劉樹(shù)霞,徐軍田,鄒定輝
1 淮海工學(xué)院海洋學(xué)院, 連云港 222005 2 華南理工大學(xué)環(huán)境與能源學(xué)院,廣州 510006
大氣CO2升高和紫外輻射相互作用對(duì)羊棲菜生理特性的影響
劉樹(shù)霞1,徐軍田1,鄒定輝2,*
1 淮海工學(xué)院海洋學(xué)院, 連云港 222005 2 華南理工大學(xué)環(huán)境與能源學(xué)院,廣州 510006
為了研究經(jīng)濟(jì)海藻羊棲菜對(duì)大氣CO2濃度增加與紫外輻射(UVR)相互作用的響應(yīng),設(shè)置兩個(gè)CO2濃度(380μL/L和800μL/L)以及兩種輻射處理,即PAR處理(濾除UV-A、UV-B, 藻體僅接受可見(jiàn)光,400—700nm)和PAB處理(全波長(zhǎng)輻射280—700nm)培養(yǎng)海藻,探討了羊棲菜生長(zhǎng)、光合作用、呼吸作用、光合色素含量、可溶性糖和蛋白以及硝酸還原酶活性的變化情況。結(jié)果表明高濃度CO2顯著提高羊棲菜藻體的相對(duì)生長(zhǎng)速率,并且紫外輻射的負(fù)面效應(yīng)在高CO2處理下表現(xiàn)不顯著。高CO2降低了藻體的光合作用速率,而UVR的負(fù)面效應(yīng)和生長(zhǎng)體現(xiàn)為一致性,但是羊棲菜的呼吸作用沒(méi)有受到環(huán)境變化的明顯影響。羊棲菜的光合色素葉綠素a和類胡蘿卜素在高濃度CO2處理下明顯降低,而UVR沒(méi)有明顯影響。環(huán)境因子對(duì)羊棲菜的可溶性糖沒(méi)有影響,但是在高CO2和全波長(zhǎng)輻射處理下,藻體可溶性蛋白的含量顯著增加。同時(shí)高CO2明顯提高了硝酸還原酶的活性,并且僅在高濃度CO2處理下藻體中UVR對(duì)其活性有抑制作用。CO2和UVR對(duì)羊棲菜的大多數(shù)生理特性存在明顯的交互作用,在未來(lái)CO2濃度進(jìn)一步增加的情況下,UVR的負(fù)面效應(yīng)將會(huì)得到一定程度的緩解,這樣有利于羊棲菜在養(yǎng)殖海區(qū)獲得更高的產(chǎn)量。
紫外輻射;CO2;羊棲菜;生長(zhǎng);光合作用
由于化石燃料的大量使用,大氣CO2水平從工業(yè)革命前的280 mL/L劇增到現(xiàn)在的390μL/L[1]。并且根據(jù)IPCC預(yù)測(cè)模型(A1F1)的推測(cè),在本世紀(jì)末大氣中CO2濃度將達(dá)到800—1000μL/L。在以前很長(zhǎng)一段時(shí)間里,科學(xué)家認(rèn)為研究海洋酸化應(yīng)該聚焦于外海水域,這是因?yàn)樵谶@些區(qū)域浮游植物密度低,并且受陸源的影響小,pH水平在短時(shí)間尺度上,是比較穩(wěn)定的;而在近海海域,因?yàn)樯锪棵芏容^高,且受陸源輸入的影響,海洋酸化的效應(yīng)不明顯。但是在近期的研究發(fā)現(xiàn),近岸海域海水也會(huì)受海洋酸化的影響,且因?yàn)楹Q笏峄c生物呼吸及低氧的耦合作用,pH下降的速度甚至要快于外海海域[2]。
近幾年來(lái)大氣CO2升高所導(dǎo)致的海洋酸化對(duì)海洋生態(tài)系統(tǒng)影響已成為全球氣候變化中最為熱門的問(wèn)題,但是對(duì)于大型海藻對(duì)海洋酸化響應(yīng)研究甚少[3- 7],并且多數(shù)是在實(shí)驗(yàn)室恒定光強(qiáng)下進(jìn)行研究,忽略了自然界中光的變動(dòng)以及太陽(yáng)光中的紫外輻射(UVR)。而紫外輻射對(duì)藻體細(xì)胞的光合作用[8- 10]、一些關(guān)鍵酶甚至是遺傳物質(zhì)DNA產(chǎn)生明顯的效應(yīng)[11-12],進(jìn)而影響到藻體的生長(zhǎng)[13- 16]。因此在研究大氣CO2升高對(duì)大型海藻影響的同時(shí)必須考慮紫外輻射在這個(gè)過(guò)程中的作用,因?yàn)樵诖笮秃T逭鎸?shí)的生長(zhǎng)環(huán)境中,紫外輻射是不能夠被單獨(dú)分離出去的。
