercooling and promotes the formation of a nucleus.Besides,as a surface active element,Ti can inhibit the element diffusion and induce the constitution undercooling ahead of the solid/liquid interface.2According to the work by Bramftt,15one criterion for heterogeneous nucleation is that the disregistry of nucleant planes should be less than 15%.The crystal structure of Ti, which is same as Mg,is hexagonal close-packed(hcp).The lattice constants of Ti(aTi=0.2950 nm and cTi=0.4686 nm) are very close to those of Mg(aMg=0.3209 nm and cMg=0.5211 nm).16The lattice misft between Ti and Mg (δa=8.05%and δC=10.1%)is much less than 15%. Therefore,α-Ti can cause the heterogeneous nucleation of the α-Mg phase theoretically.Based on the Mg-Ti binary phase diagram,when the content of Ti increases to 0.02 wt.%,the peritectic reaction occurres at 650°C:L+(α-Ti)→(α-Mg).α-Ti can form by crystallization in the melt before peritectic transformation and then dispersive α-Mg phases nucleate on the surface of α-Ti.As temperature decreases,the small particles of α-Mg generated by peritectic reaction act as crystallization nuclei,while the primary α-Mg phase nucleates and grows.However,as shown in Fig.1(e)and(f),when the addition of Ti is more than 0.8 wt.%,the grains become coarser and coarser,which is mainly caused by excessive addition of Ti.The massive Ti particles in the melt would aggregate and grow up,thus the nucleation particles decrease, which greatly reduces the crystal nucleus and leads to the growth of the grains.17

    The SEM images and corresponding EDS results of ascast and aging alloys with 0.8 wt.%Ti addition are shown in Fig.3.In the as-cast alloy,some continuous net-like microstructure can be observed at grain boundaries of some grains.The white long-striped phases(pointed by arrow B in Fig.3(a))are cut off by the gray phases(pointed by arrow C in Fig.3(a)),and the white particle phases (pointed by arrow A in Fig.3(a))are dispersed diffusely in grains.EDS analysis reveals that there is Ti element in the white particle phases.In addition,EDS analysis indicates the composition of the white long-striped phases to be Mg-5.36Zn-3.92Ca(at.%)with atomic ratio of Zn to Ca close to 3:2.The chemical composition of the gray phases determined by EDS also contains Mg,Zn and Ca.According to the ternary phase diagram of Mg-Zn-Ca,when the atomic ratio of Zn to Ca in alloys is less than 1.2,the composition of eutectic phase is mainly Mg6Zn3Ca2and Mg2Ca.It can be confrmed preliminarily that the white long-striped phase is Mg6Zn3Ca2and thegray phaseisMg2Cawith few Mg6Zn3Ca2.As shown in Fig.3(b),after T6 heat treatment, the continuous net-like microstructure disappeared.Some uniform massive phases(pointed by arrow E in Fig.3(b)), named as T phase,are observed at grain boundaries and some halo-like precipitates(pointed by arrow D in Fig.3(b)) are distributed in grains.EDS results show that the T phase is composed of Mg,Zn and Ca,while the halo-like precipitate consists of Mg,Zn,Ca and Zr.To analyze the distribution of Ti,line scanning was carried out between two grains,as shown in Fig.3(b).And the result shows that there are Ti-rich peaks in the center of the halo-like precipitates and around grain boundaries.

    Fig.2.Grain size of the as-cast Mg-0.4%Zn-1.0%Zr-1.5%Ca alloys with different Ti additions.

    Fig.4 shows the XRD patterns of as-cast and aging alloys with 0.8 wt.%Ti addition.It can be seen that both of the ascast and aging alloys consist of α-Mg,α-Ti,Mg2Ca and Mg6Zn3Ca2phases,and there are also T phases in the aging alloy.Ti-containing phases are not detected,which can be explained by elemental electronegativity.The electronegativity differences between Ti and other component elements are less than those between Mg and Ca,and between Zn and Ca.According to XRD and EDS analyses,it can be concluded that the white long-striped phase in the as-cast state is Mg6Zn3Ca2and the gray phase is a mixture of Mg2Ca and Mg6Zn3Ca2.After T6 heat treatment,the continuous net-like microstructure changed to uniform massive T phases with the precipitates of Mg2Ca and Mg6Zn3Ca2distributed in grains.

