摘要:18F脫氧葡萄糖(FDG)PET/CT將PET的功能顯像與CT的解剖成像有機(jī)融合, 不僅能有效顯示腫瘤的代謝、增生、乏氧和細(xì)胞凋亡狀態(tài),而且在腫瘤患者的診斷、分期、指導(dǎo)治療、療效監(jiān)控和預(yù)后評(píng)價(jià)等方面, 都具有重要的臨床應(yīng)用價(jià)值, 然而腫瘤FDG聚集的具體機(jī)制目前尚不清楚。己糖激酶-Ⅱ(HK-Ⅱ)作為腫瘤FDG代謝相關(guān)的重要免疫分子之一,成為了目前研究的熱點(diǎn)。本文旨在對(duì)腫瘤中HK-2表達(dá)、與FDG代謝關(guān)系及靶向治療做一綜述。
關(guān)鍵詞:PET/CT;腫瘤;FDG聚集;己糖激酶-Ⅱ;靶向治療
1 PET/CT顯像及在腫瘤學(xué)中的應(yīng)用
PET/CT是正電子發(fā)射計(jì)算機(jī)斷層顯像(PET)與計(jì)算機(jī)體層掃描(CT)的有機(jī)結(jié)合,將極其微量的正電子示蹤劑注射到人體內(nèi),然后用特殊的體外探測(cè)儀器( PET) 探測(cè)這些正電子核素在人體全身臟器的分布情況,再結(jié)合 CT 的精確定位,這樣在對(duì)病灶進(jìn)行定性的同時(shí)還能準(zhǔn)確定位,大大提高了診斷的準(zhǔn)確性及臨床實(shí)用價(jià)值。目前,PET-CT檢查臨床應(yīng)用最廣泛的示蹤劑(顯像劑)是18F-脫氧葡萄糖(18F-fluorodeoxyglucose,18F-FDG,以下簡(jiǎn)稱FDG)。FDG是葡萄糖的類似物,第二位碳原子相連的OH基脫氧后H被18F 取代生成2-脫氧-2-18F 脫氧葡萄糖, 在體內(nèi)的生物學(xué)行為與葡萄糖相似。它可在腫瘤病灶內(nèi)大量積聚,原理在于大多數(shù)腫瘤細(xì)胞葡萄糖酵解能力明顯高于正常組織細(xì)胞。在PET 圖像上我們通常根據(jù)病灶部位攝取18F-FDG的比值來進(jìn)行半定量分析,即最大標(biāo)準(zhǔn)化攝取值(SUVmax,簡(jiǎn)寫SUV )。18F-FDG PET /CT的全身顯像廣泛應(yīng)用于腫瘤的診斷與鑒別診斷、分期、復(fù)發(fā)以及療效評(píng)估等方面[1-5],其臨床價(jià)值已得到確認(rèn)。近年來,關(guān)于18F-FDG聚集的研究越來越多,然而腫瘤FDG聚集的具體機(jī)制目前尚不清楚。在靜脈給藥后,18F-FDG與葡萄糖一樣在細(xì)胞膜外表面的葡萄糖轉(zhuǎn)運(yùn)體的作用下進(jìn)入細(xì)胞內(nèi),在己糖激酶的作用下磷酸化形成FDG-6-磷酸。由于FDG-6-磷酸的空間構(gòu)型發(fā)生改變,不能再進(jìn)行下一步代謝,如糖酵解、糖原生成及磷酸戊糖途徑等;另一方面,由于組織中磷酸酶的含量較低,使得FDG-6-磷酸的反向轉(zhuǎn)變和離開細(xì)胞的速率很低,基本可以忽略不計(jì),因此,F(xiàn)DG以FDG-6-磷酸的形式沉積在細(xì)胞內(nèi),而在PET圖像上表現(xiàn)為濃聚/高攝取,即高代謝??梢姡?8F-FDG聚集主要取決于葡萄糖從胞外向胞內(nèi)的轉(zhuǎn)運(yùn)速度以及己糖激酶活性[6,8]。HK-Ⅱ作為與FDG代謝相關(guān)的重要免疫分子之一,成為了目前研究的熱點(diǎn)。