高光等[16]研究表明紫外輻射能夠降低羊棲菜的光合作用速率和生長(zhǎng)速率,并且隨著光強(qiáng)的增加,抑制作用也更為顯著,這種抑制作用在未來(lái)大氣CO2升高,海水pH值下降的情況下將會(huì)表現(xiàn)為怎樣的變化模式,本文同樣以經(jīng)濟(jì)海藻羊棲菜為研究材料,探討大氣CO2升高與紫外輻射對(duì)藻體生理生化特性的耦合效應(yīng),從生長(zhǎng)、光合作用、呼吸作用、硝酸還原酶活性、光合色素以及可溶性蛋白和多糖等方面探討羊棲菜在未來(lái)大氣CO2增加的情況下,紫外輻射的影響,為更好的估計(jì)海洋氣候變化對(duì)近岸大型海藻的影響提供一定的實(shí)驗(yàn)基礎(chǔ)。
1.1 實(shí)驗(yàn)材料
羊棲菜(Hizikiafusiformis)采自汕頭南澳島云澳灣,用低溫箱在5h內(nèi)運(yùn)到實(shí)驗(yàn)室,在培養(yǎng)箱內(nèi)暫養(yǎng)一段時(shí)間后再用于實(shí)驗(yàn)。暫養(yǎng)的條件是溫度為20℃,光強(qiáng)為100 μmol m-2s-1,光周期為12h∶12h;培養(yǎng)液為過(guò)濾的自然海水,每2天更換1次。
1.2 實(shí)驗(yàn)設(shè)置
石英管(石英管一端開(kāi)口,長(zhǎng)度為400mm, 直徑為59mm)外表面分別覆蓋有不同濾光特性的濾膜,使羊棲菜能夠接受到不同的太陽(yáng)光輻射處理:① PAB處理,石英管外面包裹Ultraphan 295濾膜 (UVT 100, Digefra, Munich, Germany),使藻體接受全波段陽(yáng)光輻射;② PAR處理,石英管外面包裹Ultraphan395濾膜(UV Opak, Digefra, Munich, Germany),濾掉紫外線,使藻體只接受可見(jiàn)光PAR。太陽(yáng)輻射的強(qiáng)度通過(guò)光譜輻射儀(ELDONET Terrestrial Spectro-radiometer, 德國(guó)產(chǎn))測(cè)定,本儀器可以連續(xù)監(jiān)測(cè)太陽(yáng)輻射的可見(jiàn)光、紫外線A和紫外線B,每分鐘記錄1次。
CO2處理為兩個(gè)水平,一個(gè)是通入正??諝?CO2濃度約為380μL/L),另一個(gè)為正常水平的2倍(800μL/L)。通氣的速率約為300mL/min, 高CO2來(lái)自植物CO2培養(yǎng)箱,通過(guò)箱體內(nèi)的氣泵泵到露天實(shí)驗(yàn)臺(tái)上的培養(yǎng)管內(nèi)。
1.3 pH值日變化測(cè)定
在藻體培養(yǎng)十幾天以后,找一個(gè)典型的天氣(晴朗),測(cè)定不同培養(yǎng)條件下藻體培養(yǎng)液的pH值的日變化情況。從8:00點(diǎn)到20:00點(diǎn)每2h測(cè)定1次。
1.4 生長(zhǎng)測(cè)定
1.5 光合作用與呼吸作用的測(cè)定
光合放氧的測(cè)定采用液相氧電極(Hansatech oxy-lab,美國(guó)),通過(guò)LKB超級(jí)恒溫箱(英國(guó))水浴控制溫度為20℃。光合反應(yīng)介質(zhì)初始為8mL過(guò)濾的自然海水(pH 8.2,鹽度 31),光源為鹵鎢燈,光照強(qiáng)度用光量子計(jì)(英國(guó))測(cè)定,本實(shí)驗(yàn)所用光強(qiáng)為飽和光強(qiáng)(600—800μmol m-2s-1),所用羊棲菜藻量為0.2 g FW(鮮重)左右。呼吸作用是通過(guò)用不透光的材料遮住反應(yīng)槽測(cè)得氧氣的消耗量得到。
1.6 有關(guān)生化組成含量的測(cè)定
藻體培養(yǎng)兩個(gè)星期后,測(cè)定其葉綠素a (Chl a)、類胡蘿卜素(Car)的含量。Chl a和類胡蘿卜素的含量是根據(jù)100%甲醇提取后的掃描光譜,按照Wellburn提供的公式計(jì)算得到[17]。
可溶性糖含量采用酚—硫酸法測(cè)定[18]:取0.3g藻,用研缽研磨成勻漿,加水約15mL,于70—80℃的水浴中加熱30min,冷卻后離心(5000r/min,10min),將濾液定容至20mL,即為待測(cè)液。取0.5mL待測(cè)液加水至2mL,然后加50μl酚試劑,再加5mL H2SO4,混勻后用紫外分光光度計(jì)測(cè)其在485nm處的吸光值,再用標(biāo)準(zhǔn)曲線計(jì)算其可溶性糖含量(mg/g FW)。