    3.2.Thermal property

    Fig.3.SEM images and EDS results of the Mg-0.4%Zn-1.0%Zr-1.5%Ca-0.8%Ti alloy:(a)as-cast alloy,and(b)aging alloy.

    Fig.5 shows the DSC curve of the aging Mg-0.4%Zn-1.0% Zr-1.5%Ca alloy with 0.8 wt.%Ti addition.The alloy exhibits a large endothermic peak at 508.6°C during heating,while the onset peak is 494.5°C.And another endothermic peak at about 650°C is recognized to be the melting of α-Mg.Previous research18illustrated that there were Mg-Zn-Ca ternary phases in Mg-Zn-Ca alloy.The onset temperature of the ternary phase is about 500°C,which is close to the formation temperature of T phase in this paper.Therefore,it can be confrmed that the endothermic peak at 508.6°C in the alloy is corresponding to the melting of the ternary phase(T phase),which suggests the melting point of the T phase is close to that of the X phase(MgxZnyCez-Ca).6

    3.3.Mechanical properties

    Fig.4.XRD patterns of the as-cast and aging Mg-0.4%Zn-1.0%Zr-1.5%Ca-0.8%Ti alloys.

    Fig.5.DSC curve of the aging Mg-0.4%Zn-1.0%Zr-1.5%Ca alloy with 0.8 wt.%Ti addition.

    Fig.6.Mechanical properties of the Mg-0.4%Zn-1.0%Zr-1.5%Ca-Ti alloys at room and elevated temperature:(a)The effects of Ti addition on the mechanical properties of the as-cast alloy at room temperature;and(b)The ultimate tensile strengths and elongations of the aging alloy with 0.8 wt.%Ti addition at room temperature,175°C and 200°C.

    The mechanical properties of as-cast Mg-0.4%Zn-1.0%Zr-1.5%Ca alloys with different Ti additions at room temperature are shown in Fig.6(a).Mg-0.4%Zn-1.0%Zr-1.5%Ca alloy shows a poor combination of the Brinell hardness,ultimate tensile strength and elongation,and its Brinell hardness,ultimate tensile strength and elongation are 48.1 HB,123 MPa and 2.1%,respectively.However,the Brinell hardness,ultimate tensile strength and elongation of the Ti-containing alloys are increased with the Ti addition of no more than 0.8 wt.%,and further addition of Ti element leads to a decrease.When the addition of Ti is 0.8 wt.%,the as-cast alloy exhibits an optimum combination of mechanical properties with Brinell hardness of 57.9 HB and ultimate tensile strength of 145 MPa,as well as elongation of 3.2%.The reason can be summarized as that Ti induced the grain homogenization and refnement,hindering the transfer of slip and avoiding the stress concentration in front of boundary.However,with further addition of Ti,the Brinell hardness and ultimate tensile strength present a decrease due to the growth of the grains and the formation of the brittle eutectic compounds at grain boundaries,which results in initial cracks and then leads to the breakage of alloys during plastic deformation.19

    The mechanical properties of the aging alloy with 0.8 wt.% Ti addition at room and elevated temperatures are shown in Fig.6(b).After T6 heat treatment,the ultimate tensile strength and elongation of the alloy at room temperature are 182 MPa and 3.8%,respectively,which are increased by 27%and 19% compared to those before treatment.As shown in Fig.6(b),the ultimate tensile strength at 175°C and 200°C reach to 169 MPa and 141 MPa,together with elongation of 9.7%and 9.5%,respectively.The results show that the ultimate tensile strengths at both room and elevated temperatures have been enhanced simultaneously.It is well known the continuous netlike microstructure in the alloy would give a detrimental effect on the mechanical properties of the alloy.However,after T6 heat treatment,the continuous net-like microstructure transformed to uniform massive phases,which are easier to act as an effective straddle to the dislocation motion thus improving the properties of the alloys.20The improvement of elevated temperature strengths of the aging alloys may be attributed to the Mg2Ca and Mg6Zn3Ca2phase due to their high thermal stability.21,22With high stability at elevated temperatures,the heat-resistant phases can straddle and pin the grain boundaries effectively,leading to increase the properties of alloys.23

    4.Conclusions

    (1)α-Mg grains are refned and homogenized obviously with the increase of Ti addition.The alloy containing 0.8 wt.% Ti shows the fnest grain size of 39 μm.The reason is attributed to the α-Ti inducing the constitution undercooling at the solidifcation interface front and acting as heterogeneous nucleation cores of α-Mg crystals.

