• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水熱合成制備Al摻雜α-MnO2納米管及其超級(jí)電容器電化學(xué)性能

    2015-01-04 12:52:16謝華清上海第二工業(yè)大學(xué)城市建設(shè)與環(huán)境工程學(xué)院上海201209
    物理化學(xué)學(xué)報(bào) 2015年4期
    關(guān)鍵詞:納米管水熱電容器

    黎 陽 謝華清 李 靖(上海第二工業(yè)大學(xué)城市建設(shè)與環(huán)境工程學(xué)院,上海201209)

    水熱合成制備Al摻雜α-MnO2納米管及其超級(jí)電容器電化學(xué)性能

    黎 陽*謝華清 李 靖
    (上海第二工業(yè)大學(xué)城市建設(shè)與環(huán)境工程學(xué)院,上海201209)

    通過水熱法制備了未摻雜α-MnO2和Al摻雜α-MnO2,對(duì)產(chǎn)物的形貌、結(jié)構(gòu)和電化學(xué)性能進(jìn)行了研究.掃描電鏡(SEM)和高分辨透射電鏡(HRTEM)觀察表明制備產(chǎn)物呈納米管形態(tài).紫外-可見光譜分析計(jì)算了產(chǎn)物的能帶間隙:隨著Al的摻雜,α-MnO2的能帶間隙值降低.以未摻雜α-MnO2與Al摻雜α-MnO2作為電極材料,通過循環(huán)伏安(CV)和恒流充放電測試電極的超級(jí)電容器性能.在50 mA·g-1電流密度下,未摻雜α-MnO2與Al摻雜α-MnO2電極的比電容分別達(dá)到了204.8和228.8 F·g-1.電化學(xué)阻抗譜(EIS)分析表明Al的摻雜降低了α-MnO2在電解液中的阻抗,有利于提高其電化學(xué)比電容.增強(qiáng)的比電容及在1000個(gè)循環(huán)后仍具有良好的容量保持率,使Al摻雜α-MnO2在超級(jí)電容器中具有較好的應(yīng)用前景.

    α-MnO2;Al摻雜;納米管;超級(jí)電容器;電化學(xué)電容器

    ?Editorial office ofActa Physico-Chimica Sinica

    1 Introduction

    Manganese oxide,with its versatile structures,low cost,and environmental friendliness,is believed to have great potential to be applied in wide areas.In recent years,manganese oxides have been intensively studied as an electrode material for supercapacitors.The hot research spots mainly focus on the preparation and properties of nanostructured manganese oxides,the combination of manganese oxides with other components,doping in manganese oxides,etc.

    Nanostructured manganese oxides with different morphologies have been studied to explore the effects of nanoscale structures on their properties.Yao et al.1prepared high-quality ultra-long α-MnO2nanowires,with a diameter of about 25 nm and a length of several hundred micrometers,which exhibited a high specific capacitance and a superior cycling stability with only 4.7%loss after 1000 cycles.Lambda-MnO2was synthesized with a developed porous,ordered,and interconnected pore structure used as supercapacitor electrode.The as-synthesized porous lambda-MnO2materials showed a noticeably performance(120 F·g-1)at a high constant current(1A·g-1).2Zhu et al.3prepared hierarchical MnO2nanoflower via a hydrothermal treatment.The hierarchical MnO2nanoflower delivered not only high specific capacitance of 347 F·g-1,but also excellent cycle stability(97.5%capacitance retention after 10000 cycles at a scan rate of 20 mV·s-1).Although nanostructured manganese oxides presented promoted electrochemical performances,fussy preparation process seemed inevitable and further efforts are necessary to obtain elevated specific capacitance.

    The composites formed by MnO2and other materials,such as carbon/polymers,also demonstrate attractive electrochemical performances.Jiang et al.4developed a three-dimensional(3D) nanostructure comprised of ternary rGO(reduced graphene oxide)/ CNTs(carbon nanotubes)/MnO2nanocomposites for high-rate supercapacitors.The optimized nanocomposite exhibited a high specific capacitance of 319 F·g-1with enhanced rate capability (222 F·g-1even at 60A·g-1)and good cycling stability in 1 mol· L-1Na2SO4aqueous solution.Azhagan et al.5demonstrated a simple and comparatively low temperature synthesis of functionalized multilayer fullerenes so called carbon nano-onions (CNOs).In situ incorporation of MnO2nanoparticles to the CNOs increased the specific capacitance up to 1207 F·g-1,which was close to the theoretical value of pseudocapacitive MnO2.In Zolfaghari'swork,6carbon black(CB)/MnO2composites were prepared by a sonochemical method.When the mass fraction(w) of MnO2in composite material was 65%,the specific capacitance of CB-MnO2composite calculated from the CV curves was 313 F·g-1,showed higher energy density than pure gamma-MnO2.Yu et al.7synthesized ZnO@MnO2andAl-doped ZnO(AZO)@MnO2hybrid electrodes in core/shell geometries on stainless steel substrates by a scalable low-cost solution route.The excellent capacitive properties indicate that the AZO@MnO2hybrid architecture can serve as a promising electrode material for supercapacitors as well as other electrochemical energy storage/ conversion devices.Furthermore,nano composites of partially reduced graphene oxide-K2Mn4O8presented excellent electrochemical performances as well.8

    Doping was an effective way to change the properties of materials.It was revealed in many research works that the electrochemical performances of MnO2can be improved prominently via doping various elements into MnO2lattice.Some elements,including Co,9,10Fe,11Al,12-14V,15Pd,16Sn,17Li,18etc.,were doped into manganese oxides and proved to have positive influences on the properties of manganese oxides.Co-doped birnessite-type MnO2was prepared by Wang et al.,10which showed a very high specific capacitance of 326.4 F·g-1and indicated that cobalt had great effects on the micro-morphology and electrochemical properties of manganese dioxide.Dubal and Lokhande11potentiostatically prepared amorphous and highly porous nanonest like Fe:MnO2thin films.The maximum specific capacitance of 273 F·g-1was achieved for 2%(atomic ratio)Fe:MnO2at 5 mV·s-1scan rate.In Hashem'swork,12Al,Cu,and Mg doped cryptomelane manganese dioxides were prepared by wet-chemical method.The electrical conductivity of doped MnO2increased in comparison with pure MnO2,while Al-doped MnO2exhibited the lower resistivity. Various shapes of hierarchical MnO2(nanorod,nanothorn sphere, sphere)were successfully synthesized using the hydrothermal method with quantitative control ofAl3+in solution.13It was found that Al3+species in the solution acted as a functional doping species into(2×2)tunnels of α-MnO2and also as a catalyst. Malankar et al.18developed a new method to synthesize a uniform round-shaped Li-doped MnO2by ozonation of acidic MnSO4in the presence of Li+ions.The electrochemical properties of Lidoped MnO2were studied by recording discharge profile and the mechanisms were discussed.

