摘要:人轉(zhuǎn)鐵蛋白受體(TfR1)在不同組織器官中普遍表達,其主要功能是協(xié)助轉(zhuǎn)鐵蛋白在細胞和血腦屏障內(nèi)外轉(zhuǎn)運,維持細胞鐵平衡。在腫瘤細胞中以及血腦屏障中,TfR1的表達水平明顯高于正常細胞組織,因此,TfR1被認為是腫瘤靶向治療和腦部疾病靶向治療的重要靶點?;赥fR1靶向治療的藥物載體主要有轉(zhuǎn)鐵蛋白(Tf)、抗TfR1抗體、TfR1結合肽,這些生物大分子能與TfR1特異性結合,結合之后可以通過受體介導的跨胞轉(zhuǎn)運機制進入細胞或穿過血腦屏障。將小分子藥與這些載體偶聯(lián)可以促進許多親水性的化療藥物或神經(jīng)治療藥物進入腫瘤細胞或血腦屏障,而許多中樞神經(jīng)治療性大分子則主要通過融合蛋白的方式與抗TfR1抗體連接轉(zhuǎn)運進入中樞神經(jīng)系統(tǒng)。
關鍵詞:轉(zhuǎn)鐵蛋白受體;腫瘤靶向治療;腦靶向給藥
Based on the Transferrin Receptor (TfR1) of the Tumor and Brain Disease Progress in Targeted Therapy
SHAO Ming,LIU Yu
(College of Life Science and Technology,China Pharmaceutical University,Nanjing 210009,Jiangsu,China)
Abstract:Human TfR1 was universally expressed in different tissues. The major function of TfR1 was to facilitate delivery of transferrin across cells and blood-brain barrier(BBB). As a result, iron homo-stasis was maintained. TfR1 was recognised as a critical target for tumor and brain disease therapy due to its over expression in tumor cells and BBB. In recent years, drug carriers based on TfR1 recognition were developed such as Transferrin (Tf), anti-TfR1 antibody and TfR1 binding peptide. These carriers bind to TfR1 specifically and enter into cell or BBB through receptor mediated endocytosis. Chemicals conjugated with these carriers can be facilitated to enter into tumor cells and brain tissue. Therapeutic proteins can be engineered to fused with anti-TfR1 antibody and transported across BBB.
Key words: TfR1; Tumor target therapy;Brain directed delivery
1轉(zhuǎn)鐵蛋白受體(TfR1)簡介