    (2)After T6 heat treatment,the continuous net-like Mg2Ca and Mg6Zn3Ca2phases disappear and uniform massive T phases(ternary Mg-Zn-Ca phases)and dispersive halolike precipitates(Mg2Ca and Mg6Zn3Ca2phases)form.

    (3)The mechanical properties of Mg-0.4%Zn-1.0%Zr-1.5% Ca alloy are greatly improved with different contents of Ti.The addition of 0.8 wt.%Ti leads to the highest mechanical properties in as-cast Mg-0.4%Zn-1.0%Zr-1.5% Ca-0.8%Ti with ultimate tensile strength of 145 MPa, elongation of 3.2%and Brinell hardness of 57.9 HB at room temperature.After T6 heat treatment,the ultimate tensile strengths of the alloy at room temperature,175°C, and 200°C are improved to 182 MPa,169 MPa and 141 MPa,respectively.And the corresponding elongations reach to 3.8%,9.7%and 9.5%,respectively.

    Acknowledgments

    The authors acknowledge the fnancial support from the National Science Foundation of China through Grant No. 50571073 and Natural Science Foundation of Shanxi Province through Grant No.2009011028-3.Additional support from our group members is gratefully acknowledged.

    1 L.Li,J Alloys Compd 555(2013)255-262.

    2 M.B.Yang,H.L.Li,C.Y.Duan,J.Zhang,J Alloys Compd 579(2013) 92-99.

    3 A.A.Luo,Int Mater Rev 49(2004)13-30.

    4 Y.Xiao,X.Zhang,B.Chen,Trans Nonferrous Met Soc China 16(2006) 1169-1172.

    5 C.J.Bettles,M.A.Gibson,S.M.Zhu,Mater Sci Eng A 505(2009)6-12.

    6 J.S.Zhang,Y.Sun,W.L.Cheng,J Alloys Compd 554(2013)110-114.

    7 T.S.Krishnan,P.K.Rajagopalan,B.R.Gund,J Alloys Compd 269(1998) 138-140.

    8 M.Zeren,E.Karakulak,Mater Sci Technol 25(2009)1211-1214.

    9 J.Y.Choi,W.J.Kim,J Alloys Compd 614(2014)49-55.

    10 T.Gao,Y.R.Zhang,X.F.Liu,Mater Sci Eng A 598(2014)293-298.

    11 J.Buha,J Alloys Compd 472(2009)171-177.

    12 J.Buha,J Mater Sci 43(2008)1220-1227.

    13 Y.X.Wang,X.Q.Zeng,W.J.Ding,A.A.Luo,Metall Mater Trans A 38 (2007)1358-1366.

    14 E.Mark,S.David,Metall Mater Trans A 30(1999)1613-1623.

    15 B.L.Bramftt,Metall Trans 1(1970)1987-1995.

    16 Q.D.Wang,J.B.Lin,M.P.Liu,W.J.Ding,Int J Mater Res 99(2008) 761-765.

    17 T.J.Chen,R.Q.Wang,Y.Ma,Mater Des 34(2012)637-648.

    18 S.Wasiur-Rahman,M.Medraj,Intermetallics 17(2009)847-864.

    19 S.Candan,M.Unal,E.Koc,J Alloys Compd 509(2011)1958-1963.

    20 N.Balasubramani,U.T.S.Pillai,B.C.Pai,J Alloys Compd 457(2008) 118-123.

    21 G.Levi,S.Avraham,A.Zilberov,M.Bamberger,Acta Mater 54(2006) 523-530.

    22 W.W.Park,B.S.You,B.G.Moon,W.C.Kim,Sci Technol Adv Mater 2 (2001)73-78.

    23 X.F.Wan,Y.S.Sun,F.Xue,Trans Nonferrous Met Soc China 20(2010) 757-762.

    Received 22 July 2014;revised 8 May 2015;accepted 12 May 2015 Available online 20 June 2015

    *Corresponding author.Tel./fax:+86 351 601 8208.

