• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    超聲萃取-氣流式液相微萃取-氣相色譜質(zhì)譜在線聯(lián)用快速檢測(cè)蔬菜中有機(jī)磷農(nóng)藥殘留

    2014-12-20 02:00:10南京熙畢程程金京一
    食品與機(jī)械 2014年5期
    關(guān)鍵詞:延吉續(xù)表延邊

    南京熙 畢程程 金京一 吳 學(xué)

    (1.延邊大學(xué)理學(xué)院化學(xué)系,吉林 延吉 133002;2.延邊出入境檢驗(yàn)檢疫局,吉林 延吉 133000)

    In the stages of cultivation,harvest and storage,pesticides are widely used to protect crops from pests and bacteria and provide quality assurance(Wang,Willis,Daniel,2012).The extensive use of pesticides has resulted in numerous negative effects on food security,the ecological environment and human health(Kaushik,Satya,Naik,2009).Food safety is receiving increasing attention all over the world.Many international organizations and countries(such as the WHO,the United Nations Food and Agriculture Organization,the Eu-ropean Union and the United States of America,among others)have limited the residues of pesticides in international trade(Shinger,Elbashir,Ahmed,Aboul-Enein,2012).

    Vegetables are an important source of food but are also a potential source of pesticides(Latif,Sherazin,Bhanger,2011).Pesticide residues in vegetables have been listed as the priority project of food risk monitoring (Lee,Law,Wong,1996).Organophosphorus pesticides (OPPs)are widely used in the world.At present,the varieties and dosages of OPPs have outnumbered other types of pesticides in China.The monitoring of OPPs can ensure the safe supply of food.The analysis methods of OPPs in vegetables in previous reports were time-consuming and difficult.In particular,the sample extraction required tedious clean-up procedures and reconcentration for the final instrument analysis due to matrix interference(Lee,Law,Wong,1996),which hinders the analysis of OPPs.Therefore,a fast and easy analysis method of OPPs has already been urgently sought.

    Ultrasonic extraction was widely used in the extraction of trace organic compounds in various plant samples.Compared with Soxhlet extraction(Wang,Jin,Ma,Lu,Lin,2011)and liquid-liquid extraction(Hajlová,Holadová,Kocourek,Poustka,Godula,Cuhra,Kempny,1998;Mekebri,Grane,Blondina,Oros,Rocca,2008),ultrasonic extraction is less solvent-and time-consuming.Compared with the accelerated solvent extraction (Nerín,Battle,Cacho,1998)and supercritical fluid extraction (Valverde-García,F(xiàn)ernandez-Alba,Contreras,Agüera,1996),ultrasonic extraction has a lower instrument cost,is more universally applicable and is simpler.This paper adopted ultrasonic extraction to extract the OPPs in vegetable samples.Matrix interference in the sample remains a significant difficulty for the analysis methods.The extracted sample is often treated by purification and reconcentration methods,such as column chromatography(Vázquez,Mughari,Galera,2008;Hoeck,David,Sandra,2007),solid phase extraction(Díaz,Vàzquez,Ventura,Galceran,2004;Columé,Cárdenas,Gallego,2001;Albero,Sánchez-Brunete,Tadeo,2003)and the gel permeation chromatography technique(Ouyang,Zhao,Janusz,2005;Li,Lee,2009;Alcudia-León,Lucena,Cárdenas,Valcárcel,2009).The above purification techniques are used with large quantities of materials,significant time and a high cost.The most important thing is that the purified sample is not appropriate for on-line instrument analysis and is usually injected into an analytical instrument after concentration.Gas flow liquid phase microextraction(also known as gas purge-microsyringe extraction,GP—MSE),which is an open extraction system with a gas purge,is a novel headspace liquid phase microextraction technology(Li,Lee,2002;Piao,Bi,Yang,Wang,Wang,Li,2011).In GP—MSE,the volatile and semivolatile organic compounds are brought into a microsyringe that contains extracting solvent at a microliter grade.After the extraction,the samples can be directly analyzed by the GC—MS(Yang,Piao,Qiu,Wang,Ren,Li,2011).The GP—MSE possesses the following advantages:the process is usually completed within a few minutes;the system can quickly distinguish between volatile and semivolatile organic compounds and the matrix;the system can play the role of enrichment,purification and reconcentration;and samples can be directly brought into the terminal detector.The application of GP—MSE in sample pretreatment requires further development as a novel microextraction technique.In the study,GP—MSE was applied for a re-extraction of a sample extracted by ultrasonic extraction.

    This paper established an analysis system of ultrasonic extraction and gas flow liquid phase microextraction coupled with on-line gas chromatography – mass spectrometry(GC—MS)for the determination of 28types of organic phosphorus pesticide residues in vegetables.The detailed contents are as follows:the extraction conditions of ultrasonic extraction and gas flow liquid phase microextraction;the selection of qualitative and quantitative ions with GC—MS;and the comparison between gas flow liquid phase microextraction and solid phase extraction.The analysis system was also used for the analysis of real vegetable samples.The proposed method would provide a rapid determination for organic phosphorus pesticide residues in vegetable samples,especially for the mass vegetable samples with short analysis times,thereby saving manpower and material resources.