轉(zhuǎn)鐵蛋白受體(TfR1)是一種在不同組織和細胞系中普遍表達的糖蛋白。但在惡性增殖細胞中,TfR1的表達水平明顯高于其再正常組織細胞中的表達水平[1-3]。由于TfR1的表達與癌細胞的增殖和腫瘤的發(fā)生進程相關,TfR1被認為是腫瘤治療的重要靶點。除了在腫瘤細胞組織高表達,在血腦屏障中TfR1的表達量也較正常組織高[4]。近些年,TfR1被認為是藥物跨血腦屏障轉(zhuǎn)運的重要靶受體,通過靶向血腦屏障表面的TfR1,將特定的藥物運送至腦實質(zhì),可以改善阿茲海默病、帕金森病和急性中風等疾病的治療[5]。血腦屏障由內(nèi)皮細胞、毛細管基底膜、星形膠質(zhì)細胞終足和嵌入在毛細管基底膜的周細胞組成[6],許多血液中的化合物包括幾乎所有分子量大于1kD的大分子藥物和超過98%的小分子藥物都很難穿過血腦屏障進入腦實質(zhì)[7,8],然而許多大腦所必須的營養(yǎng)物質(zhì)如轉(zhuǎn)鐵蛋白、葉酸、瘦素、胰島素都能夠通過相應的受體或轉(zhuǎn)運體穿過血腦屏障進入腦實質(zhì)[9-11]。TfR1是由兩個分子量約為90kD的亞單元單體組成的同源二聚體。每個單體包括一個大的胞外C-末端結構域,一個單次跨膜結構域和一個短的胞內(nèi)N-末端結構域[12],配體結合域位于C-末端(640~760位氨基酸)。在生理環(huán)境下,載鐵轉(zhuǎn)鐵蛋白通過受體介導的跨胞轉(zhuǎn)運機制穿過血腦屏障,在內(nèi)化之后,載鐵轉(zhuǎn)鐵蛋白從TfR1中釋放并被再循環(huán)至細胞膜上[13-15]。目前,已有很多學者采取了基于受體介導的跨胞轉(zhuǎn)運機制運送藥物穿過血腦屏障或進入癌細胞,這其中TfR1抗體是藥物靶向轉(zhuǎn)運的主要載體。TfR1抗體融合蛋白、TfR1抗體偶聯(lián)脂質(zhì)體、TfR1抗體偶聯(lián)小分子抗腫瘤藥等免疫復合物已廣泛用于腦靶向給藥和靶向抗腫瘤研究。
2 TfR1與靶向抗腫瘤
2.1抗腫瘤TfR1單抗不僅不同類型的TfR1單抗對不同的細胞系的作用有差異,相同類型的TfR1單抗對于不同的細胞系的作用效果也是有差異的。大鼠抗小鼠TfR IgM抗體R17208能夠封閉S194/5.XXO.BU.1小鼠骨髓瘤細胞中Fe2+的攝取,從而抑制其增殖,除此之外,對S194/5.XXO.BU.1小鼠骨髓瘤細胞增殖的抑制還涉及到對細胞周期的抑制,研究發(fā)現(xiàn)R17208能夠?qū)194/5.XXO.BU.1小鼠骨髓瘤細胞阻斷在G2/M期,但是R17208對于小鼠L細胞卻沒有明顯地抑制作用,這可能是由于S194/5.XXO.BU.1小鼠骨髓瘤細胞是造血性腫瘤細胞,對Fe2+的需求比小鼠L細胞更為強烈[16]。與之相似的是REM17 IgM抗體能夠阻斷Tf的功能,在體內(nèi)和體外實驗中均能夠抑制造血性腫瘤細胞的增殖[17,18]。除了IgM抗體,研究者們還開發(fā)出了諸多IgG抗體,包括R17217[17],RL34-14[17],RR24[17],C2[19],然而這些大鼠抗小鼠TfR抗體對造血性腫瘤細胞的增殖并沒有起到抑制作用。這些實驗結果提示抗體的類型可能對其抗腫瘤效果有著明顯地影響,其中IgM抗體較IgG抗體對于造血性腫瘤的抑制作用更為明顯,這可能是由于IgM是多價抗體,對TfR的封閉作用更為強烈,干擾了Tf-TfR復合物的內(nèi)化,故而對Fe2+需求更旺盛的造血性腫瘤細胞對其更為敏感。與此不同的是,一系列小鼠抗人TfR1 IgG單克隆抗體對于諸多造血性腫瘤細胞增殖表現(xiàn)出了較為明顯地抑制作用。如E2.3[20]和A27.15[21]對于IL-6依賴性的造血性腫瘤細胞表現(xiàn)出了較為明顯地細胞毒作用。