    E-mail address:jinshansx@tom.com(J.Zhang).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University.

    http://dx.doi.org/10.1016/j.jma.2015.05.001.

    2213-9567/Copyright 2015,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright 2015,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    久久久久久伊人网av| 熟妇人妻久久中文字幕3abv| 丝袜美腿在线中文| 婷婷色综合大香蕉| 亚洲天堂国产精品一区在线| 日日干狠狠操夜夜爽| 99久久精品一区二区三区| 午夜爱爱视频在线播放| 在线免费观看的www视频| 国产精品1区2区在线观看.| 99热全是精品| 狂野欧美激情性xxxx在线观看| 午夜福利在线在线| 真人做人爱边吃奶动态| 一区二区三区免费毛片| 国产不卡一卡二| 黄色配什么色好看| a级毛片免费高清观看在线播放| 三级男女做爰猛烈吃奶摸视频| 久久99热6这里只有精品| 日韩欧美免费精品| 欧美日韩综合久久久久久| 亚洲美女搞黄在线观看 | 插阴视频在线观看视频| www.色视频.com| av在线蜜桃| 国产精品乱码一区二三区的特点| 丝袜喷水一区| 韩国av在线不卡| 午夜福利在线观看吧| АⅤ资源中文在线天堂| 久久人人精品亚洲av| 黄色日韩在线| 国内精品久久久久精免费| 国产成人aa在线观看| 国产一区二区三区在线臀色熟女| 亚洲精品日韩在线中文字幕 | 免费观看人在逋| 国产高潮美女av| 久久久欧美国产精品| 热99re8久久精品国产| 少妇裸体淫交视频免费看高清| 麻豆精品久久久久久蜜桃| 自拍偷自拍亚洲精品老妇| 看黄色毛片网站| 老司机福利观看| 日本免费a在线| 久久99热这里只有精品18| 亚洲精品一卡2卡三卡4卡5卡| 99精品在免费线老司机午夜| 中国美女看黄片| 精品久久国产蜜桃| 日韩欧美一区二区三区在线观看| 国产老妇女一区| 联通29元200g的流量卡| 人妻久久中文字幕网| 99riav亚洲国产免费| 亚洲性夜色夜夜综合| 国产一区亚洲一区在线观看| 午夜福利在线在线| 亚洲国产高清在线一区二区三| 中文资源天堂在线| 精品久久久久久久久久久久久| 亚洲欧美中文字幕日韩二区| 亚洲欧美日韩卡通动漫| 97在线视频观看| 国产精品国产三级国产av玫瑰| av中文乱码字幕在线| 国产成人精品久久久久久| 国产精品一区二区三区四区免费观看 | 国模一区二区三区四区视频| 亚洲国产欧美人成| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品一区av在线观看| eeuss影院久久| 看免费成人av毛片| 久久久a久久爽久久v久久| 国产美女午夜福利| 美女内射精品一级片tv| 嫩草影院精品99| 国产一区亚洲一区在线观看| 在线观看一区二区三区| 国产女主播在线喷水免费视频网站 | 精品久久久久久久久av| 亚洲美女视频黄频| 午夜影院日韩av| 高清午夜精品一区二区三区 | 成人美女网站在线观看视频| 一级av片app| 国产精品美女特级片免费视频播放器| 最近视频中文字幕2019在线8| 亚州av有码| 欧美日韩在线观看h| 国产精品综合久久久久久久免费| 免费av不卡在线播放| 日韩成人伦理影院| 亚洲第一电影网av| 亚洲欧美中文字幕日韩二区| 欧美成人a在线观看| 