2己糖激酶的生物學(xué)特征
在哺乳動(dòng)物體內(nèi)共有四種亞型的己糖激酶(HKⅠ-Ⅳ)[9,10],己糖激酶-Ⅰ、己糖激酶-Ⅱ和己糖激酶-Ⅲ的分子量大約為 100kDa,己糖激酶-Ⅳ分子量為 50kDa。其中,HKⅠ~HKⅢ對(duì)葡萄糖的親和力比HKⅣ高約250 倍。人類的己糖激酶的N端和C端有著廣泛的相似性,C端為催化位點(diǎn)具有結(jié)合葡萄糖的能力,N端為調(diào)節(jié)位點(diǎn)具有 6-磷酸葡萄糖結(jié)合位點(diǎn),同時(shí)也是己糖激酶與線粒體結(jié)合的必要結(jié)構(gòu)[11],在腫瘤中表現(xiàn)為促進(jìn)糖酵解和抗凋亡的作用,具有重要的意義。己糖激酶在體內(nèi)分布具有一定的組織差異和特異性[12]。HK-Ⅰ主要在腦組織中表達(dá),HK-Ⅱ主要存在于心肌、骨骼肌, HK-Ⅲ存在于腎臟、肝臟和腸組織中,HK-Ⅳ在肝臟和胰腺中表達(dá)。己糖激酶在組織中的分布具有隨年齡的變化而變化的趨勢(shì)[12,13],在新生小鼠的肝臟中含有較多的HK-Ⅱ,而HK-Ⅳ含量較低;成年小鼠肝臟中HK-Ⅳ增高而HK-Ⅱ含量低。HK-Ⅰ及HK-Ⅱ存在于細(xì)胞內(nèi)線粒體外膜及細(xì)胞質(zhì)內(nèi),HK-Ⅲ主要存在于細(xì)胞核周圍,而HK-IV位于肝臟和胰腺的細(xì)胞質(zhì)內(nèi)。HK-Ⅰ雖與HK-Ⅱ一樣能與線粒體結(jié)合,但其在100 kDa 的結(jié)構(gòu)中只在C端具有催化活性,而HKⅡ則在兩端均保留催化活性,這使得葡萄糖-6-磷酸的生成速率增加。
3 HK-Ⅱ在腫瘤中的表達(dá)
HK-Ⅱ在腫瘤組織和正常組織中的表達(dá)不同。Warburg 發(fā)現(xiàn)肝癌細(xì)胞中糖酵解增加伴隨HK-Ⅱ活性增高[14]。此外,多個(gè)研究發(fā)現(xiàn)HK-Ⅱ在原發(fā)性乳腺癌、肝癌、胃癌[15]、結(jié)腸癌[16]、肺癌及宮頸癌[17]等多種腫瘤細(xì)胞中表達(dá)增加,并以線粒體結(jié)合型為主[18,19],而正常體內(nèi)HK-Ⅱ僅在心臟、脂肪組織和骨骼肌中呈現(xiàn)少量表達(dá)[20],多數(shù)以細(xì)胞質(zhì)內(nèi)游離形式存在。在惡性腫瘤細(xì)胞中,HK-Ⅰ和HK-Ⅱ表達(dá)均有升高,但以HK-Ⅱ的表達(dá)與惡性腫瘤相關(guān)性最明顯[13,19,21-23]。腫瘤 HK-Ⅱ分布在腫瘤中央部分表達(dá)高于腫瘤邊緣部分,腫瘤中的壞死部分高于周邊部分[24,25],可能是由于低氧狀態(tài)誘導(dǎo)的HK-Ⅱ高表達(dá)。
細(xì)胞高表達(dá)HK-Ⅱ受多因素調(diào)控。在基因水平上,腫瘤細(xì)胞表現(xiàn)為HK-Ⅱ基因拷貝數(shù)增多。通過Southern blot及熒光原位雜交分析發(fā)現(xiàn)大鼠肝癌細(xì)胞的HK-Ⅱ基因擴(kuò)增數(shù)要遠(yuǎn)高于正常肝細(xì)胞[26]。在轉(zhuǎn)錄水平上,HK-Ⅱ基因的啟動(dòng)子可被多種信號(hào)激活,如:葡萄糖、胰島素及低氧條件等等[19],從而使得HK-Ⅱ基因的轉(zhuǎn)錄水平明顯提高。另外,有研究人員對(duì)正常鼠肝細(xì)胞和AS-30D肝癌細(xì)胞的HK-ⅡDNA進(jìn)行甲基化,發(fā)現(xiàn)在前者啟動(dòng)子區(qū)域內(nèi)含有甲基化位點(diǎn),而后者,即肝癌細(xì)胞中并沒有發(fā)現(xiàn)甲基化[27],由此看出,遺傳調(diào)控對(duì)腫瘤細(xì)胞HK-Ⅱ的表達(dá)也具有一定影響。