值得注意的是,在小鼠抗人TfR1 單克隆抗體中IgM(RBC4)[22]依然對造血性腫瘤的生長表現(xiàn)出了明顯地抑制作用,另外,IgA抗體(42/6)[23]對造血性腫瘤細胞具有普遍的細胞毒性,并且這種細胞毒作用較IgG抗體而言更為強烈(但其對實體瘤的抑制作用卻最弱),研究表明42/6 IgA單克隆抗體對于腫瘤細胞生長的抑制機制是多樣的,包括抑制Tf 與TfR1的結合降低Fe2+的攝取,下調(diào)細胞膜表面的TfR1以及將細胞滯留于S-期阻礙其增殖。相對而言,人-鼠嵌合抗TfR1抗體對于腫瘤細胞的抑制機制則相對單一,Anti-hTfR IgG3-Av 和Anti-rTfR IgG3-Av均為IgG3抗體,二者均不阻斷Tf與TfR1的結合,但卻能夠誘導K562細胞和 Y3-Ag1.2.3 and C58細胞的凋亡,從而抑制其增殖[23-31]。隨著抗體基因工程技術的發(fā)展,越來越多的學者考慮用更小的抗體片段如scFv來替代全抗體,因為scFv既保留了抗體對抗原的親和力,也大大降低了抗體的分子量,從而能夠促進抗體對實體瘤發(fā)揮療效。Ronan Crépin等[32]從噬菌體展示庫中分離出了3TF12 和 3GH7兩個候選抗TfR1單鏈抗體,研究結果表明這兩個scFv能夠拮抗Tf與TfR1的結合,并且能夠阻斷一系列造血性細胞系的體外增殖,在此基礎之上,研究者們又通過抗體工程的方法將這兩個scFv制備成了其二價抗體(55kD),分別命名為F12CH 和 H7CH,二者能夠阻斷癌細胞的增殖,IC50值達到0.1μg/mL,而在紅白血病裸鼠模型中,F(xiàn)12CH給藥之后能夠減弱腫瘤的生長,表明其對實體瘤具有一定的治療作用。
2.2 TfR1單抗與Tf作為藥物載體抗TfR1抗體除了直接作為腫瘤治療劑,還可以作為藥物載體,將難以進入腫瘤細胞的小分子藥物或者大分子藥物通過多種多樣的方式與抗TfR抗體偶聯(lián),促進化療藥物進入腫瘤細胞內(nèi)其作用靶點,增強化療藥物的腫瘤殺傷作用。這一類免疫復合物類藥物受到了研究者們的廣泛關注。藥物與抗TfR1抗體連接的方式通常分為通過化學鍵將藥物分子與抗體連接以及通過將藥物分子包裹在納米粒(如納米脂質(zhì)體)中制備免疫脂質(zhì)體實現(xiàn)連接。小鼠抗大鼠TfR1單克隆抗體OX26是被廣泛用于研究的一種抗體,R. Chignola等[33]通過化學鍵將RTA與OX26連接制備免疫毒素,在高劑量給藥時對大鼠成膠質(zhì)細胞瘤顯示出了完全的抑制作用。但迄今為止,小分子藥物靶向給藥大多數(shù)情況是采取了與配體Tf通過化學鍵連接的策略。最為經(jīng)典的例子是Tf-多柔比星偶聯(lián)物,將多柔比星與Tf偶聯(lián)大大降低了多柔比星的毒副作用,體外實驗證實Tf-多柔比星偶聯(lián)物對許多腫瘤細胞系顯示出了明顯地細胞毒作用[34]。順鉑是一種臨床上廣泛應用的烷基化劑,但其對正常細胞的毒副作用較大,R.L. Elliott等[35]將順鉑與Tf通過化學鍵偶聯(lián)制備出了復合物MPTC-63,體外實驗證實其對Hela細胞有著明顯地毒性,體內(nèi)實驗證實其能夠阻止哺乳動物癌細胞在肺部的遷移生長, J.F. Head等[36]證實在MPTC-63Ⅰ期臨床試驗中,有36%的晚期乳腺癌患者出現(xiàn)了陽性反應。腫瘤化療烷化劑與Tf偶聯(lián)的例子還包括絲裂霉素C-Tf偶聯(lián)物[37]、柔紅霉素-Tf偶聯(lián)物[38]。除此之外的偶聯(lián)物還包括青蒿素-Tf偶聯(lián)物[39]、RNase-Tf[40]等。但通過化學鍵將藥物分子與其載體直接連接可能會因為空間位阻影響藥物分子的活性,并且并不是所有的藥物分子都可以通過化學鍵連接大分子藥物載體的,而通過將藥物分子包裹在納米微粒中,將藥物載體與納米粒偶聯(lián)則能避免對藥物分子活性的損傷,同時還能起到緩釋的作用,降低藥物的毒副作用。