在线观看美女被高潮喷水网站| 久久人人爽人人爽人人片va| 日韩精品有码人妻一区| 我的老师免费观看完整版| 国产精品亚洲美女久久久| a级一级毛片免费在线观看| 亚洲精品乱码久久久v下载方式| 国产精品美女特级片免费视频播放器| 成人无遮挡网站| 女生性感内裤真人,穿戴方法视频| 久久久成人免费电影| 久久精品国产自在天天线| 日韩av不卡免费在线播放| 国产一级毛片七仙女欲春2| 一个人看视频在线观看www免费| 国产探花在线观看一区二区| 久久久精品大字幕| 精品久久久久久久久久免费视频| 日本在线视频免费播放| 又爽又黄无遮挡网站| 熟女人妻精品中文字幕| 禁无遮挡网站| videossex国产| 搡老岳熟女国产| 国产 一区精品| 少妇人妻一区二区三区视频| 午夜影院日韩av| 国产精品久久久久久亚洲av鲁大| 毛片女人毛片| av免费在线看不卡| 亚洲真实伦在线观看| av在线蜜桃| 成年女人看的毛片在线观看| 婷婷亚洲欧美| 欧美+日韩+精品| 青春草视频在线免费观看| 久久精品国产亚洲av天美| 久久99热6这里只有精品| 俺也久久电影网| 一区二区三区免费毛片| 亚洲最大成人av| 久久99热这里只有精品18| 国产精品久久久久久亚洲av鲁大| h日本视频在线播放| 看片在线看免费视频| 亚洲人成网站在线播| 韩国av在线不卡| 国产视频内射| 欧美精品国产亚洲| 国产精品无大码| 悠悠久久av| 成年版毛片免费区| 日韩在线高清观看一区二区三区| 久久精品国产亚洲av天美| 狂野欧美白嫩少妇大欣赏| 性插视频无遮挡在线免费观看| 99九九线精品视频在线观看视频| 亚洲熟妇中文字幕五十中出| 美女黄网站色视频| 久久中文看片网| 久久久久久伊人网av| 久久99热这里只有精品18| 国产高清激情床上av| 免费看a级黄色片| 亚洲av美国av| 亚洲美女视频黄频| 人人妻人人澡欧美一区二区| 亚洲精品在线观看二区| 欧美一区二区精品小视频在线| av在线蜜桃| av.在线天堂| 不卡一级毛片| 1000部很黄的大片| 国语自产精品视频在线第100页| 国产精品国产高清国产av| 一级黄色大片毛片| 亚洲中文字幕日韩| 身体一侧抽搐| 中文字幕av成人在线电影| 国产高清视频在线播放一区| 22中文网久久字幕| 99国产极品粉嫩在线观看| 日韩欧美精品v在线| avwww免费| 久久中文看片网| 国产成人福利小说| 成人漫画全彩无遮挡| 乱人视频在线观看| 国产高清有码在线观看视频| 美女内射精品一级片tv| 亚洲四区av| 午夜激情欧美在线| 人妻久久中文字幕网| 久久精品国产亚洲av天美| 色尼玛亚洲综合影院| 国产 一区 欧美 日韩| 国产色婷婷99| 午夜日韩欧美国产| 天天一区二区日本电影三级| 看十八女毛片水多多多| 久久久久国产网址| 国语自产精品视频在线第100页| 高清午夜精品一区二区三区 | 美女被艹到高潮喷水动态| 欧美+日韩+精品| 91狼人影院| 在线观看免费视频日本深夜| 免费在线观看影片大全网站| av天堂在线播放| 成人三级黄色视频| 国产午夜精品久久久久久一区二区三区 | 18+在线观看网站| 18+在线观看网站| 少妇高潮的动态图| 永久网站在线| 精品一区二区三区视频在线观看免费| 22中文网久久字幕| 91av网一区二区| 97超视频在线观看视频| 欧美一区二区国产精品久久精品| 精品免费久久久久久久清纯| 一a级毛片在线观看| 亚洲av.av天堂| 欧美一区二区国产精品久久精品| 天美传媒精品一区二区| 亚洲五月天丁香| 老熟妇乱子伦视频在线观看| 国产毛片a区久久久久| 国语自产精品视频在线第100页| 国产精品综合久久久久久久免费| 国产男靠女视频免费网站| 日本五十路高清| 日韩欧美国产在线观看| 国产精品综合久久久久久久免费| 色av中文字幕| 国产精品1区2区在线观看.