可溶性蛋白含量參照Kochert的方法[18],用考馬斯亮藍(lán)法測(cè)定。取0.2g藻,加1mL水用研缽勻漿,然后再加4mL水離心(5000r/min,10min),取0.5mL上清液加5mL考馬斯亮藍(lán)G-250,用紫外分光光度計(jì)測(cè)其在595nm處的吸光值,再用標(biāo)準(zhǔn)曲線計(jì)算其可溶性蛋白含量(mg/g FW)。
1.7 硝酸還原酶(NRA)的測(cè)定
1.8 數(shù)據(jù)處理
實(shí)驗(yàn)數(shù)據(jù)采用Two-way ANOVA 或T-test分析,設(shè)置顯著水平為P< 0.05, 本實(shí)驗(yàn)中所有的處理都設(shè)為3個(gè)重復(fù)。
圖1 生長(zhǎng)實(shí)驗(yàn)期間日累積輻射量(可見(jiàn)光PAR, 紫外線A UV-A, 紫外線B UV-B)的變化 Fig.1 The change about daily dose of photosynthetically active radiation (PAR), ultra-violet A (UV-A) and ultra-violet B (UV-B) during experiment periods
在生長(zhǎng)實(shí)驗(yàn)期間的兩個(gè)星期內(nèi),最高的日累積輻射量分別為:PAR 7.7MJ/m2,UV-A 1.2MJ/m2和 UV-B 0.034MJ/m2;最低日累積輻射量分別為:PAR 2.1MJ/m2,UV-A 0.39MJ/m2和 UV-B 0.011MJ/m2。平均日輻射量為分布為PAR:5.7MJ/m2,UV-A:0.91MJ/m2和 UV-B:0.025MJ/m2(圖1)。
在羊棲菜生長(zhǎng)期間,其培養(yǎng)介質(zhì)中pH值變化遵循一個(gè)明顯的日變化模式(圖2),在早上和晚上最低,在16:00達(dá)到最高。通入正常空氣培養(yǎng)的羊棲菜藻體海水介質(zhì),其pH值要明顯高于通入高濃度CO2培養(yǎng)藻體的海水。
高濃度CO2顯著提高羊棲菜藻體的相對(duì)生長(zhǎng)速率RGR(P< 0.05)。UVR顯著抑制了正常空氣CO2水平下藻體的生長(zhǎng)速率(P< 0.05),但在高濃度CO2下這種作用不明顯(P> 0.05)(圖3)。CO2和UVR之間有明顯的交互作用(P< 0.05)。
而對(duì)于藻體的光合作用來(lái)說(shuō),高CO2顯著降低羊棲菜的最大凈光合作用速率。但UVR對(duì)光合作用的影響在高低CO2處理下表現(xiàn)出和生長(zhǎng)速率一樣的趨勢(shì):在正??諝釩O2水平下是明顯的負(fù)面效應(yīng),但在高濃度CO2下作用不顯著(P>0.05)。并且CO2和UVR之間沒(méi)有明顯的交互作用(P> 0.05)。羊棲菜的呼吸作用速率沒(méi)有受到UVR和CO2的顯著影響,在所有的處理下都表現(xiàn)為一致的水平(圖4)。
圖2 在不同光輻射(可見(jiàn)光PAR和全波長(zhǎng)輻射PAB)以及兩種CO2水平(正??諝馑絃C, 380 μL/L和高CO2水平HC, 800 μL/L)處理下羊棲菜培養(yǎng)介質(zhì)中pH值的日變動(dòng) Fig.2 Daily fluctuations of seawater pH in the culture of Hizikia fusiformis grown under different CO2 concentrations (Ambient CO2 level: LC, 380 μL/L; High CO2 level: HC, 800 μL/L) and with exposure to photosynthetically active radiation (PAR) or full spectrum solar radiation (PAB)