Soni V等[41]通過偶聯(lián)Tf的脂質(zhì)體促進5-氟尿嘧啶運送進入腦部,改善了腦部腫瘤治療。Li X等[42]發(fā)現(xiàn)包被多柔比星的Tf-脂質(zhì)體偶聯(lián)物有效抑制了實體瘤的生長。另外,基于PLGA的納米微球也廣泛用于腫瘤靶向治療研究。Shah N等[43]研究發(fā)現(xiàn)靜脈給藥24h之后負載紫杉醇的Tf-PLGA偶聯(lián)物能增加進入大鼠膠質(zhì)瘤中的紫杉醇的量。
3 TfR1與腦靶向給藥
3.1 TfR1單抗協(xié)助小分子藥腦靶向給藥對于小分子藥物,腦靶向治療目前采用較多的策略是Tf或TfR1抗體偶聯(lián)脂質(zhì)體/納米粒等生物藥劑的方法。 Pardridge 等[44]采用一種TfR1特異性的單克隆抗體制備出了特洛伊木馬脂質(zhì)體,將針對EGFR的干擾RNA的質(zhì)粒運送進入了腦組織,使腦部荷瘤小鼠EGFR表達下調(diào),小鼠存活率增加。洛哌丁胺是一種小分子鎮(zhèn)痛藥,但是由于其具有一定的親水性,因而其穿透血腦屏障的作用受到了一定的限制,臨床使用時需加大其給藥劑量,增加了藥物的毒副作用。Ulbrich等[45]將洛哌丁胺包裹在人血清白蛋白納米粒中,在納米粒表面偶聯(lián)上TfR1抗體,促進了洛哌丁胺的鎮(zhèn)痛效果。但目前有報道指出,許多脂質(zhì)體的密閉性能、膜穩(wěn)定性以及降解性都不能得到很好的控制,降低了其靶向藥物轉(zhuǎn)運的可能性,雖然將PEG偶聯(lián)到脂質(zhì)體上可以在一定程度上提高脂質(zhì)體的穩(wěn)定性,但是這種促穩(wěn)定作用也是有局限的,甚至PEG層在血清中能損失1/3[46,47]。而多聚物囊泡作為一種新型的合成新型單層膠囊相比脂質(zhì)體而言具有更為厚實的膜,采用多聚物囊泡作為藥物載體更為穩(wěn)定有效,目前已有很多研究者將多聚物囊泡作為藥物載體運用于腫瘤治療中,Zhiqing Pang等[48]則將TfR1抗體OX26偶聯(lián)到多聚物囊泡表面,多聚物囊泡內(nèi)包裹上血管加壓素類似物NC-1900,通過OX26的腦靶向作用將NC-1900運送到腦組織,改善了東莨菪堿所致的學習記憶障礙。
3.2 TfR1單抗協(xié)助大分子藥腦靶向給藥生物活性大分子在腦部疾病的治療中占有重要地位,但與小分子藥物腦靶向運送不同的是,由于其分子量大,活性受結構影響明顯,因而難以采用脂質(zhì)體/納米粒包裹或化學偶聯(lián)的方式進行運送。但由于治療性藥物與藥物載體都是蛋白質(zhì),因而通過基因工程的方法開發(fā)出靶向融合蛋白是生物大分子腦靶向給藥的一個極具優(yōu)勢的策略。
膠質(zhì)細胞來源的神經(jīng)營養(yǎng)因子(GDNF)在中腦多巴胺能神經(jīng)元的分化和保護過程中扮演著重要的角色,其在帕金森病的動物模型中已顯示出了一定的神經(jīng)元保護和恢復功能[49,50]。GDNF傳統(tǒng)的給藥方式是顱內(nèi)注射,而A.Fu[51]等通過基因工程的方法將GDNF融合到了TfR1抗體重鏈的C-端,在小鼠帕金森病模型中,連續(xù)靜脈給藥3w后,多項測試指標反應出該融合蛋白具有顯著的神經(jīng)保護作用。