4 HK-Ⅱ與腫瘤FDG代謝
18F-FDG PET/CT檢查已廣泛應(yīng)用于臨床,不同腫瘤FDG代謝各不相同,有些腫瘤組織FDG代謝明顯升高,而部分腫瘤組織FDG代謝較正常組織無明顯差異,甚至出現(xiàn)降低。影響腫瘤FDG代謝的因素較多,HK-Ⅱ作為己糖激酶家族中重要的一員,是FDG代謝的關(guān)鍵酶,對(duì)FDG代謝發(fā)揮一定作用,目前受到越來越多的關(guān)注。腫瘤PET影像與病理學(xué)檢查相關(guān)對(duì)比研究顯示,部分惡性腫瘤組織SUV值與病理檢測(cè)的HK-Ⅱ蛋白表達(dá)水呈正相關(guān)[28-31]。在腫瘤中HK-Ⅱ與FDG有著不同的關(guān)系。Park SG[32]指出在黑色素瘤中SUV值與Glut-Ⅰ表達(dá)相關(guān),而與HK-Ⅱ表達(dá)無關(guān)。Charnley N[33]指出在神經(jīng)膠質(zhì)瘤中,SUV與 Glut-Ⅰ及HK-Ⅱ的表達(dá)均無關(guān),Tian M等人[34]的研究表明在口腔上皮細(xì)胞癌中,F(xiàn)DG代謝與HK-Ⅱ表達(dá)亦無關(guān)系。然而有研究指出,胸腺瘤[35]、骨巨細(xì)胞瘤[36]、肺癌[8]及骨骼肌腫瘤[4]中FDG聚集與HK-Ⅱ表達(dá)有關(guān)。因此HK-Ⅱ?qū)DG代謝所發(fā)揮的作用并不相同。此外仍有研究指出,除了HK-Ⅱ外, FDG代謝可能受Glut-1、Glut-3等因素的影響,關(guān)于FDG代謝的分子學(xué)機(jī)制有待進(jìn)一步研究。
5 HK-Ⅱ靶向治療
有實(shí)驗(yàn)指出,對(duì)于常規(guī)抗腫瘤藥物敏感性降低的腫瘤細(xì)胞表現(xiàn)出對(duì) HK-Ⅱ抑制劑敏感性增加[37],針對(duì) HK-Ⅱ以及HK-Ⅱ與線粒體的結(jié)合從而破壞腫瘤的能量代謝,最終殺傷腫瘤細(xì)胞是具有潛力的新的治療策略。
5.1抑制HK-Ⅱ表達(dá) 實(shí)驗(yàn)證明通過基因沉默方法抑制HK-Ⅱ基因的表達(dá)從而靶向抑制惡性腫瘤增殖是可行的。有研究報(bào)道,RNA干擾HK-Ⅱ基因表達(dá)可明顯抑制人肺癌細(xì)胞增殖[38],(但關(guān)于沉默HK-Ⅱ基因?qū)δ[瘤細(xì)胞生物學(xué)特性的影響及機(jī)制尚不清楚,有待于進(jìn)一步探討。)在肝癌細(xì)胞系中,通過siRNA抑制作用可以抑制HK-Ⅱ表達(dá),在該研究中,雖然初期HK-Ⅱ基因沉默后可以明顯抑制腫瘤的增殖,但后續(xù)觀察發(fā)現(xiàn),腫瘤細(xì)胞恢復(fù)了增殖能力,這可能是通過上調(diào)或穩(wěn)定HK-Ⅱ的基因表達(dá)來實(shí)現(xiàn)的。