| 成人欧美大片| 成人永久免费在线观看视频| .国产精品久久| 高清午夜精品一区二区三区 | 国内精品一区二区在线观看| 国产白丝娇喘喷水9色精品| 1000部很黄的大片| 美女大奶头视频| 丰满人妻一区二区三区视频av| 欧美精品国产亚洲| 日本a在线网址| 麻豆国产av国片精品| 国产单亲对白刺激| 精品久久久噜噜| 国产精品99久久久久久久久| 亚洲国产高清在线一区二区三| 亚洲精品一区av在线观看| 婷婷六月久久综合丁香| 狂野欧美激情性xxxx在线观看| 亚洲五月天丁香| 久久精品夜色国产| 亚洲av不卡在线观看| 成人一区二区视频在线观看| 尾随美女入室| 高清午夜精品一区二区三区 | 插逼视频在线观看| 91麻豆精品激情在线观看国产| 舔av片在线| 亚洲最大成人手机在线| 国产69精品久久久久777片| 欧美国产日韩亚洲一区| 久久久欧美国产精品| 成人亚洲欧美一区二区av| 久久欧美精品欧美久久欧美| 99久久精品热视频| 九九热线精品视视频播放| 亚洲精品影视一区二区三区av| 51国产日韩欧美| 99热这里只有精品一区| 日韩欧美在线乱码| 网址你懂的国产日韩在线| 此物有八面人人有两片| 色综合亚洲欧美另类图片| 中文字幕熟女人妻在线| 国产成人影院久久av| 日本黄色片子视频| 又黄又爽又刺激的免费视频.| 搞女人的毛片| 国产精品一区二区性色av| 一级a爱片免费观看的视频| 在线免费观看的www视频| 少妇裸体淫交视频免费看高清| 日本欧美国产在线视频| 成年免费大片在线观看| 国产成人a区在线观看| 国产探花极品一区二区| 亚洲色图av天堂| 天天躁夜夜躁狠狠久久av| 亚洲国产欧洲综合997久久,| 一个人免费在线观看电影| 老司机影院成人| 99久久成人亚洲精品观看| 欧美激情国产日韩精品一区| 国产极品精品免费视频能看的| 日本五十路高清| 日韩制服骚丝袜av| 激情 狠狠 欧美| 99在线视频只有这里精品首页| 亚洲一区高清亚洲精品| 国产久久久一区二区三区| 日韩成人伦理影院| 12—13女人毛片做爰片一| 日韩制服骚丝袜av| 日本免费a在线| av女优亚洲男人天堂| 别揉我奶头 嗯啊视频| 可以在线观看毛片的网站| 成人亚洲欧美一区二区av| 成人三级黄色视频| 免费不卡的大黄色大毛片视频在线观看 | 在线看三级毛片| 日本在线视频免费播放| 尾随美女入室| 91午夜精品亚洲一区二区三区| 亚洲av免费在线观看| 免费搜索国产男女视频| 成年女人毛片免费观看观看9| 看片在线看免费视频| 1000部很黄的大片| 99国产极品粉嫩在线观看| 国产精品人妻久久久影院| 一个人观看的视频www高清免费观看| 久久精品国产99精品国产亚洲性色| 久久久欧美国产精品| 国产三级中文精品| 色哟哟·www| 成人永久免费在线观看视频| 国产精品国产高清国产av| 自拍偷自拍亚洲精品老妇| 男女边吃奶边做爰视频| 乱系列少妇在线播放| 一级毛片aaaaaa免费看小| 1000部很黄的大片| 国产男人的电影天堂91| 亚洲av免费高清在线观看| 观看免费一级毛片| 九九在线视频观看精品| 男女做爰动态图高潮gif福利片| 日韩av在线大香蕉| 亚洲av不卡在线观看| 人妻制服诱惑在线中文字幕| 亚洲欧美日韩无卡精品| 亚洲av第一区精品v没综合| 桃色一区二区三区在线观看| 赤兔流量卡办理| 欧美三级亚洲精品| 深夜精品福利| 在线免费十八禁| 赤兔流量卡办理| 亚洲av中文av极速乱| 我要看日韩黄色一级片| 91精品国产九色| 久久久久久久久久成人| 亚洲精品日韩av片在线观看| 