Β-淀粉樣肽是阿茲海默病的主要病因,抑制β-淀粉樣斑塊生成是治療阿茲海默病的有效策略。目前已有研究者開發(fā)出抗β-淀粉樣肽單抗,但問題在于其難以穿透血腦屏障。R.J.Boado[52]等通過將抗β-淀粉樣肽單抗的單鏈抗體(scFv)融合到TfR1單抗8D3的C-端,開發(fā)出了治療阿茲海默病的雙功能抗體。Q. Zhou[53]在小鼠阿茲海默病模型中研究了該融合蛋白的活性,研究發(fā)現(xiàn)治療組小鼠腦中的β-樣淀粉斑塊較非治療組減少了40%,說明該融合蛋白能在一定程度上抑制阿茲海默病的發(fā)病進程。我們知道在血腦屏障的兩側都分布有TfR1,TfR1介導的跨胞轉(zhuǎn)運能夠?qū)崿F(xiàn)\"血液-腦\"和\"腦-血液\"的雙重轉(zhuǎn)運循環(huán)。當雙功能抗體經(jīng)TfR1介導轉(zhuǎn)運進入腦實質(zhì)之后,其β-樣淀粉肽結合域結合靶分子(β-淀粉樣肽),隨后再經(jīng)過血腦屏障內(nèi)側的TfR1介導轉(zhuǎn)運從腦組織進入血液循環(huán),實現(xiàn)了腦組織內(nèi)β-淀粉樣肽的清除。
BACE1是治療阿茲海默病的另一個主要靶點,BACE1抗體是治療阿茲海默病的有效藥物,它可以通過抑制β淀粉體的形成而緩解病情,但是BACE1抗體難以穿透血腦屏障。Jessica A. Couch等[54]通過基因工程的方法制備了TfR1抗體與BACE1抗體的雙特異性抗體,促進BACE1抗體進入腦組織發(fā)揮療效。研究者們發(fā)現(xiàn),TfR1抗體與TfR1的親和力對抗體的跨血腦屏障轉(zhuǎn)運具有顯著影響,親和力過高會導致抗體吸附在血腦屏障表面而無法釋放進入腦實質(zhì),適當降低抗體親和力能夠促進抗體釋放進入腦實質(zhì)[55,56]。
TNF-α是一種促炎癥細胞因子,急性缺血性中風發(fā)生內(nèi)1h在腦內(nèi)合成。TNF-1是TNF-α的拮抗劑,在外周器官炎癥中抑制TNF-α的激活,是一種廣泛應用的抗類風濕關節(jié)炎藥。但是,由于TNF-1單獨無法穿透血腦屏障,故其難以用于腦中風的治療。為了促進生物源性的TNF-1轉(zhuǎn)運進入血腦屏障,Rachita K Sumbria[57]等同樣采用依賴TfR1抗體的分子特洛伊木馬的策略促進TNF-1進入腦實質(zhì)。
4結論
TfR1在腫瘤細胞組織和血腦屏障表面的表達水平高于其在正常組織細胞中的表達水平,這為腫瘤靶向治療和腦靶向治療提供了靶點。由于許多腫瘤細胞是多藥耐性的,p-gp蛋白可以將許多進入腫瘤細胞的藥物泵出,因而增加了化療藥物的劑量,同時增強了化療藥物的毒副作用。而對于一些腦部疾病,由于血腦屏障的存在,許多親水性較強的小分子藥物難以進入,只有極少數(shù)脂溶性小分子化合物可以滲透穿過血腦屏障,但幾乎所有的治療性蛋白藥物都無法進入血腦屏障。Tf、抗TfR1抗體、TfR1結合肽在結合TfR1之后可以通過受體介導的跨胞轉(zhuǎn)運機制進入腫瘤細胞或穿透血腦屏障,這為腫瘤靶向給藥及腦靶向給藥提供了一種良好的載具。將小分子藥物包裹進納米粒或脂質(zhì)體,在納米?;蛑|(zhì)體表面偶聯(lián)上Tf、抗TfR1抗體、TfR1結合肽??蓪⑿》肿铀幬锇邢蜻f送至腫瘤細胞組織或腦組織,同時這類靶向緩釋制劑能大大降低小分子藥物對正常組織細胞的毒副作用。對于許多腦部疾病的治療性蛋白,可以通過基因工程的方法將抗TfR1抗體與治療性蛋白融合,將其遞送進入腦組織。綜上,基于TfR1靶點的藥物開發(fā)策略在腫瘤及腦部疾病靶向治療中具有廣泛的應用前景。
參考文獻:
[1]Daniels T R, Delgado T, Rodriguez J A, et al. The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer[J]. Clinical Immunology, 2006, 121(2): 144-158.