圖3 羊棲菜在可見(jiàn)光PAR和全陽(yáng)光輻射PAB(PAR+UVR)及不同CO2濃度(正??諝馑絃C, 380 μL/L和高CO2水平HC, 800 μL/L)培養(yǎng)條件下的相對(duì)生長(zhǎng)速率(RGR)的變化不同的字母代表處理間的顯著性差異(P<0.05)Fig.3 The relative growth rate (RGR)of Hizikia fusiformis grown under different CO2 concentrations (Ambient CO2 level: LC, 380 μL/L; High CO2 level: HC, 800 μL/L) and with exposure to photosynthetically active radiation (PAR) or full spectrum solar radiation (PAB)
圖4 羊棲菜在可見(jiàn)光PAR和全陽(yáng)光輻射PAB(PAR+UVR)及不同CO2濃度(正??諝馑絃C, 380 μL/L和高CO2水平HC, 800 μL/L)培養(yǎng)條件下,其最大凈光合作用速率和呼吸速率的變化情況Fig.4 The change about the maximal net photosynthetic rate and dark respiration rate of Hizikia fusiformis grown under different CO2 concentrations (Ambient CO2 level: LC, 380 μL/L; High CO2 level: HC, 800 μL/L) and with exposure to photosynthetically active radiation (PAR) or full spectrum solar radiation (PAB)不同的字母代表處理間的顯著性差異(P<0.05)
圖5 羊棲菜在可見(jiàn)光PAR和全陽(yáng)光輻射PAB(PAR+UVR)及不同CO2濃度(正??諝馑絃C, 380 μL/L和高CO2水平HC, 800 μL/L)培養(yǎng)條件下,其硝酸還原酶活性的變化 Fig.5 The change about the activity of nitrate reductase (NRA) in Hizikia fusiformis grown under different CO2 concentrations (Ambient CO2 level: LC, 380 μL/L; High CO2 level: HC, 800 μL/L) and with exposure to photosynthetically active radiation (PAR) or full spectrum solar radiation (PAB) 不同的字母代表處理間的顯著性差異(P<0.05)
高CO2顯著提高了羊棲菜的硝酸還原酶活性,但UVR在正常空氣CO2水平下作用不明顯(P> 0.05),但在高濃度CO2下UVR起到明顯的負(fù)面效應(yīng)(P< 0.05)。CO2和UVR之間有明顯的交互作用(P< 0.05)(圖5)。
UVR和CO2對(duì)羊棲菜的可溶性糖沒(méi)有顯著的影響。對(duì)羊棲菜的可溶性蛋白來(lái)說(shuō),在僅有可見(jiàn)光存在的情況下,高低CO2處理下的藻體沒(méi)有顯著的差異。但在全波長(zhǎng)輻射下,高CO2處理下的羊棲菜蛋白含量顯著高于正??諝馑较碌脑弩w。而UVR僅在高CO2處理下顯著提高了藻體的可溶性蛋白含量,CO2和UVR之間有明顯的交互作用(P< 0.05)(圖6)。
對(duì)于羊棲菜的光合色素Chla和類胡蘿卜素來(lái)說(shuō),隨著培養(yǎng)時(shí)間的增加,高CO2顯著降低了它們的含量,但是UVR沒(méi)有明顯的效應(yīng),并且CO2和UVR之間交互作用不顯著(P> 0.05)(圖7)。
圖6 羊棲菜在可見(jiàn)光PAR和全陽(yáng)光輻射PAB(PAR+UVR)及不同CO2濃度(正??諝馑絃C, 380 μL/L和高CO2水平HC, 800 μL/L)培養(yǎng)條件下,其可溶性糖及可溶性蛋白含量的變化Fig.6 The change about soluble carbohydrates and soluble proteins contents of Hizikia fusiformis grown under different CO2 concentrations (Ambient CO2 level: LC, 380 μL/L; High CO2 level: HC, 800 μL/L) and with exposure to photosynthetically active radiation (PAR) or full spectrum solar radiation(PAB)不同的字母代表處理間的顯著性差異(P<0.05)