5.2抑制HK-Ⅱ活性 3-溴丙酮酸(3-BrPA)[41]可以抑制HK-Ⅱ的活性從而達(dá)到抑制腫瘤活躍的糖酵解。3-BrPA是一種烷化劑,能與HK-Ⅱ活性部位的XH基結(jié)合,抑制HK-Ⅱ活性,引起腫瘤細(xì)胞內(nèi)ATP耗竭和細(xì)胞死亡[29,39, 40]。在兔VX2肝癌模型中,發(fā)現(xiàn)VX2腫瘤植入兔子的肝臟組織后有導(dǎo)致HK-Ⅱ高表達(dá),而3-BrPA能較大程度抑制HK-Ⅱ參與的糖酵解,導(dǎo)致細(xì)胞能量供應(yīng)不足,促進(jìn)惡性腫瘤細(xì)胞的死亡。另有實(shí)驗(yàn)報(bào)道,在19例晚期腫瘤動(dòng)物模型,用3-BrPA治療得到完全緩解[30]。由于糖酵解不活躍的正常組織對(duì)3-BrPA攝入非常少,實(shí)驗(yàn)中沒有發(fā)現(xiàn)對(duì)正常組織的損害和副作用。關(guān)于使用3-BrPA抗多種腫瘤的臨床前期研究正在多個(gè)實(shí)驗(yàn)室進(jìn)行。對(duì)于常規(guī)抗腫瘤藥物效果不佳的部分腫瘤,通過抑制HK-II活性從而影響腫瘤細(xì)胞糖代謝的治療策略被普遍關(guān)注。
關(guān)于2-脫氧葡萄糖用于腫瘤治療的研究也逐漸增多,作為一種葡萄糖類似物,可與葡萄糖競(jìng)爭(zhēng)性結(jié)合 HK-Ⅱ。在細(xì)胞中2-脫氧葡萄糖在己糖激酶作用下生成磷酸2-脫氧葡萄糖,后者在細(xì)胞內(nèi)蓄積,可抑制 HK-Ⅱ活性,最終引起腫瘤內(nèi)能量耗盡,導(dǎo)致腫瘤細(xì)胞死亡[33],研究指出,在常規(guī)化療藥物基礎(chǔ)上加用2-脫氧葡萄糖,能明顯提高化療療效。
5.3促進(jìn)HK-2與線粒體分離 通過分離 HK-Ⅱ與線粒體的結(jié)合,可破壞腫瘤細(xì)胞糖代謝。另外 HK-Ⅱ與線粒體VDAC (voltage-dependent anion channel 電壓依賴的離子通道)的相互作用也會(huì)對(duì)惡性腫瘤的細(xì)胞凋亡產(chǎn)生影響,干擾兩者之間的作用能加快惡性腫瘤細(xì)胞凋亡的速度。最近有研究指出,在一些糖酵解增加的惡性腫瘤中,多種藥物,如克霉唑聯(lián)用聯(lián)苯芐唑[41]、甲基茉莉酮酸醋[37]及可與HK-Ⅱ的N端相結(jié)合的肽序列[42]可誘導(dǎo)目標(biāo)腫瘤細(xì)胞的凋亡,在對(duì)抗腫瘤中發(fā)揮一定作用。單獨(dú)應(yīng)用克霉唑類抗真菌藥可發(fā)揮抗腫瘤作用,然而目前研究發(fā)現(xiàn)[43],這種作用可能跟VDAC無關(guān),特異性抑制HK-Ⅱ與VDAC相互作用的抗腫瘤藥物有待進(jìn)一步研究。
6總結(jié)與展望
PET/CT是根據(jù)惡性腫瘤葡萄糖高攝取狀態(tài),使用腫瘤組織不能代謝的葡萄糖類似物顯影,它的成功應(yīng)用,為腫瘤的診斷及分級(jí)提供了有力的手段。在一些腫瘤中,HK-Ⅱ與腫瘤18F-FDG代謝具有明顯相關(guān)性,可以通過影響腫瘤細(xì)胞的能量代謝從而導(dǎo)致惡性腫瘤自我滅亡,以 HK-Ⅱ?yàn)榘悬c(diǎn)的新的治療策略對(duì)于常規(guī)化療放療無效的惡性腫瘤提供了新的、有效的治療的策略和方向,成為今后腫瘤研究的新熱點(diǎn),但具體臨床應(yīng)用價(jià)值有待大量實(shí)驗(yàn)進(jìn)一步研究。