    α-MnO2,with its special(2×2)tunnel cavity structure,presents attractive activity in lithium ion batteries,19,20supercapacitor,1,21microwave absorption,22,23catalyst,24,25etc.However,the inherent semi-conduct properties of α-MnO2leads to its low electrical conductivity,which is not beneficial to charge transfer in electrochemical process.So,it is necessary to enhance the electrical conductivity of α-MnO2.In this work,Al element was doped into α-MnO2nanotube to obtain uniform solid solution via hydrothermal method.It is expected that the doped Al could improve the electrical conductivity and electrochemical performances of α-MnO2.Moreover,the hollow space in the nanotube structure can provide a way for ions in the electrolyte to pass through,which would enlarge the contact areas between nanotube surface and electrolyte.As a result,more electrochemical active positions were formed and beneficial to redox processes on the nanotube surface.The investigations on the influences of doping on the structure and electrochemical performances of α-MnO2were carried out and discussed.

    2 Experimental

    Un-doped and Al-doped α-MnO2were prepared via hydrothermal method.All of the reactants and solvents were analytical-grade and were used without further purification.In a typical procedure,4.8 mmol potassium permanganate(99.0%)and aluminum nitrate(99.0%)were dissolved in 40 mL de-ionized water by magnetic stirring.Then 18 mmol concentrated hydrochloric acid(36.0%)was added in the above solution with stirring for 30 min.Finally,the solution was transferred to a Teflon reactor(100 mL volume)and placed in an oven and kept at 130°C for 10 h. After the temperature of the oven decreased to room temperature, the product in the reactor was collected by centrifugation,washed with de-ionized water and dried at 100°C for 24 h,resulting in brown black powder.The mole ratio of Mn andAl was controlled at 98:2 in the present study.The un-doped and doped samples were nominated as PM and AM,respectively.The structure and morphology of as-synthesized samples were examined by scanning electron microscopy(SEM,HITACHI,S-4800,Japan),X-ray diffraction(XRD,D8-ADVANCE,Cu Kα,Germany),ultravioletvisible absorption spectroscopy(UV-2550,SHIMADZU,Japan), and high resolution transmission electron microscopy(HRTEM, FEI,TECNAI G2-F20,USA)

    As-prepared powders were fabricated as electrodes to investigate their electrochemical properties.The typical procedure for electrode fabrication can be described as follow:as-synthesized samples,10%(w,mass fraction)conducting agent(acetylene black)and 10%(w)PVDF(poly vinyliene tetrafluoroethylene) latex as binder were mixed in mortar.Then the mixture was pressed into foam nickel mesh dried in air at 120°C for 12 h to remove solvent and finally was pressed under 10 MPa pressure to keep good adherence between electrode material and the nickel mesh current collector.Electrochemical investigations were carried out in three-electrode cell using carbon as counter electrode andAg/AgCl as reference electrode.The electrolyte,0.1 mol· L-1Na2SO4,was used to study the capacitive behavior of as-prepared electrodes.Cyclic voltammetry(CV)studies were performed at a potential range of-0.2-0.8 V(vs Ag/AgCl)at scan rates of 5,10,20,30,50,and 100 mV·s-1on electrochemical workstation(VMP3,BioLogic,France).Galvanostatical chargedischarge test was conducted at current densities of 20,50,80, 100,200,500,and 1000 mA·g-1between-0.2-0.8 V(vs Ag/ AgCl)using computer controlled cycling equipment(LAND, Wuhan China).Electrochemical impedance spectra(EIS)were measured over the frequency-range of 100 kHz-10 mHz at a potentiostatic signal amplitude of 5 mV on same workstation as CV test.

    3 Results and discussion

    3.1 Structure characterization

    XRD patterns of the as-prepared pristine α-MnO2andAl-doped α-MnO2are presented in Fig.1.It is apparent that PM and AM samples all demonstrate single tetragonal phase structures,corresponding to the characteristic peaks of α-MnO2phase(JCPDS 44-0141).No diffraction peaks of other phases or impurities etc. could be observed.The doping of Al causes variations of crystalline lattice of α-MnO2,which are listed in Table 1.The lattice parameters a and b increase from 0.9831 to 0.9866 nm,while lattice parameter c shows negligible change.So,the lattice expansion of Al-doped α-MnO2mainly happens along x and y axes and keeps stable in z axes direction.As a result,the volume ofAM sample cell expands from 0.2764 to 0.2783 nm3,which indicates that Al doping has effect on the structure of α-MnO2.During the formation of α-MnO2,Al ion(Al3+,ionic radius 0.057 nm),has similar ionic radius to Mn ion(Mn4+,ionic radius 0.052 nm),may mostly substitute Mn in MnO6octahedron and some Al ions exist at the center of(2×2)tunnel cavity where K+exists previously. Finally,it can be confirmed from XRD patterns that the dopedAl all exists with the form of solid solution in cryptomelane structure of α-MnO2.

    Fig.1 X-ray diffraction patterns of as-prepared α-MnO2(PM)andAl-doped α-MnO2(AM)

    Table 1 Variations of α-MnO2lattice parameters before and afterAl-doping

    Fig.2 shows the SEM morphologies of un-doped α-MnO2and Al-doped α-MnO2.PM andAM samples all show similar nanotube morphology and distribute homogeneously,which implies that the doping ofAl has no distinct effects on the morphology of α-MnO2. Those nanotubes are scores of nanometers in diameters and several hundreds of nanometers in lengths.It can be clearly observed and estimated that the wall thickness of nanotube is about 20 nm both in Fig.2(a)and Fig.2(b).The growth mechanism of nanotube under hydrothermal conditions can be comprehended in previous study.26The inset in Fig.2(b)shows the compositions of AM sample.The mole ratio of Mn andAl is about 98.1:1.9,which is close to the desired Al content.The details of as-prepared nanotubes are disclosed in high resolution image,as shown in Fig.3.Fig.3(a)apparently demonstrates hollow center structure of the nanotube and the diameters of these nanotubes are about 50-80 nm.The selected area electron diffraction(SAED)pattern in inset reveals the electronic diffraction characteristics of AM sample,indicating the single crystalline structure of individual nanotube.Fig.3(b)presents the zoom out view of selecting area within black circle in Fig.3(a).The lattice line of the sample couldbe distinguished easily.The center region of the nanotube is brighter than that of both side,due to film thickness of the hollow center in nanotube.The lattice-fringe distance is about 0.69 nm, which is corresponding to the(110)d-space of tetragonal α-MnO2(JCPDS file No.44-0141)and such result is in accordance with the XRD results.