圖7 羊棲菜在可見(jiàn)光PAR和全陽(yáng)光輻射PAB(PAR+UVR)及不同CO2濃度(正??諝馑絃C, 380 μL/L和高CO2水平HC, 800 μL/L)培養(yǎng)條件下,其葉綠素a(Chla)和類胡蘿卜素(Carotenoid)含量隨時(shí)間的變化Fig.7 The changes of Chlorophyll a (Chla) and Carotenoid contents of Hizikia fusiformis grown under different CO2 concentrations (Ambient CO2 level: LC, 380 μL/L; High CO2 level: HC, 800 μL/L) and exposed to photosynthetically active radiation (PAR) or full spectrum solar radiation (PAB) with time
高CO2處理下的羊棲菜藻體光合作用能力顯著下降,這種光合生理特性的下調(diào)在齒緣墨角藻、細(xì)基江蘺和滸苔中也得到驗(yàn)證[7, 23- 24]。這是因?yàn)楦邼舛鹊腃O2為羊棲菜藻體提供了更為充足的碳源,藻體的Rubisco酶對(duì)CO2的親和力會(huì)適應(yīng)性地下降,從而節(jié)約了驅(qū)動(dòng)無(wú)機(jī)碳利用的能量,這在光能不足的情況下會(huì)對(duì)藻體起到正面作用,但在高的光強(qiáng)水平下,節(jié)省的能量羊棲菜提供更強(qiáng)的光保護(hù)能力,如增加光呼吸等[7,25],這樣有可能是導(dǎo)致藻體最大光合反應(yīng)能力下降。在自然界中,藻體接受的光強(qiáng)水平一天內(nèi)是不斷變化的,在早上和下午,光強(qiáng)水平較弱,CO2會(huì)對(duì)羊棲菜的生長(zhǎng)起到明顯的促進(jìn)作用,但是中午時(shí)刻光強(qiáng)水平很高,這對(duì)藻體的光合作用等產(chǎn)生明顯的抑制,因此CO2的效應(yīng)取決于一天內(nèi)光強(qiáng)變動(dòng)的水平。羊棲菜藻體通過(guò)下調(diào)他們本身的光合色素含量來(lái)適應(yīng)高CO2處理,這是一種羊棲菜藻體采取的光保護(hù)機(jī)制,高CO2培養(yǎng)下的羊棲菜藻體通過(guò)下調(diào)天線色素的含量來(lái)有效地避免多余光能對(duì)藻體的損傷。另外藻體體內(nèi)光合色素的下降也有可能是藻體為適應(yīng)高濃度的CO2而做出的一種調(diào)整,如涉及到資源的再分配[26]。
在高CO2濃度下,羊棲菜的NR活性顯著增加,這在一些大型海藻中也得到證實(shí)[6, 27]。羊棲菜藻體對(duì)UVR和CO2存在明顯的交互作用,在高CO2濃度下UVR顯著降低NR活性,但在正常CO2水平下卻沒(méi)有抑制作用。這有可能是由于在高CO2下,NR活性顯著增加,但UVR在這個(gè)正面過(guò)程中存在負(fù)面效應(yīng)。羊棲菜的生長(zhǎng)是海藻各種生理特征的綜合體現(xiàn),雖然高CO2降低了羊棲菜最大光合作用速率,但是也同時(shí)促進(jìn)了藻體對(duì)N的利用,而UVR對(duì)生長(zhǎng)的影響體現(xiàn)為光合作用以及硝酸還原酶活性的一致性,這表明,紫外輻射通過(guò)影響羊棲菜的固碳和固氮進(jìn)而影響到藻體的生長(zhǎng)。