我要搜黄色片| 久久精品国产99精品国产亚洲性色| 欧美人与善性xxx| 欧美日韩在线观看h| 校园人妻丝袜中文字幕| 女的被弄到高潮叫床怎么办| 久久精品国产亚洲av涩爱 | 一进一出抽搐gif免费好疼| 哪里可以看免费的av片| 最近在线观看免费完整版| 免费观看精品视频网站| 成人毛片a级毛片在线播放| 床上黄色一级片| 能在线免费观看的黄片| 欧美潮喷喷水| 日韩精品青青久久久久久| 亚洲无线在线观看| 一级黄片播放器| 18+在线观看网站| 人人妻,人人澡人人爽秒播| 免费大片18禁| 国产精品伦人一区二区| 国产精品久久久久久久电影| 日韩欧美三级三区| 一边摸一边抽搐一进一小说| 亚洲av电影不卡..在线观看| 大香蕉久久网| 菩萨蛮人人尽说江南好唐韦庄 | aaaaa片日本免费| 午夜日韩欧美国产| 色在线成人网| 日韩av在线大香蕉| 在线播放国产精品三级| 国产女主播在线喷水免费视频网站 | 欧美另类亚洲清纯唯美| 欧美激情久久久久久爽电影| 午夜a级毛片| 午夜福利在线观看吧| 亚洲av成人精品一区久久| 国产高潮美女av| 亚洲无线在线观看| 成人二区视频| 网址你懂的国产日韩在线| 99热只有精品国产| 日本一二三区视频观看| 日韩一区二区视频免费看| 此物有八面人人有两片| 69人妻影院| 直男gayav资源| 国产极品精品免费视频能看的| 久久精品影院6| 久久久久性生活片| 亚洲国产精品合色在线| 3wmmmm亚洲av在线观看| 午夜福利视频1000在线观看| 黄色欧美视频在线观看| 神马国产精品三级电影在线观看| 国产黄色小视频在线观看| 免费黄网站久久成人精品| 免费av不卡在线播放| 国产精品,欧美在线| 黄色视频,在线免费观看| 欧美中文日本在线观看视频| 国产探花极品一区二区| 婷婷六月久久综合丁香| 亚洲人与动物交配视频| 伦精品一区二区三区| 91麻豆精品激情在线观看国产| 国产真实乱freesex| 91在线观看av| 精品久久久久久久久亚洲| 日韩高清综合在线| 看黄色毛片网站| 热99在线观看视频| 最近在线观看免费完整版| 久久久久久久久久成人| 99热只有精品国产| 亚洲成a人片在线一区二区| 一级黄色大片毛片| a级毛片a级免费在线| 欧美国产日韩亚洲一区| 久久热精品热| 色播亚洲综合网| 青春草视频在线免费观看| 亚洲精品日韩av片在线观看| 久久午夜亚洲精品久久| 国产精品亚洲美女久久久| 香蕉av资源在线| 99热这里只有是精品在线观看| .国产精品久久| 久久精品综合一区二区三区| 人妻久久中文字幕网| av在线蜜桃| 日本爱情动作片www.在线观看 | 国产视频一区二区在线看| 五月玫瑰六月丁香| 国产美女午夜福利| 久久久久精品国产欧美久久久| 一区二区三区高清视频在线| 综合色丁香网| 最近最新中文字幕大全电影3| 国产精品福利在线免费观看| 18禁裸乳无遮挡免费网站照片| 成人精品一区二区免费| 久久精品国产亚洲av香蕉五月| 国产精品一区www在线观看| 色5月婷婷丁香| 国产高清激情床上av| 国产成人aa在线观看| 国产成人一区二区在线| 国产成人91sexporn| 精品一区二区三区视频在线| 日韩国内少妇激情av| 黑人高潮一二区| 少妇的逼水好多| 变态另类成人亚洲欧美熟女| 亚洲熟妇熟女久久| 精品久久久久久成人av| 精品一区二区三区人妻视频| 日日摸夜夜添夜夜爱| 国产伦精品一区二区三区四那| 久久精品夜夜夜夜夜久久蜜豆| 99热6这里只有精品| 插逼视频在线观看| 深爱激情五月婷婷| 丝袜喷水一区| 精品久久久久久久久亚洲| 精品人妻熟女av久视频| av天堂中文字幕网| 18禁在线播放成人免费| 亚洲av成人精品一区久久| 午夜福利18| 亚洲va在线va天堂va国产| 久久久a久久爽久久v久久| 国产极品精品免费视频能看的| 热99在线观看视频| 日本爱情动作片www.