    Generally,the energy band structures of substances would be altered when heterogeneous atoms are doped,which plays important roles in regulating physical properties of substances.In this study,the influences of doping on the band gaps of as-synthesized α-MnO2nantubes are studied by UV-Vis absorption spectroscopy.In Fig.4,the absorption spectra of α-MnO2nanotubes are presented.The inset demonstrates the Tauc plots calculated from absorption spectrum.By extrapolation of the Tauc plots,the band gaps of PM andAM samples can be determined as 2.14 and 2.05 eV,respectively.In former work,27the band gap values are different,which may have relationship with the grain size,microstructure,and component of various samples.The band gap value decreases upon doping ofAl into α-MnO2lattice,which indicates that the dopant has obvious influence on the band structure of α-MnO2nanotube.

    Fig.3 TEM morphology(selected area electron diffraction pattern in inset)of(a)Al-doped α-MnO2and(b)its high resolution image

    Fig.4 UV-visible spectra of as-prepared samples (Tauc plot in inset)

    3.2 Electrochemical performances

    Typical cyclic voltammogram(CV)curves of as-prepared α-MnO2electrodes in 0.1 mol·L-1Na2SO4solution at room temperature are presented in Fig.5.To find appropriate scan potential ranges for CV measurements,PM and AM samples are scanned with several different potential cut-off windows,as indicated in Fig.5(a,b).The profiles of all CV curves present roughly rectangular mirror images,which demonstrate typical capacitive characteristics.When the cut-off window ranges gradually increase,the cathodic and anodic currents all amplify accordingly due to enhanced polarization effects.While the potential cut-off window is located between-0.3 and 0.9 V,the cathodic and anodic currents are apparently larger than those of potential cutoff window between 0.0 and 0.6 V.The self-made three-electrode measuring system maintains stable and no gas bubbles/impurities emerge in solution/electrode surfaces at potential cut-off window of-0.2 and 0.8 V.So,it can be decided that the favorable scan potential cut-off window is between-0.2-0.8 V(vs Ag/AgCl). Various scan rates of 5,10,20,30,50,and 100 mV·s-1are applied in CV investigation to study the capacitive behaviors of PM and AM electrodes between-0.2-0.8 V in Fig.5(c,d).The PM and AM electrodes all exhibit highly electrochemical reversibility between-0.2 and 0.8 V,which can be judged from roughly rectangular mirror shapes in Fig.5(c,d).Obviously,with the increase of scan rates in CV measurements,the CV curves gradually deviate from rectangular shapes and the areas of CV curves enlarge.By comparison of CV patterns of PM andAM samples,the doping ofAl has no distinct effects on the profiles of CV curves.

    The capacitance of MnO2is considered to be mainly produced from pseudo-capacitance,which is attributed to reversible redox reaction happened between electrode and electrolyte in terms of intercalation/de-intercalation of H+or Na+.To study the capacitance variations of MnO2before and after doping,galvanostatical charge-discharge measurements are conducted.Fig.6 presents the charge-discharge curves of PM andAM samples.Under 50 mA· g-1current density,the profiles of charge-discharge curves of PMand AM samples display similar variation characteristics,as indicated in Fig.6(a).The IR drops for both samples are displayed in the inset.The potential-time relationships on charge-discharge curves are all approximately linear except the discharge curve become placid at lower potential stage,which implies that both electrodes have regular capacitive behaviors.The specific capacitance(SC)of samples could be calculated with chargedischarge profiles via equation:

    Fig.6 Galvanostatical charge-discharge measurements of(a)profiles conducted under 50 mA·g-1current density (zoom in view of pattern in inset)and(b)the variations of specific capacitances upon current density increasing

    where C,I,?t,?V,and m are the specific capacitance,galvanostatic current,charge-discharge time,potential cut-off window, and mass of electro-active material.When the charge-discharge current densities increase from 20 to 1000 mA·g-1,the SC decreases monotonously both for PM andAM,as shown in Fig.6(b). It can be seen that the SC of AM sample are greater than that of PM sample under all current densities.Upon current density increasing,the discrepancy of SC between PM and AM samples keeps stable,which may be attributed to weaker ion/electrical conductivity of un-doped α-MnO2sample.Poor electrical conductivity is not beneficial to electron exchange between electrode and electrolyte,leading to less pseudo-capacitance faradic reactions and producing smaller capacitances.By calculation from equation(1),when the current density ascends from 20 to 1000 mA·g-1,the SC of PM and AM samples falls from 315.4 and 336.5 F·g-1to 14.4 and 33.6 F·g-1respectively,indicating thatAldoped α-MnO2can maintain superior SC than un-doped sample.For comparison,commercial MnO2(A.R.,Sinapharm Chemical Reagent Co.,Ltd.)is fabricated into electrode and measured.The SC of commercial MnO2is only 124.2 F·g-1under 20 mA·g-1,far less than those of AM and PM samples.The doping is considered to account for the enhancement of SC of doped sample.By doping Al element,the charge transfer ability of α-MnO2is enhanced, which could be convinced in following EIS analysis.

    Fig.7(a)shows the electrochemical impedance spectra of doped and un-doped samples.The charge transfer process happened on the electrode interface can be described by the semicircle at high frequencies and the near linear variation at low frequencies represents the ion diffusion process.The semicircles at high frequencies are presented in the inset on the top right corner.The corresponding values of intersection of semicircle and x-coordinate show the charge transfer impedances Rctof samples,which determines the process in terms of redox reactions at the interface between electrode and electrolyte.In this study,the impedance value Rctof un-doped α-MnO2is greater than that of doped samples,which indicates that the charge transfer process is easier to happen on the interface for Al-doped α-MnO2than for un-doped α-MnO2.Furthermore,the simulated equivalent circuit diagram is provided in Fig.7(a),where Rct,Rohm,CPE,and Zware charge charansfer resistance,Ohm resistance,constant phase element, and Warburg resistance,respectively.By analysis of ZsimpWin software,the simulated values of Rctare 8.65 and 10.18 Ω forAM and PM samples respectively,which are in good accordance with the experimental results and indicate that the equivalent circuit diagram can properly simulate the impedance characterizations of the electrodes.