另外,隨著18F-FDG PET/CT的廣泛應(yīng)用,我們也發(fā)現(xiàn)它對(duì)腫瘤的診斷缺乏特異性,會(huì)出現(xiàn)一些假陰性[44,45]及假陽性。因此,近年來,一些新的示蹤劑開始進(jìn)入人們的視野,如18F-乙酸鹽、11C-乙酸鹽、18F-膽堿、11C-膽堿、18F-氟脫氧胸苷(18F-FLT, 胸腺嘧啶的類似物)及99mTc-HL91(乏氧組織顯像劑)等等。它們與18F-FDG 反映細(xì)胞代謝的路徑、機(jī)理不同,可在不同程度上彌補(bǔ)18F-FDG 反映的來自細(xì)胞的信息,相信未來PET/CT顯像將會(huì)有更廣闊的應(yīng)用與發(fā)展。
參考文獻(xiàn):
[1] Izuishi K, Yamamoto Y, Sano T, et al. Impact of 18-fluorodeoxyglucose positron emission tomography on the management of pancreatic cancer[J]. J Gastrointest Surg,2010,14(7):1151-1158.
[2] Maemura K, Takao S, Shinchi H. Role of positron emission tomography in decisions on treatment strategies for pancreatic cancer[Z]. J Hepatobiliary Pancreat Surg,2006,13(5):435-441.
[3] Brown RS, Goodman TM, Zasadny KR, et al. Expression of hexokinase II and Glut-1 in untreated human breast cancer[Z]. Nucl Med Biol,2002,29:443-453.
[4] Hamada K, Tomita Y, Qiu Y, et al. 18F-FDG-PET of musculoskeletal tumors: a correlation with the expression of glucose transporter 1 and hexokinase II[J]. Ann Nucl Med,2008,22(8):699-705.
[5] Higashi T, Saga T, Nakamoto Y, et al. Relationship between retention index in dual-phase (18)F-FDG PET, and hexokinase-II and glucose transporter-1 expression in pancreatic cancer[J]. J Nucl Med,2002,43(2):173-180.
[6] Haberkorn U, Ziegler SI, Oberdorfer F, et al. FDG uptake, tumor proliferation and expression of glycolysis associated genes in animal tumor models[Z]. Nucl Med Biol, 1994,21(6):827-834.