在线观看 | 国产在线精品亚洲第一网站| 在线国产一区二区在线| 少妇人妻一区二区三区视频| 国产欧美日韩一区二区精品| 亚洲国产日韩欧美精品在线观看| 久久99热这里只有精品18| 日本黄色片子视频| 悠悠久久av| 18禁在线无遮挡免费观看视频 | 女生性感内裤真人,穿戴方法视频| 亚洲三级黄色毛片| 日韩一本色道免费dvd| 亚洲va在线va天堂va国产| 中国美白少妇内射xxxbb| 亚洲熟妇熟女久久| 亚洲第一电影网av| 亚洲精品日韩在线中文字幕 | 我要搜黄色片| 青春草视频在线免费观看| 99热网站在线观看| 国产v大片淫在线免费观看| 一进一出抽搐gif免费好疼| 国产成人影院久久av| 色综合色国产| 国产精品日韩av在线免费观看| 久久人妻av系列| 成人国产麻豆网| 一级av片app| 人人妻,人人澡人人爽秒播| 麻豆国产av国片精品| 欧美日韩综合久久久久久| 久久6这里有精品| 久久久久免费精品人妻一区二区| 亚洲熟妇中文字幕五十中出| 国产乱人偷精品视频| 美女免费视频网站| 99热全是精品| 在线观看av片永久免费下载| 日本欧美国产在线视频| 在线a可以看的网站| 成人午夜高清在线视频| 伦精品一区二区三区| 欧美性猛交黑人性爽| 久久久精品大字幕| 色综合亚洲欧美另类图片| 成人亚洲精品av一区二区| 91午夜精品亚洲一区二区三区| 国产精品嫩草影院av在线观看| h日本视频在线播放| av在线播放精品| 久久久久免费精品人妻一区二区| 国产一区二区亚洲精品在线观看| 国内精品久久久久精免费| 日本精品一区二区三区蜜桃| 欧美国产日韩亚洲一区| 美女大奶头视频| 日本黄色片子视频| 日韩精品青青久久久久久| 亚洲四区av| 国产视频一区二区在线看| av卡一久久| 国产精品一区二区三区四区免费观看 | 日本爱情动作片www.在线观看 | 日本精品一区二区三区蜜桃| 国产精品永久免费网站| 精华霜和精华液先用哪个| 成年免费大片在线观看| 亚洲精品亚洲一区二区| 国产欧美日韩一区二区精品| 国产高清不卡午夜福利| 一个人观看的视频www高清免费观看| 国产午夜精品论理片| 中文字幕熟女人妻在线| 成人欧美大片| 亚洲熟妇熟女久久| 午夜精品一区二区三区免费看| 色吧在线观看| 国产综合懂色| 菩萨蛮人人尽说江南好唐韦庄 | 尾随美女入室| 综合色av麻豆| 午夜视频国产福利| 男女边吃奶边做爰视频| 成人综合一区亚洲| 亚洲熟妇中文字幕五十中出| 日韩大尺度精品在线看网址| 日韩三级伦理在线观看| 国产大屁股一区二区在线视频| 婷婷六月久久综合丁香| 成年av动漫网址| 久久精品久久久久久噜噜老黄 | 国产午夜精品久久久久久一区二区三区 | 亚洲va在线va天堂va国产| 国产熟女欧美一区二区| 男插女下体视频免费在线播放| 女同久久另类99精品国产91| 欧美成人一区二区免费高清观看| 全区人妻精品视频| 国产成人影院久久av| 亚洲第一区二区三区不卡| 麻豆国产av国片精品| 国产高清视频在线播放一区| 国产成人aa在线观看| 久久欧美精品欧美久久欧美| 欧美色欧美亚洲另类二区| 无遮挡黄片免费观看| 亚洲欧美精品综合久久99| eeuss影院久久| 色尼玛亚洲综合影院| 99久久中文字幕三级久久日本| av在线老鸭窝| 亚洲熟妇熟女久久| 欧美高清成人免费视频www| 亚洲av一区综合| 九九爱精品视频在线观看| 草草在线视频免费看| 国产在视频线在精品| 国产一区亚洲一区在线观看| 国产欧美日韩精品一区二区|