    Fig.7 (a)Electrochemical impedance spectra of PM andAM samples(zoom in view of high frequency zone in inset)and (b)cycling performances under a current density of 50 mA·g-1

    The cycling performances of un-doped and doped α-MnO2are presented in Fig.7(b).Apparently,both samples demonstrate preferable cycling stabilities.With charge/discharge process going,the decreases of SC are small and the SC discrepancy between doped and un-doped α-MnO2presents little variation,which is different from the results in former literature.28It is considered that doped Al may occupy(2×2)tunnel position or substitute Mn in MnO6octahedron,which could influence the intercalation/deintercalation of H+/Na+upon cycling.In present study,no obvious influences of doping on cycling stability are displayed,which means that un-doped and doped samples all have stable structures upon cycling.As proved in UV-Vis measurement in Fig.4,the band gap of AM decreases in comparison to that of PM,which means that the band structure of MnO2has changed viaAl doping. By further investigation in EIS spectra,doping ofAl into α-MnO2lattices results in lower impedance value and preferable electrochemical capacitance.As a result,the doping is considered to be responsible for improved SC and good cycling performance ofAldoped α-MnO2.

    4 Conclusions

    Un-doped and Al-doped α-MnO2with nanotube morphology were successfully synthesized via hydrothermal method.Asprepared α-MnO2behaved cryptomelane structures in X-ray diffraction patterns and the variation of lattice parameters was detected in Al-doped α-MnO2.The band gaps of un-doped and doped α-MnO2were determined by ultraviolet-visible absorption spectra,which revealed that the band gap value of α-MnO2decreased after doping.In CV tests,un-doped andAl-doped α-MnO2all displayed good capacitive response.The profiles of CV curves gradually changed with scan rate increasing.The specific capacitances of un-doped and Al-doped α-MnO2were 204.8 and 228.8 F·g-1respectively under 50 mA·g-1current density during charge-discharge process.Both samples exhibited good cycling stability.The superior electrical conductivity ofAl-doped α-MnO2was convinced by EIS measurement,which could account for better specific capacitance of doped sample.Based on the good cycling performance and improved specific capacitance,Al-doped α-MnO2may be used as a potential electrode material for supercapacitors.

    (1) Yao,W.;Wang,J.;Li,H.;Lu,Y.J.Power Sources 2014,247, 824.doi:10.1016/j.jpowsour.2013.09.039

    (2) Ghimbeu,C.M.;Malak-Polaczyk,A.;Frackowiak,E.;Vix-Guterl,C.J.Appl.Electrochem.2014,44,123.doi:10.1007/ s10800-013-0614-6

    (3) Zhu,G.;Deng,L.;Wang,J.;Kang,L.;Liu,Z.H.Colloids Surfaces A 2013,434,42.doi:10.1016/j.colsurfa.2013.05.008

    (4) Jiang,H.;Dai,Y.;Hu,Y.;Chen,W.;Li,C.ACS Sustain.Chem. Eng.2014,2,70.doi:10.1021/sc400313y

    (5) Azhagan,M.V.K.;Vaishampayan,M.V.;Shelke,M.V. J.Mater.Chem.A 2014,2,2152.doi:10.1039/C3TA14076H

    (6) Zolfaghari,A.;Naderi,H.R.;Mortaheb,H.R.J.Electroanal. Chem.2013,697,60.doi:10.1016/j.jelechem.2013.03.012

    (7) Yu,M.;Sun,H.;Sun,X.;Lu,F.;Wang,G.;Hu,T.;Qiu,H.; Lian,J.Int.J.Electrochem.Sci.2013,8,2313.

    (8) Li,L.;He,Y.Q.;Chu,X.F.;Li,Y.M.;Sun,F.F.;Huang,H.Z. Acta Phys.-Chim.Sin.2013,29,1681.[李 樂,賀蘊(yùn)秋,儲(chǔ)曉菲,李一鳴,孫芳芳,黃河洲.物理化學(xué)學(xué)報(bào),2013,29,1681.] doi:10.3866/PKU.WHXB201305223

    (9) Hashem,A.M.;Abuzeid,H.M.;Mikhailova,D.;Ehrenberg,H.; Mauger,A.;Julien,C.M.J.Mater.Sci.2012,47,2479.doi: 10.1007/s10853-011-6071-x

    (10) Wang,G.;Shao,G.;Du,J.;Zhang,Y.;Ma,Z.Mater.Chem. Phys.2013,138,108.doi:10.1016/j.matchemphys.2012.11.024

    (11) Dubal,D.P.;Lokhande,C.D.Ceram.Int.2013,39,415.doi: 10.1016/j.ceramint.2012.06.042

    (12) Hashem,A.M.;Abuzeid,H.M.;Narayanan,N.;Ehrenberg,H.; Julien,C.M.Mater.Chem.Phys.2011,130,33.doi:10.1016/j. matchemphys.2011.04.074

    (13) Ryu,W.H.;Han,D.W.;Kim,W.K.;Kwon,H.S.J.Nanopart. Res.2011,13,4777.doi:10.1007/s11051-011-0448-2

    (14) Shanthi,S.;Ravi,S.Int.J.Chem.Tech.Res.2014,6,2066.

    (15) Wang,S.;Liu,Q.;Yu,J.;Zeng,J.Int.J.Electrochem.Sci.2012, 7,1242.

    (16) Kunkalekar,R.K.;Salker,A.V.React.Kinet.Mech.Catal. 2012,106,395.doi:10.1007/s11144-012-0443-3

    (17) Hashem,A.M.;Abdel-Latif,A.M.;Abuzeid,H.M.;Abbas,H. M.;Ehrenberg,H.;Farag,R.S.;Mauger,A.;Julien,C.M. J.Alloy.Compd.2011,509,9669.doi:10.1016/j. jallcom.2011.07.075

    (18) Malankar,H.;Umare,S.S.;Singh,K.Mater.Lett.2009,63, 2016.doi:10.1016/j.matlet.2009.06.044

    (19) Jung,K.N.;Riaz,A.;Lee,S.B.;Lim,T.H.;Park,S.J.;Song, R.H.;Yoon,S.;Shin,K.H.;Lee,J.W.J.Power Sources 2013, 244,328.doi:10.1016/j.jpowsour.2013.01.028

    (20) Zhang,Y.;Liu,H.;Zhu,Z.;Wong,K.W.;Mi,R.;Mei,J.;Lau, W.M.Electrochim.Acta 2013,108,465.doi:10.1016/j. electacta.2013.07.002

    (21) Song,Z.;Liu,W.;Zhao,M.;Zhang,Y.;Liu,G.;Yu,C.;Qiu,J. J.Alloy.Compd.2013,560,151.doi:10.1016/j. jallcom.2013.01.117