[7] Golshani-Hebroni S, Bessman S. Hexokinase binding to mitochondria: a basis for proliferative energy metabolism.[Z]. 1997,29:331-338.
[8] Mamede M, Higashi T, Kitaichi M, et al.[18F]FDG uptake and PCNA, Glut-1, and Hexokinase-II expressions in cancers and inflammatory lesions of the lung[J]. Neoplasia,2005,7(4):369-379.
[9] Wilson J E. An introduction to the isoenzymes of mammalian hexokinase types I-III[J]. Biochem Soc Trans,1997,25(1):103-107.
[10] Wilson JE. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function[J]. J Exp Biol,2003,206(Pt 12):2049-2057.
[11] Tsai HJ, Wilson JE. Functional organization of mammalian hexokinases: both N- and C-terminal halves of the rat type II isozyme possess catalytic sites.[Z]. Arch Biochem Biophys, 1996,329(1):17-23.
[12] Smith TA. Mammalian hexokinases and their abnormal expression in cancer.[Z]. Br J Biomed Sci, 2000,57(2):170-178.
[13] Robey RB, Hay N. Mitochondrial hexokinases: guardians of the mitochondria.[Z]. Cell Cycle, 2005,4(5):654-658.
[14] Warburg O. On the origin of cancer cells[J]. Science,1956,123(3191):309-314.
[15] Rho M, Kim J, Jee CD, et al. Expression of type 2 hexokinase and mitochondria-related genes in gastric carcinoma tissues and cell lines.[Z]. Anticancer Res,2007,27(1A):251-258.
[16] Burt BM, Humm JL, Kooby DA, et al. Using positron emission tomography with [(18)F]FDG to predict tumor behavior in experimental colorectal cancer.[Z]. Neoplasia,2001,3(3):189-195.
[17]彭國(guó)慶.糖酵解限速酶HK-2 與宮頸組織癌變的關(guān)系[J].細(xì)胞與分子免疫學(xué)雜志,2010,26(9):941-942.
[18] Shinohara Y, Hino M, Ishida T, et al. Growth condition-dependent synchronized changes in transcript levels of type II hexokinase and type 1 glucose transporter in tumor cells.[Z]. Biochim Biophys Acta,2001,1499(3):. 242-8.
[19] Pedersen PL, Mathupala S, Rempel A, et al. Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention.[Z]. Biochim Biophys Acta, 2002, 1555 (1-3): 14 -20.
[20] Pedersen P. The cancer cell's \"power plants\" as promising therapeutic targets: an overview.[Z]. J Bioenerg Biomembr,2007,39(1):1-12.
[21] Pastorino JG, Hoek JB. Hexokinase II: the integration of energy metabolism and control of apoptosis.[Z]. Curr Med Chem,2003,10(16):1535-1551.
[22] Mathupala SP, Ko YH, Pedersen PL. Hexokinase II: cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria.[Z]. Oncogene, 2006,25(34):4777-4786.
[23] Pedersen PL. Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers' most common phenotypes, the \"Warburg Effect\", i.e., elevated glycolysis in the presence of oxygen.[Z]. J Bioenerg Biomembr,2007,39(3):211-222.
[24] Yasuda S, Arii S, Mori A, et al. Hexokinase II and VEGF expression in liver tumors: correlation with hypoxia-inducible factor 1 alpha and its significance.[Z]. J Hepatol, 2004,40(1):117-123.
[25] Tian M, Zhang H, Higuchi T, et al. Hexokinase-II expression in untreated oral squamous cell carcinoma: comparison with FDG PET imaging.[Z]. Ann Nucl Med,2005,19(4):335-338.
[26] Mathupala SP, Ko YH, Pedersen PL. Hexokinase-2 bound to mitochondria: cancer's stygian link to the \"Warburg Effect\" and a pivotal target for effective therapy.[Z]. Semin Cancer Biol,2009,19(1):17-24.
[27] Goel A, Mathupala SP, Pedersen PL. Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type II hexokinase gene expression.[Z]. 2003,278.