[2]Sutherland R, Delia D, Schneider C, et al. Ubiquitous cell-surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin[J]. Proceedings of the National Academy of Sciences, 1981, 78(7): 4515-4519.
[3]Gatter K C, Brown G, Trowbridge I S, et al. Transferrin receptors in human tissues: their distribution and possible clinical relevance[J]. Journal of clinical pathology, 1983, 36(5): 539-545.
[4]Jefferies W A, Brandon M R, Hunt S V, et al. Transferrin receptor on endothelium of brain capillaries[J]. 1984.
[5]Pardridge W M. Drug targeting to the brain[J]. Pharmaceutical research, 2007, 24(9): 1733-1744.
[6]Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications[J]. Neurobiology of disease, 2004, 16(1): 1-13.
[7]Pardridge W M. CNS drug design based on principles of blood‐brain barrier transport[J]. Journal of neurochemistry, 1998, 70(5): 1781-1792.
[8]Pardridge W M. Blood-brain barrier delivery[J]. Drug discovery today, 2007, 12(1): 54-61.
[9]Gabathuler R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases[J]. Neurobiology of disease, 2010, 37(1): 48-57.
[10]Pardridge W M, Eisenberg J, Yang J. Human blood-brain barrier insulin receptor[J]. Journal of neurochemistry, 1985, 44(6): 1771-1778.
[11]Zhang Y, Pardridge W M. Rapid transferrin efflux from brain to blood across the blood-brain barrier[J]. Journal of neurochemistry, 2001, 76(5): 1597-1600.
[12]Lawrence C M, Ray S, Babyonyshev M, et al. Crystal structure of the ectodomain of human transferrin receptor[J]. Science, 1999, 286(5440): 779-782.
[13]Hémadi M, Kahn P H, Miquel G, et al. Transferrin's mechanism of interaction with receptor 1[J]. Biochemistry, 2004, 43(6): 1736-1745.
[14]Ciechanover A, Schwartz A L, Lodish H F. Sorting and recycling of cell surface receptors and endocytosed ligands: the asialoglycoprotein and transferrin receptors[J]. Journal of cellular biochemistry, 1983, 23(1‐4): 107-130.
[15]Daniels T R, Bernabeu E, Rodríguez J A, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2012, 1820(3): 291-317.
[16]Trowbridge I S, Lesley J, Schulte R. Murine cell surface transferrin receptor: Studies with an anti‐receptor monoclonal antibody[J]. Journal of cellular physiology, 1982, 112(3): 403-410.
[17]Lesley J F, Schulte R J. Inhibition of cell growth by monoclonal anti-transferrin receptor antibodies[J]. Molecular and cellular biology, 1985, 5(8): 1814-1821.
[18]Sauvage C A, Mendelsohn J C, Lesley J F, et al. Effects of monoclonal antibodies that block transferrin receptor function on the in vivo growth of a syngeneic murine leukemia[J]. Cancer research, 1987, 47(3): 747-753.
[19]Kemp J D, Cardillo T, Stewart B C, et al. Inhibition of lymphoma growth in vivo by combined treatment with hydroxyethyl starch deferoxamine conjugate and IgG monoclonal antibodies against the transferrin receptor[J]. Cancer research, 1995, 55(17): 3817-3824.