    (22) Wang,G.S.;He,S.;Luo,X.;Wen,B.;Lu,M.M.;Guo,L.;Cao, M.S.RSC Adv.2013,3,18009.doi:10.1039/c3ra42412j

    (23) Zhou,M.;Zhang,X.;Wang,L.;Wei,J.;Zhu,K.;Feng,B. J.Nanosci.Nanotechnol.2013,13,904.doi:10.1166/ jnn.2013.5958

    (24) Shan,J.;Zhu,Y.;Zhang,S.;Zhu,T.;Rouvimov,S.;Tao,F. J.Phys.Chem.C 2013,117,8329.doi:10.1021/jp4018103

    (25) Wu,Y.;Lu,Y.;Song,C.;Ma,Z.;Xing,S.;Gao,Y.Catal.Today 2013,201,32.doi:10.1016/j.cattod.2012.04.032

    (26) Umek,P.;Gloter,A.;Pregelj,M.;Dominko,R.;Jagodic,M.; Jaglicic,Z.;Zimina,A.;Brzhezinskaya,M.;Potocnik,A.; Filipic,C.;Levstik,A.;Arcon,D.J.Phys.Chem.C 2009,113, 14798.doi:10.1021/jp9050319

    (27) Sakai,N.;Ebina,Y.;Takada,K.;Sasaki,T.J.Phys.Chem.B 2005,109,9651.doi:10.1021/jp0500485

    (28) Kang,J.L.;Hirata,A.H.;Kang,L.J.;Zhang,X.M.;Hou,Y.; Chen,L.Y.;Li,C.;Fujita,T.;Atagi,K.;Chen,M.W.Angew. Chem.Int.Edit.2013,52,1664.doi:10.1002/anie.v52.6

    Hydrothermal Synthesis of Al-Doped α-MnO2Nanotubes and Their Electrochemical Performance for Supercapacitors

    LI Yang*XIE Hua-Qing LI Jing
    (School of Urban Development and Environmental Engineering,Shanghai Second Polytechnic University, Shanghai 201209,P.R.China)

    α-MnO2and Al-doped α-MnO2were synthesized via a hydrothermal method.The morphologies, structures,and electrochemical performances of as-synthesized un-doped and doped α-MnO2were studied. Scanning electron microscopy(SEM)and high-resolution transmission electron microscopy(HRTEM)show that these un-doped and doped α-MnO2are nanotube shaped.The band gaps of α-MnO2are investigated by ultraviolet-visible absorption spectroscopy,which indicates that the band gap of α-MnO2decreases upon Al doping.The electrochemical performances of un-doped and doped α-MnO2as electrode materials for supercapacitors were measured by cyclic voltammetry(CV)and galvanostatical charge/discharge tests.The specific capacitances of un-doped and Al-doped α-MnO2respectively reach 204.8 and 228.8 F·g-1under a current density of 50 mA·g-1.It was discovered that the electrochemical impedance of Al-doped α-MnO2was decreased byAl doping analyzed using electrochemical impedance spectra(EIS),which provides a beneficial increase to its electrochemical specific capacitance.Enhanced specific capacitance and preferable cycling stability(up to 1000 cycles)forAl-doped α-MnO2mean that these systems are favorable prospects for application in supercapacitors.

    α-MnO2;Al doping;Nanotube;Supercapacitor;Electrochemical capacitor

    O646;TM911

    10.3866/PKU.WHXB201502021www.whxb.pku.edu.cn

    Received:September 9,2014;Revised:January 29,2015;Published on Web:February 2,2015.

    ?Corresponding author.Email:liyang@sspu.edu.cn;Tel/Fax:+86-21-50216301.

    The project was supported by the Key Innovation Foundation of Shanghai Education Commission,China(13ZZ139),Key Discipline Construction (Materials Science)of Shanghai Second Polytechnic University,China(XXKPY1302),and Program for Professor of SpecialAppointment(Eastern Scholar)at Shanghai Institutions of Higher Learning,China.

    上海市教委創(chuàng)新重點(diǎn)項(xiàng)目(13ZZ139),上海第二工業(yè)大學(xué)校級(jí)重點(diǎn)培育學(xué)科(材料科學(xué))建設(shè)(XXKPY1302)及上海市高?!皷|方學(xué)者”崗位計(jì)劃資助