綜上所述,在未來(lái)大氣CO2含量急劇增加的情況下,羊棲菜的生長(zhǎng)受到明顯的促進(jìn),并且對(duì)自然界中的紫外輻射抵御能力也進(jìn)一步加強(qiáng),由于羊棲菜幼孢子體具有比成體更強(qiáng)抵御紫外線的能力[28],因此在未來(lái)羊棲菜將會(huì)比現(xiàn)在更具有生長(zhǎng)優(yōu)勢(shì),在養(yǎng)殖方面可以獲得更高的產(chǎn)量。并且與實(shí)驗(yàn)室恒定光強(qiáng)的實(shí)驗(yàn)相比,本實(shí)驗(yàn)數(shù)據(jù)更能反映羊棲菜在自然界中的真實(shí)情況,為未來(lái)更好的估測(cè)海洋環(huán)境變化對(duì)羊棲菜養(yǎng)殖過(guò)程中的影響提供可靠的實(shí)驗(yàn)數(shù)據(jù)。
[1] Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: University Press, 2007: 996- 996.
[2] Cai W J, Hu X P, Huang W J, Murrell M C, Lehrter J C, Lohrenz S E, Chou W C, Zhai W D, Hollibaugh J T, Wang Y C, Zhao P S, Guo X H, Gundersen K, Dai M H, Gong G C. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience, 2011, 4(11): 766- 770.
[3] Hepburn C D, Pritchard D W, Cornwall C E, Mcleod R J, Beardall J, Raven J A, Hurd C L. Diversity of carbon use strategies in a kelp forest community: implications for a high CO2ocean. Global Change Biology, 2011, 17(7): 2488- 2497.
[4] Israel A, Hophy M. Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2concentrations. Global Change Biology, 2002, 8(9): 831- 840.
[5] Porzio L, Buia M C, Hall-Spencer J M. Effects of ocean acidification on macroalgal communities. Journal of Experimental Marine Biology and Ecology, 2011, 400(1-2): 278- 287.
[6] Zou D H. Effects of elevated atmospheric CO2on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed,Hizikiafusiforme(Sargassaceae, Phaeophyta). Aquaculture, 2005, 250(3-4): 726- 735.
[7] Xu J T, Gao K S. Future CO2-Induced ocean acidification mediates the physiological performance of a green tide alga. Plant Physiology, 2012, 160(4): 1762- 1769.
[8] Aguilera J, Karsten U, Lippert H, V?gele B, Philipp E, Hanelt D, Wiencke C. Effects of solar radiation on growth, photosynthesis and respiration of marine macroalgae from the Arctic. Marine Ecology. Progress Series, 1999, 191: 109- 119.
[9] Han T, Han Y S, Kain J M, H?der D P. Thallus differentiation of photosynthesis, growth, reproduction, and UV-B sensitivity in the green algaUlvapertusa(Chlorophyceae). Journal of Phycology, 2003, 39(4): 712- 721.