[20]Taetle R, Dos Santos B, Ohsugi Y, et al. Effects of combined antigrowth factor receptor treatment on in vitro growth of multiple myeloma[J]. Journal of the National Cancer Institute, 1994, 86(6): 450-455.
[21]Jones D T, Trowbridge I S, Harris A L. Effects of transferrin receptor blockade on cancer cell proliferation and hypoxia-inducible factor function and their differential regulation by ascorbate[J]. Cancer research, 2006, 66(5): 2749-2756.
[22]Vaickus L, Levy R. Antiproliferative monoclonal antibodies: detection and initial characterization[J]. The Journal of Immunology, 1985, 135(3): 1987-1997.
[23]Haynes B F, Hemler M, Cotner T, et al. Characterization of a monoclonal antibody (5E9) that defines a human cell surface antigen of cell activation[J]. The Journal of Immunology, 1981, 127(1): 347-351.
[24]Taetle R, Honeysett J M. Effects of monoclonal anti-transferrin receptor antibodies on in vitro growth of human solid tumor cells[J]. Cancer research, 1987, 47(8): 2040-2044.
[25]Taetle R, Honeysett J M. Effects of monoclonal anti-transferrin receptor antibodies on in vitro growth of human solid tumor cells[J]. Cancer research, 1987, 47(8): 2040-2044.
[26]White S, Taetle R, Seligman P A, et al. Combinations of anti-transferrin receptor monoclonal antibodies inhibit human tumor cell growth in vitro and in vivo: evidence for synergistic antiproliferative effects[J]. Cancer research, 1990, 50(19): 6295-6301.
[27]R. Taetle, J. Castagnola, J. Mendelsohn, Mechanisms of growth inhibition by anti-transferrin receptor monoclonal antibodies[J].Cancer Res,1986,46 :1759-1763.
[28]L.M. Neckers, J. Cossman, Transferrin receptor induction in mitogen-stimulated human T lymphocytes is required for DNA synthesis and cell division and is regulated by interleukin 2,
Proc[J].Natl. Acad. Sci. U. S. A,1983,80: 3494-3498.
[29]I.S. Trowbridge, F. Lopez, Monoclonal antibody to transferrin receptor blocks transferrin binding and inhibits human tumor cell growth in vitro, Proc[J].Natl. Acad. Sci. U. S. A,1982,79:1175-1179.
[30]Taetle R, Rhyner K, Castagnola J, et al. Role of transferrin, Fe, and transferrin receptors in myeloid leukemia cell growth. Studies with an antitransferrin receptor monoclonal antibody[J]. Journal of Clinical Investigation, 1985, 75(3): 1061.
[31]Brooks D, Taylor C, Dos Santos B, et al. Phase Ia trial of murine immunoglobulin A antitransferrin receptor antibody 42/6[J]. Clinical cancer research, 1995, 1(11): 1259-1265.
[32] Crépin R, Goenaga A L, Jullienne B, et al. Development of human single-chain antibodies to the transferrin receptor that effectively antagonize the growth of leukemias and lymphomas[J]. Cancer research, 2010, 70(13): 5497-5506.
[33] Chignola R, Foroni R, Franceschi A, et al. Heterogeneous response of individual multicellular tumour spheroids to immunotoxins and ricin toxin[J]. British journal of cancer, 1995, 72(3): 607.
[34]Daniels T R, Delgado T, Helguera G, et al. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells[J]. Clinical Immunology, 2006, 121(2): 159-176.
[35]Elliott R L, Stjernholm R, Elliott M C. Preliminary evaluation of platinum transferrin (MPTC-63) as a potential nontoxic treatment for breast cancer[J]. Cancer detection and prevention, 1987, 12(1-6): 469-480.
[36]Head J F, Wang F, Elliott R L. Antineoplastic drugs that interfere with iron metabolism in cancer cells[J]. Advances in enzyme regulation, 1997, 37: 147-169.
[37]Tanaka T, Shiramoto S, Miyashita M, et al. Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME)[J]. International journal of pharmaceutics, 2004, 277(1): 39-61.