    猜你喜歡
    納米管水熱電容器
    最近鄰弱交換相互作用對(duì)spin-1納米管磁化強(qiáng)度的影響
    電容器的實(shí)驗(yàn)教學(xué)
    物理之友(2020年12期)2020-07-16 05:39:20
    含有電容器放電功能的IC(ICX)的應(yīng)用及其安規(guī)符合性要求
    電子制作(2019年22期)2020-01-14 03:16:28
    無功補(bǔ)償電容器的應(yīng)用
    山東冶金(2019年5期)2019-11-16 09:09:38
    水熱還是空氣熱?
    石墨烯在超級(jí)電容器中的應(yīng)用概述
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    簡述ZSM-5分子篩水熱合成工藝
    一維Bi2Fe4O9納米棒陣列的無模板水熱合成
    TiO2納米管負(fù)載Pd-Ag催化1,2-二氯乙烷的選擇性加氫脫氯
    АⅤ资源中文在线天堂| 欧美一区二区精品小视频在线| 亚洲精品乱码久久久久久按摩| 日韩av不卡免费在线播放| 内射极品少妇av片p| 在线a可以看的网站| 日本熟妇午夜| 国产极品精品免费视频能看的| 99久久精品一区二区三区| 尤物成人国产欧美一区二区三区| 亚洲国产精品久久男人天堂| 精品久久久久久久久久久久久| 国产一区有黄有色的免费视频 | 亚洲av男天堂| 亚洲熟妇中文字幕五十中出| 精品久久国产蜜桃| 成人漫画全彩无遮挡| 国产黄色小视频在线观看| 性色avwww在线观看| 亚洲五月天丁香| 麻豆成人午夜福利视频| 国产视频内射| 最近最新中文字幕大全电影3| 麻豆一二三区av精品| 99久久九九国产精品国产免费| 九九在线视频观看精品| 日韩av在线免费看完整版不卡| 久久久午夜欧美精品| 成人毛片60女人毛片免费| 成人性生交大片免费视频hd| 久久人人爽人人片av| 欧美另类亚洲清纯唯美| 国产探花在线观看一区二区| 国产 一区 欧美 日韩| 99久国产av精品| 国产白丝娇喘喷水9色精品| 久久久久久久久中文| 日韩视频在线欧美| 黄色欧美视频在线观看| 国产一区有黄有色的免费视频 | 久久久久久国产a免费观看| 亚洲av成人精品一二三区| 99久久精品热视频| 亚洲熟妇中文字幕五十中出| 深爱激情五月婷婷| 好男人视频免费观看在线| 亚洲av免费高清在线观看| 韩国av在线不卡| 中文字幕亚洲精品专区| 精品人妻一区二区三区麻豆| 乱码一卡2卡4卡精品| 欧美潮喷喷水| 小蜜桃在线观看免费完整版高清| 国产精品一区二区在线观看99 | 真实男女啪啪啪动态图| 亚洲国产高清在线一区二区三| 久久婷婷人人爽人人干人人爱| 日韩av在线大香蕉| 级片在线观看| 亚洲第一区二区三区不卡| 菩萨蛮人人尽说江南好唐韦庄 | 一卡2卡三卡四卡精品乱码亚洲| 亚洲在久久综合| 日韩人妻高清精品专区| 日韩强制内射视频| 啦啦啦啦在线视频资源| 内射极品少妇av片p| 亚洲自拍偷在线| 国产精品精品国产色婷婷| 国产黄色视频一区二区在线观看 | 免费看美女性在线毛片视频| 麻豆精品久久久久久蜜桃| 91精品一卡2卡3卡4卡| 国内少妇人妻偷人精品xxx网站| 五月玫瑰六月丁香| 亚洲四区av| 亚洲久久久久久中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 热99在线观看视频| 美女内射精品一级片tv| 亚洲av电影不卡..在线观看| av.在线天堂| 爱豆传媒免费全集在线观看| 国产亚洲精品久久久com| 亚洲av成人精品一区久久| 亚洲国产高清在线一区二区三| 五月玫瑰六月丁香| 51国产日韩欧美| 免费av观看视频| 国产精品福利在线免费观看| 久久午夜福利片| videos熟女内射| 欧美日韩一区二区视频在线观看视频在线 | 成年av动漫网址| h日本视频在线播放| 日韩制服骚丝袜av| 最近手机中文字幕大全| 成人一区二区视频在线观看| 精华霜和精华液先用哪个| 天堂av国产一区二区熟女人妻| 级片在线观看| 国产亚洲精品av在线| 免费看光身美女| 麻豆久久精品国产亚洲av| 2021天堂中文幕一二区在线观| 国产成人91sexporn| 日韩制服骚丝袜av| 99九九线精品视频在线观看视频| 国产在视频线精品| 国产精品一二三区在线看| 国产亚洲一区二区精品| 午夜精品一区二区三区免费看| 麻豆一二三区av精品| 天堂中文最新版在线下载 | 嘟嘟电影网在线观看| 午夜精品一区二区三区免费看| 国产精品一区二区三区四区免费观看| 国产一区亚洲一区在线观看| 久久久国产成人精品二区| 欧美不卡视频在线免费观看| av免费在线看不卡| 在线免费观看不下载黄p国产| 日日摸夜夜添夜夜添av毛片| 美女国产视频在线观看| 一级黄片播放器| 久久精品国产亚洲av涩爱| 亚洲av成人精品一二三区| 男插女下体视频免费在线播放| 亚洲三级黄色毛片| 亚洲成人精品中文字幕电影| 午夜免费激情av| 青春草视频在线免费观看| 国产乱人视频| 欧美成人a在线观看| 三级国产精品片| 天堂av国产一区二区熟女人妻| 22中文网久久字幕| 天堂√8在线中文| 久久精品夜色国产| 国产精品乱码一区二三区的特点| 国产成人免费观看mmmm| 简卡轻食公司| 一个人看的www免费观看视频| 久久久久久久久久黄片| 久久精品国产99精品国产亚洲性色| 三级经典国产精品| 久久久久久久午夜电影| 超碰97精品在线观看| 亚洲成人av在线免费| 天堂√8在线中文| 欧美丝袜亚洲另类| 国产精品久久久久久久电影| 免费看美女性在线毛片视频| 国产色婷婷99| 2021天堂中文幕一二区在线观| 卡戴珊不雅视频在线播放| 国产色爽女视频免费观看| 久久久亚洲精品成人影院| 日本av手机在线免费观看| 国产乱人偷精品视频| 亚洲精品aⅴ在线观看| 综合色av麻豆| 蜜桃久久精品国产亚洲av| 精品一区二区三区人妻视频| 69av精品久久久久久| 久久人妻av系列| 亚洲精品自拍成人| 国产精品久久视频播放| 精品久久久久久久人妻蜜臀av| 只有这里有精品99| 日韩精品有码人妻一区| 色综合色国产| 亚洲欧美精品专区久久| 久久精品影院6| 亚洲国产色片| 亚洲人成网站高清观看| 日本黄大片高清| 