[10] Xu J T, Gao K S. Use of UV-A energy for photosynthesis in the red macroalgaGracilarialemaneiformis. Photochemistry and Photobiology, 2010, 86(3): 580- 585.
[11] Bischof K, Kr?bs G, Wiencke C, Hanelt D. Solar ultraviolet radiation affects the activity of ribulose-1, 5-bisphosphate carboxylase-oxygenase and the composition of photosynthetic and xanthophyll cycle pigments in the intertidal green algaUlvalactucaL. Planta, 2002, 215(3): 502- 509.
[12] Buma A G J, De Boer M K, Boelen P. Depth distributions of DNA damage in Antarctic marine phyto- and bacterioplankton exposed to summertime UV radiation. Journal of Phycology, 2001, 37(2): 200- 208.
[13] Davison I R, Jordan T L, Fegley J C, Grobe C W. Response ofLaminariasaccharina(Phaeophyta) growth and photosynthesis to simultaneous ultraviolet radiation and nitrogen limitation. Journal of Phycology, 2007, 43(4): 636- 646.
[14] Henry B E, Van Alstyne K L. Effects of UV radiation on growth and phlorotannins inFucusgardneri(Phaeophyceae) juveniles and embryos. Journal of Phycology, 2004, 40(3): 527- 533.
[15] Michler T, Aguilera J, Hanelt D, Bischof K, Wiencke C. Long-term effects of ultraviolet radiation on growth and photosynthetic performance of polar and cold-temperate macroalgae. Marine Biology, 2002, 140(6): 1117- 1127.
[16] 高光, 吳紅艷, 高坤山. 陽(yáng)光紫外輻射對(duì)褐藻羊棲菜生長(zhǎng)和光合作用的影響. 水生生物學(xué)報(bào), 2009, 33(2):284- 288.
[17] Wellburn A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 1994, 144(3): 307- 313.
[18] Kochert G. Protein determination by dye binding // Hellebust J A, Craigie J S. Handbook of Phycological Methods: Physiological and Biochemical Methods. London, New York, Melbourne: Cambridge University Press, 1978: 92- 93.
[19] Corzo A, Niell F X. Determination of nitrate reductase activity inUlvarigidaC. Agardh by the in situ method. Journal of Experimental Marine Biology and Ecology, 1991, 146(2): 181- 191.
[20] Kübler J E, Johnston A M, Raven J A. The effects of reduced and elevated CO2and O2on the seaweedLomentariaarticulata. Plant, Cell and Environment, 1999, 22(10): 1303- 1310.
[21] Gordillo F J L, Figueroa F L, Niell F X. Photon- and carbon-use efficiency inUlvarigidaat different CO2and N levels. Planta, 2003, 218(2): 315- 322.
[22] 徐軍田, 高坤山. CO2和陽(yáng)光紫外輻射對(duì)經(jīng)濟(jì)紅藻龍須菜的影響. 海洋學(xué)報(bào), 2010, 32(5): 144- 151.
[23] Johnston A M, Raven J A. Effects of culture in high CO2on the photosynthetic physiology ofFucusserratus. British Phycological Journal, 1990, 25(1): 75- 82.
[25] Gao K S, Xu J T, Gao G, Li Y H, Hutchins D A, Huang B Q, Wang L, Zheng Y, Jin P, Cai X N, H?der D P, Li W, Xu K, Liu N N, Riebesell U. Rising CO2and increased light exposure synergistically reduce marine primary productivity. Nature Climate Change, 2012, 2(7): 519- 523.
[26] Andria J R, Vergara J J, Perez-Llorens J L. Biochemical responses and photosynthetic performance ofGracilariasp. (Rhodophyta) from Cádiz, Spain, cultured under different inorganic carbon and nitrogen levels. European Journal of Phycology, 1999, 34(5): 497- 504.
[27] Mercado J M, Javier F, Gordilio L, Niell X, Figueroa F L. Effects of different levels of CO2on photosynthesis and cell components of the red algaPorphyraleucosticta. Journal of Applied Phycology, 1999, 11(5): 455- 461.