[38]Bejaoui N, Page M, N?el C. Cytotoxicity of transferrin-daunorubicin conjugates on small cell carcinoma of the lung (SCCL) cell line NCI-H69[J]. Anticancer research, 1990, 11(6): 2211-2213.
[39]Lai H, Sasaki T, Singh N P. Targeted treatment of cancer with artemisinin and artemisinin-tagged iron-carrying compounds[J]. 2005.
[40]Rybak S M, Newton D L, Mikulski S M, et al. Cytotoxic onconase and ribonuclease A chimeras: comparison and in vitro characterization[J]. Drug Delivery, 1993, 1(1): 3-10.
[41]Soni V, Kohli D V, Jain S K. Transferrin-conjugated liposomal system for improved delivery of 5-fluorouracil to brain[J]. Journal of drug targeting, 2008, 16(1): 73-78.
[42]Li X, Ding L, Xu Y, Wang Y, Ping Q. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin[J].Int. J. Pharm,2009,373:116-123 .
[43]Shah N, Chaudhari K, Dantuluri P, et al. Paclitaxel-loaded PLGA nanoparticles surface modified with transferrin and Pluronic? P85, an in vitro cell line and in vivo biodistribution studies on rat model[J]. Journal of drug targeting, 2009, 17(7): 533-542.
[44]Pardridge W M. shRNA and siRNA delivery to the brain[J]. Advanced drug delivery reviews, 2007, 59(2): 141-152.
[45]Ulbrich K, Hekmatara T, Herbert E, et al. Transferrin-and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB)[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71(2): 251-256.
[46]Sharma A, Sharma U S. Liposomes in drug delivery: progress and limitations[J]. International Journal of Pharmaceutics, 1997, 154(2): 123-140.
[47]Discher D E, Ortiz V, Srinivas G, et al. Emerging applications of polymersomes in delivery: from molecular dynamics to shrinkage of tumors[J]. Progress in polymer science, 2007, 32(8): 838-857.
[48]Pang Z, Lu W, Gao H, et al. Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26[J]. Journal of Controlled Release, 2008, 128(2): 120-127.
[49] Gash D M, Zhang Z, Ovadia A, et al. Functional recovery in parkinsonian monkeys treated with GDNF[J]. 1996.
[50]Kirik D, Georgievska B, Bj?rklund A. Localized striatal delivery of GDNF as a treatment for Parkinson disease[J]. Nature neuroscience, 2004, 7(2): 105-110.
[51]Fu A, Zhou Q H, Hui E K W, et al. Intravenous treatment of experimental Parkinson's disease in the mouse with an IgG-GDNF fusion protein that penetrates the blood-brain barrier[J]. Brain research, 2010, 1352: 208-213.
[52]Boado R J, Zhou Q H, Lu J Z, et al. Pharmacokinetics and brain uptake of a genetically engineered bifunctional fusion antibody targeting the mouse transferrin receptor[J]. Molecular pharmaceutics, 2009, 7(1): 237-244.
[53]Zhou Q H, Fu A, Boado R J, et al. Receptor-mediated abeta amyloid antibody targeting to Alzheimer's disease mouse brain[J]. Molecular pharmaceutics, 2010, 8(1): 280-285.
[54]Couch J A, Yu Y J, Zhang Y, et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier[J]. Science translational medicine, 2013, 5(183): 183ra57-183ra57.
[55]Atwal J K, Chen Y, Chiu C, et al. A therapeutic antibody targeting BACE1 inhibits amyloid-β production in vivo[J]. Science translational medicine, 2011, 3(84): 84ra43-84ra43.
[56]Yu Y J, Zhang Y, Kenrick M, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target[J]. Science Translational Medicine, 2011, 3(84): 84ra44-84ra44.
[57]Sumbria R K, Boado R J, Pardridge W M. Brain protection from stroke with intravenous TNFα decoy receptor-Trojan horse fusion protein[J]. Journal of Cerebral Blood Flow Metabolism, 2012, 32(10): 1933-1938.編輯/申磊