成人国产麻豆网| 国语对白做爰xxxⅹ性视频网站| 国产综合懂色| 人妻夜夜爽99麻豆av| 高清日韩中文字幕在线| av在线天堂中文字幕| 国产免费视频播放在线视频 | 色噜噜av男人的天堂激情| 国产黄a三级三级三级人| 亚洲欧美清纯卡通| 中文字幕人妻熟人妻熟丝袜美| h日本视频在线播放| 97人妻精品一区二区三区麻豆| 青青草视频在线视频观看| 水蜜桃什么品种好| 秋霞伦理黄片| 综合色丁香网| 午夜老司机福利剧场| 51国产日韩欧美| 日本一本二区三区精品| 色综合色国产| 少妇人妻一区二区三区视频| 中文字幕熟女人妻在线| 国语对白做爰xxxⅹ性视频网站| 久久精品国产亚洲网站| 国产免费又黄又爽又色| 看免费成人av毛片| 日本与韩国留学比较| 国产高清视频在线观看网站| 久久韩国三级中文字幕| 国产精品久久久久久久久免| av在线亚洲专区| 久久99蜜桃精品久久| 国产av不卡久久| 成年免费大片在线观看| 国产精品乱码一区二三区的特点| 少妇被粗大猛烈的视频| 国产麻豆成人av免费视频| 黄色一级大片看看| 久久人人爽人人爽人人片va| 免费黄网站久久成人精品| 边亲边吃奶的免费视频| 成人无遮挡网站| 18+在线观看网站| 色综合亚洲欧美另类图片| 午夜爱爱视频在线播放| 国产午夜精品一二区理论片| 久久久亚洲精品成人影院| 国产私拍福利视频在线观看| 亚洲欧洲日产国产| 久久人人爽人人片av| 可以在线观看毛片的网站| 午夜福利在线观看免费完整高清在| 国产av不卡久久| 一级黄片播放器| 国内精品美女久久久久久| 在线免费十八禁| 精品人妻一区二区三区麻豆| 波多野结衣巨乳人妻| 精品人妻偷拍中文字幕| 色吧在线观看| 国语对白做爰xxxⅹ性视频网站| 午夜福利成人在线免费观看| 国产精品人妻久久久久久| 午夜福利在线在线| 久久久久久国产a免费观看| 国产人妻一区二区三区在| 成年版毛片免费区| 校园人妻丝袜中文字幕| 中国美白少妇内射xxxbb| 五月玫瑰六月丁香| 国产大屁股一区二区在线视频| 国产三级在线视频| 国产淫片久久久久久久久| 看十八女毛片水多多多| 狠狠狠狠99中文字幕| 国产激情偷乱视频一区二区| 爱豆传媒免费全集在线观看| 国产乱人偷精品视频| 欧美日韩在线观看h| 亚洲欧美中文字幕日韩二区| 成年女人看的毛片在线观看| 最后的刺客免费高清国语| 亚洲,欧美,日韩| 久久人人爽人人爽人人片va| 久久久久久久亚洲中文字幕| 热99在线观看视频| 亚洲av电影不卡..在线观看| 久久99蜜桃精品久久| 精品一区二区三区视频在线| av.在线天堂| 卡戴珊不雅视频在线播放| 亚洲国产日韩欧美精品在线观看| 国产精品一区二区三区四区久久| 级片在线观看| .国产精品久久| 亚洲av日韩在线播放| 日本爱情动作片www.在线观看| 秋霞伦理黄片| 在线免费观看的www视频| 老司机福利观看| 亚洲av中文av极速乱| 午夜精品在线福利| 夜夜看夜夜爽夜夜摸| 一二三四中文在线观看免费高清| 熟妇人妻久久中文字幕3abv| 亚洲最大成人av| 亚洲在线观看片| 国产精品av视频在线免费观看| 女人被狂操c到高潮| 成人毛片a级毛片在线播放| av国产久精品久网站免费入址| 精品少妇黑人巨大在线播放 | 国产亚洲av片在线观看秒播厂 | 国产欧美另类精品又又久久亚洲欧美| 国产精品永久免费网站| 久久亚洲精品不卡| 亚洲久久久久久中文字幕| 亚洲乱码一区二区免费版| 亚洲国产精品成人久久小说| 1000部很黄的大片| 国内精品宾馆在线| 国产一级毛片七仙女欲春2| 精品久久久久久久末码| 国产精品一区二区在线观看99 | 日本欧美国产在线视频| 高清午夜精品一区二区三区| 成人无遮挡网站| 色综合色国产| 国产成人a∨麻豆精品| 国产伦一二天堂av在线观看| 亚洲美女视频黄频| 春色校园在线视频观看| 国产成人a∨麻豆精品| 中文字幕人妻熟人妻熟丝袜美| 久久久亚洲精品成人影院| av视频在线观看入口| 国产综合懂色| 精品熟女少妇av免费看| 亚洲av成人av| 亚洲欧美一区二区三区国产| 欧美日韩国产亚洲二区| 国产精品久久久久久精品电影| 亚洲婷婷狠狠爱综合网| 亚洲久久久久久中文字幕| 国产精品1区2区在线观看.| 日韩欧美三级三区| 免费观看的影片在线观看| 成人美女网站在线观看视频| av.在线天堂| 国产一区二区在线av高清观看| 男插女下体视频免费在线播放| 成人一区二区视频在线观看| 人妻夜夜爽99麻豆av| 欧美性感艳星| 国产亚洲一区二区精品| www.av在线官网国产| 美女国产视频在线观看| 一区二区三区免费毛片| 国产在视频线在精品| 亚洲第一区二区三区不卡| 国产亚洲午夜精品一区二区久久 | 亚洲美女视频黄频| 青春草国产在线视频| av天堂中文字幕网| 九色成人免费人妻av| videos熟女内射| av播播在线观看一区| 男插女下体视频免费在线播放| 91精品一卡2卡3卡4卡| 99久久无色码亚洲精品果冻| 在线播放国产精品三级| 国产免费福利视频在线观看| 久久人人爽人人爽人人片va| 青春草国产在线视频| 国产精品国产高清国产av| 草草在线视频免费看| 禁无遮挡网站| 少妇的逼水好多| 久久欧美精品欧美久久欧美| 一级二级三级毛片免费看| 欧美高清性xxxxhd video| 人体艺术视频欧美日本| 丰满乱子伦码专区| 成人av在线播放网站| 色5月婷婷丁香| 高清日韩中文字幕在线| 三级毛片av免费| www.av在线官网国产| 黑人高潮一二区| 国产美女午夜福利| 欧美激情久久久久久爽电影| 免费不卡的大黄色大毛片视频在线观看 | 国产精品一及| 国产色爽女视频免费观看| 亚洲一级一片aⅴ在线观看| 观看免费一级毛片| 高清av免费在线| 国产成人a区在线观看| 久久久成人免费电影| 别揉我奶头 嗯啊视频| 草草在线视频免费看| 国产久久久一区二区三区| 婷婷六月久久综合丁香| 老师上课跳d突然被开到最大视频| 日本wwww免费看| 亚洲不卡免费看| 国产一区二区在线观看日韩| 99久久人妻综合| 精品一区二区免费观看| 亚洲av成人精品一区久久| av又黄又爽大尺度在线免费看 | 草草在线视频免费看| 亚洲精品乱码久久久v下载方式| 亚洲美女视频黄频| 丝袜喷水一区| 长腿黑丝高跟| 美女被艹到高潮喷水动态| 精品国产三级普通话版| 午夜老司机福利剧场| 