[28] 劉樹(shù)霞, 鄒定輝, 徐軍田. 羊棲菜幼孢子體對(duì)不同N水平生長(zhǎng)條件和陽(yáng)光紫外輻射的響應(yīng). 生態(tài)學(xué)報(bào), 2010, 30(20): 5562- 5568.
Combined effects of increasing CO2concentrations and solar UV radiation on the physiological performance ofHizikiafusiformisOkamura (Sargassaceae,phaeophyta)
LIU Shuxia1, XU Juntian1, ZOU Dinghui2,*
1SchoolofMarineScienceandTechnology,HuaihaiInstituteofTechnology,Lianyungang222005,China
2CollegeofEnvironmentandEnergy,SouthChinaUniversityofTechnology,Guangzhou510006,China
Here, we investigated the physiological responses of the economically important brown macroalgal species,Hizikiafusiformis, to solar ultra-violet (UV) radiation and increasing CO2concentrations. Specifically, we cultured the alga under two different CO2concentrations (380μL/L and 800μL/L) and two different solar radiations (PAR: photosynthetically active radiation 400—700 nm; PAB: full spectrum solar radiation, 280—700 nm) outdoors. Two radiation treatments were established in the experiment: (1) thalli that received full spectrum solar radiation (PAB treatment) in quartz tubes covered with Ultraphan 295, and (2) thalli that only received PAR (P treatment) in quartz tubes covered with Ultraphan film 395. CO2was supplied to the different treatments by bubbling (300 mL/min) ambient air (390μL/L) or air enriched with CO2(800μL/L CO2in the air) with a plant CO2incubator that automatically controlled CO2concentrations, with less than 5% variation. For all treatments, algae were grown at 20℃, which was regulated by a cooling unit. The growth rate, photosynthesis, dark respiration, photosynthetic pigment contents, soluble carbohydrates, proteins, and nitrate reductase activity were measured after three weeks of culture. Our results showed that elevated CO2significantly enhanced the relative growth rate ofH.fusiformis. UV radiation appeared to have no negative effects on thalli grown under high CO2conditions. High CO2and UV culture conditions both reduced the net photosynthetic rate ofH.fusiformis. However, no significant difference was found in the dark respiration ofH.fusiformisamong all treatments. Chlorophyll a and carotenoid contents declined whenH.fusiformiswas cultured under high CO2conditions, whereas UV had no significant effect on the content of the two pigments. There was no difference in soluble carbohydrates among all treatments; however, compared to all other treatments, soluble protein content significantly increased in thalli grown at high CO2and full spectrum solar radiation. Nitrate reductase activity was enhanced by high CO2treatment, but was inhibited in thalli grown under both UV and high CO2conditions. Overall, the physiological performance ofH.fusiformiswas most significantly influenced by CO2and UVR, with increasing CO2concentrations potentially alleviating the negative effects of UVR on thalli performance. This information is expected to help enhance the production ofH.fusiformisgrown in sea areas designated for future culturing.
UV radiation; CO2;Hizikiafusiformis; growth; photosynthesis
國(guó)家自然科學(xué)基金(41276148, 41106093); 江蘇省海洋生物技術(shù)重點(diǎn)實(shí)驗(yàn)室課題(2010HS08); 江蘇省“青藍(lán)工程”人才基金; 江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程資助項(xiàng)目
2013- 05- 26;
日期:2015- 04- 14
10.5846/stxb201305261184
*通訊作者Corresponding author.E-mail:dhzou@scut.edu.cn
劉樹(shù)霞,徐軍田,鄒定輝.大氣CO2升高和紫外輻射相互作用對(duì)羊棲菜生理特性的影響.生態(tài)學(xué)報(bào),2015,35(21):7089- 7096.
Liu S X, Xu J T, Zou D H.Combined effects of increasing CO2concentrations and solar UV radiation on the physiological performance ofHizikiafusiformisOkamura (Sargassaceae, phaeophyta).Acta Ecologica Sinica,2015,35(21):7089- 7096.