[28] Lee MG, Pedersen PL. Glucose metabolism in cancer: importance of transcription factor-DNA interactions within a short segment of the proximal region og the type II hexokinase promoter.[Z]. J Biol Chem,2003,278(42):41047-41058.
[29] Xu RH, Pelicano H, Zhou Y, et al. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia[J]. Cancer Res,2005,65(2):613-621.
[30] Shin SW, Han H, Choo SW, et al. Hepatic intra-arterial injection of 3-bromopyruvate in rabbit VX2 tumor[J]. Acta Radiol,2006,47(10):1036-1041.
[31] Kurtoglu M, Maher JC, Lampidis TJ. Differential toxic mechanisms of 2-deoxy-D-glucose versus 2-fluorodeoxy-D-glucose in hypoxic and normoxic tumor cells.[Z]. Antioxid Redox Signal,2007,9(9):1383-1390.
[32] Park SG, Lee JH, Lee WA, et al. Biologic correlation between glucose transporters, hexokinase-II, Ki-67 and FDG uptake in malignant melanoma[J]. Nucl Med Biol,2012,39(8):1167-1172.
[33] Charnley N, Airley R, Du Plessis D, et al. No relationship between 18F-fluorodeoxyglucose positron emission tomography and expression of Glut-1 and -3 and hexokinase I and II in high-grade glioma[J]. Oncol Rep,2008,20(3):537-542.
[34] Tian M, Zhang H, Higuchi T, et al. Hexokinase-II expression in untreated oral squamous cell carcinoma: comparison with FDG PET imaging[J]. Ann Nucl Med,2005,19(4):335-338.
[35] Nakajo M, Kajiya Y, Tani A, et al. 18FDG PET for grading malignancy in thymic epithelial tumors: significant differences in 18FDG uptake and expression of glucose transporter-1 and hexokinase II between low and high-risk tumors: preliminary study[J]. Eur J Radiol,2012,81(1):146-151.
[36] Hoshi M, Takada J, Oebisu N, et al. Overexpression of hexokinase-2 in giant cell tumor of bone is associated with 1 positive in bone tumor on FDG-PET/CT.[Z]. Arch Orthop Trauma Surg.,2012,132,1561-1568.
[37] Goldin N, Arzoine L, Heyfets A, et al. Methyl jasmonate binds to and detaches mitochondria-bound hexokinase.[Z]. Oncogene,2008,27(34):4636-4643.
[38] Zhang M, Zhang X, Bai CX, et al. Silencing the epidermal growth factor receptor gene with RNAi may be developed as a potential therapy for non small cell lung cancer.[Z]. Genet Vaccines Ther,2005,3:5.
[39] Ko YH, Pedersen PL, Geschwind JF. Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase[J]. Cancer Lett,2001,173(1):83-91.
[40] Geschwind JF, Georgiades CS, Ko YH. Recently elucidated energy catabolism pathways provide opportunities for novel treatments in hepatocellular carcinoma.[Z]. Expert Rev Anticancer Ther,2004,4(3):449-457.
[41] Penso J, Beitner R. Clotrimazole and bifonazole detach hexokinase from mitochondria of melanoma cells.[Z]. Eur J Pharmacol,1998,342(1):113-117.
[42] Azoulay-Zohar H, Israelson A, Abu-Hamad S, et al. In self-defence: hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria- mediated apoptotic cell death.[Z]. Biochem J, 2004,377(Pt 2):347-355.
[43] Chiara F, Castellaro D, Marin O, et al. Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels.[Z]. PLoS One. ,2008,3(3):e1852.
[44] Bietendorf J. FDG PET reimbursement[J]. J Nucl Med Technol, 2004, 32 (1): 33 -38.
[45] Avril N, Rose CA, Schelling M, et al. Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations[J]. J Clin Oncol,2000,18(20):3495-3502.編輯/申磊