午夜免费激情av| 18+在线观看网站| 我的女老师完整版在线观看| 人妻系列 视频| av福利片在线观看| 亚洲国产欧洲综合997久久,| 建设人人有责人人尽责人人享有的 | 91精品伊人久久大香线蕉| 精品久久久久久成人av| 欧美日韩一区二区视频在线观看视频在线 | videossex国产| 欧美一级a爱片免费观看看| 日产精品乱码卡一卡2卡三| 一区二区三区免费毛片| 免费人成在线观看视频色| 日韩精品青青久久久久久| 最近手机中文字幕大全| 国产伦一二天堂av在线观看| 国产精品人妻久久久影院| 午夜精品国产一区二区电影 | 91在线精品国自产拍蜜月| 久久人妻av系列| 久久久亚洲精品成人影院| 观看美女的网站| 国产探花在线观看一区二区| 成人三级黄色视频| 能在线免费看毛片的网站| 欧美一级a爱片免费观看看| 精品人妻视频免费看| av视频在线观看入口| 成年av动漫网址| 亚洲精品乱码久久久久久按摩| av视频在线观看入口| 大又大粗又爽又黄少妇毛片口| 欧美一区二区精品小视频在线| 好男人视频免费观看在线| 人人妻人人看人人澡| 精品久久久久久电影网 | 日产精品乱码卡一卡2卡三| 2021少妇久久久久久久久久久| 看免费成人av毛片| 久久综合国产亚洲精品| 久久久久久久亚洲中文字幕| 亚洲怡红院男人天堂| 欧美成人精品欧美一级黄| 日韩精品青青久久久久久| 99久久精品热视频| 成人无遮挡网站| 亚洲av二区三区四区| 51国产日韩欧美| 麻豆成人午夜福利视频| 永久网站在线| 毛片女人毛片| av.在线天堂| 欧美xxxx黑人xx丫x性爽| 亚洲无线观看免费| 精品午夜福利在线看| 国产精品久久电影中文字幕| 汤姆久久久久久久影院中文字幕 | 爱豆传媒免费全集在线观看| 九九爱精品视频在线观看| 久久欧美精品欧美久久欧美| 麻豆成人午夜福利视频| 三级男女做爰猛烈吃奶摸视频| 免费观看性生交大片5| 国产伦精品一区二区三区四那| 国产精品,欧美在线| 国产91av在线免费观看| 人人妻人人澡欧美一区二区| 热99re8久久精品国产| 国产av码专区亚洲av| 国产精品久久视频播放| 白带黄色成豆腐渣| 嫩草影院新地址| 亚洲,欧美,日韩| 99九九线精品视频在线观看视频| 小蜜桃在线观看免费完整版高清| 国产黄a三级三级三级人| 免费观看精品视频网站| 欧美精品国产亚洲| 久久人妻av系列| 高清日韩中文字幕在线| videos熟女内射| av又黄又爽大尺度在线免费看 | 色噜噜av男人的天堂激情| 国产单亲对白刺激| 亚洲精品自拍成人| 亚洲成人久久爱视频| 我的老师免费观看完整版| 18禁在线无遮挡免费观看视频| 欧美人与善性xxx| 亚洲av电影在线观看一区二区三区 | 91av网一区二区| 干丝袜人妻中文字幕| 国产三级在线视频| 成年免费大片在线观看| 国产三级在线视频| 韩国高清视频一区二区三区| 婷婷色麻豆天堂久久 | 男女啪啪激烈高潮av片| 简卡轻食公司| 久久热精品热| 欧美xxxx性猛交bbbb| 亚洲精品自拍成人| 国产中年淑女户外野战色| 日日啪夜夜撸| 国产69精品久久久久777片| 人人妻人人澡欧美一区二区| 色视频www国产| 亚洲国产精品sss在线观看| 男人狂女人下面高潮的视频| 深夜a级毛片| 久久精品国产99精品国产亚洲性色| 国产av在哪里看| 建设人人有责人人尽责人人享有的 | 91精品一卡2卡3卡4卡| 九九热线精品视视频播放| 91精品一卡2卡3卡4卡| 天美传媒精品一区二区| 日本熟妇午夜| 91久久精品国产一区二区成人| 欧美区成人在线视频| 久久久色成人| 又粗又爽又猛毛片免费看| 又爽又黄无遮挡网站| 中文欧美无线码| 国产单亲对白刺激| 精品人妻视频免费看| 久久精品久久久久久久性| 久久久午夜欧美精品| 国产视频内射| 欧美日韩在线观看h| 中文字幕制服av| 亚洲怡红院男人天堂| 老师上课跳d突然被开到最大视频| 最近最新中文字幕免费大全7| 国产精品麻豆人妻色哟哟久久 | 久久久久久大精品| 亚洲无线观看免费| 日本爱情动作片www.在线观看| 国产精品.久久久| 免费看美女性在线毛片视频| 最近2019中文字幕mv第一页| 亚洲精品日韩在线中文字幕| 成人二区视频| 日韩精品有码人妻一区| 国产大屁股一区二区在线视频| 高清av免费在线| 午夜免费男女啪啪视频观看| 九九热线精品视视频播放| 亚洲国产日韩欧美精品在线观看| 18禁在线播放成人免费| 少妇熟女aⅴ在线视频| 99久久无色码亚洲精品果冻| 美女脱内裤让男人舔精品视频| 午夜福利视频1000在线观看| 午夜福利网站1000一区二区三区| 国产真实乱freesex| 中文字幕av成人在线电影| 国产亚洲一区二区精品| 国产不卡一卡二| 最近最新中文字幕大全电影3| 爱豆传媒免费全集在线观看| 国产精品野战在线观看| 久久综合国产亚洲精品| 亚洲人成网站在线观看播放| 免费大片18禁| h日本视频在线播放| 午夜免费激情av| 国产极品精品免费视频能看的| 一本一本综合久久| 色网站视频免费| 日韩av在线大香蕉| 久久久久国产网址| 91久久精品国产一区二区成人| 国产探花极品一区二区| 欧美激情在线99| 国产一级毛片七仙女欲春2| 午夜福利在线观看吧| 尾随美女入室| 免费观看性生交大片5| 国产免费男女视频| 亚洲五月天丁香| 久久精品91蜜桃| 最近的中文字幕免费完整| av天堂中文字幕网| 1024手机看黄色片| 国产一级毛片七仙女欲春2| 熟女人妻精品中文字幕| 国产极品精品免费视频能看的| 99久久无色码亚洲精品果冻| 岛国毛片在线播放| 性色avwww在线观看| 亚洲精品aⅴ在线观看| 国产69精品久久久久777片| 日韩制服骚丝袜av| 成人一区二区视频在线观看| 综合色丁香网| 网址你懂的国产日韩在线| 久久久久九九精品影院| 天天躁夜夜躁狠狠久久av| 成人二区视频| 国产私拍福利视频在线观看| 99久久精品一区二区三区| 天美传媒精品一区二区| 欧美日韩综合久久久久久| 能在线免费观看的黄片| 亚洲成人精品中文字幕电影| 久久久久久久久久久丰满| 日韩欧美精品v在线| 国产一区二区在线av高清观看| 国产精品蜜桃在线观看| 国产精品,欧美在线| 成人午夜精彩视频在线观看| 中国国产av一级| 亚洲色图av天堂| 国产老妇伦熟女老妇高清| 国产一区二区三区av在线|