    1 Experimental section

    1.1 Chemicals and Materials

    Pesticide-residue-grade acetone, acetonitrile, dichloromethane,ethyl acetate and n-hexane were obtained from Fisher(America).Analytical-grade anhydrous sodium sulfate was purchased from Shanghai Ling Feng Chemical Reagent Co.Ltd.(Shanghai,China).Twenty-eight types of pesticides standards(dichlorvos,methamidophos,ethoprophos,phorate,methacrifos,thiometon,terbufos,diazinon,fonofos,disulfoton,chlorpyrifos,chlorpyrifos-methyl,dimethoate,tolcolfos-methyl, pirimiphos-methyl, parathionmethyl,malathion,fenthion,fenitrothion,dimethylvinfos,parathion,quinalphos,chlorfenvinphos,isocarbophos,ph-enthoate,edifenphos triazophos and EPN)were purchased from the Agro-environmental Protection Institute,Ministry of Agriculture(China).The purity of the standards was 9 9.8%,and the concentrations of all standards were 1 00μg/mL.A mixed stock standard solution (2.0mg/L)was prepared with 28types of pesticides standards in h exane∶acetone(4∶1,V/V).Standard working solutions of different concentrations were prepared by diluting the stock solutions with hexane∶acetone(4∶1,V/V).The standard solutions were stored in the dark at 0~4℃until used.

    1.2 Sample Preparation

    The Chinese cabbage and celery was purchased from a local market of Yanji City (China).These samples were crushed by a high-speed rotary cutting mill (GM-200,Retsch,Germany).The standard working solutions were spiked into the samples at levels of 0.01mg/kg for OPPs.

    1.3 Ultrasonic Extraction

    The procedure of ultrasonic extraction was as follows:the sample was homogenized by a high-speed homogenizer(T25,IKA,Germany),and 10g of the homogeneous sample was then inserted into a 100mL conical flask.Ethyl acetate was then added into the conical flask.After ultrasonic extraction(AS10200AT,Tianjin ossett company,China)for 5min,the sample was filtered into another conical flask.Six grams of sodium chloride was added into the conical flask,shaken violently for 1min,and left to stand at room temperature.When the organic phase and the aqueous phase were stratified,the upper solution was pipetted and was then dried by anhydrous sodium sulfate.The solution was concentrated in a 40℃water bath to nearly dry by a Termovap sample concentrator (R-210v,Buchi,Switzerland).Finally,the volume was set to 0.1mL with ethyl acetate and waited for further processing.

    1.4 GP—MSE

    GP—MSE was used to purify and enrich the extract by ultrasonic extraction in the 1.3section.The specific operation was conducted using the GP—MSE apparatus named ME-101Multifunctional Microextraction Apparatus (ME-101,Key Laboratory of Natural of Changbai Mountain &functional Molecules,Ministry of Education,China)in Figure 1(Piao,Bi,Yang,Wang,Wang,Li,2011).As in previous reports,the extraction process can be briefly described as follows(Yang,Piao,Qiu,Wang,Ren,Li,2011):10μL of the extract obtained by ultrasonic extraction was inserted into the sample pool and covered with a polytetrafluoroethylene(PTFE)pad,and inserted into a 100μL microsyringe(710RN,Hamilton,Australia);10μL n-hexane was also inserted into the microsyringe as an extraction solvent.The extraction parameters were set as follows:the gas flow rate was 2mL/min,the extraction temperature was-2℃,the sample temperature was 250℃,and the extraction time was 3min.The apparatus then ran the program and started the re-extraction.After the extraction was completed,the secondary extract(1μL)was injected into a gas chromatography/mass spectrometry system for analysis.

    圖1 多功能微萃取儀裝置圖Figure 1 Apparatus of gas purge-microsyringe extraction(GP—MSE)

    1.5 Solid Phase Extraction

    Solid phase extraction was used for comparison with GP—MSE;the extraction procedure was as follows:a 5 00mg ENVI-Carb(Sigma-Aldrich,America)/PSA (Agilent Technologies,America)composited column was eluted with 8mL of ethyl acetate/hexane(1∶1,V/V);the extract obtained by ultrasonic extraction in the 1.3section was then transferred to the column.After the solution flowed through the column,the column was eluted with ethyl acetate/hexane(1∶1,V/V)and collected the elution.The elution was concentrated using a Termovap Sample Concentrator in a 40℃water bath to nearly dry;the volume was then set to 1mL with ethyl acetate for GC—MS analysis.

    1.6 GC—MS Analysis

    Analysis of organic phosphorus pesticides(OPPs)was performed on a CLARUS 600Gas Chromatography—Mass Spectrometry (GC—MS) (CLARUS 600,PerkinElmer(PE),America)with an electron impact ion source (EI source)by injecting 1μL of each extract.The analytes were separated on a DB1701ms fused-silica capillary column (3 0m ×0.25mm;thickness 0.25μm)(J & W by Agilent Technologies)and detected on a PE Clarus600quadrupole mass spectrometer system.The GC oven program started at an initial temperature of 70℃and was held for 2min,then increase by 20℃/min to 150℃,by 5℃/min to 190℃and kept 2min,by 10℃/min to 280℃,and held for 8min.Other operating conditions were as follows:the injection temperature was 250℃in splitless mode;the column flow was 1.0mL/min;and helium (99.999%pure)was used as a carrier gas.The GC—MS interface temperature was 2 80℃.The directly coupled mass spectrometer analyzed the substances after electron impact ionization at 70eV in selected ion monitoring(SIM)mode.The selected ions of quantification and identification for the targets are given in Table 1.

    2 Results and discussion

    2.1 Optimization of Ultrasonic Extraction Conditions

    The ultrasonic extraction was selected as the extraction method in the research by the comparison of different extraction methods.Compared to conventional extractions,the high-speed ultrasonic extraction method required less time and less solvent and comparatively advantageous extraction efficiency.These results were consistent with that found in previous literature(Hajlová,Holadová,Kocourek,Poustka,Godula,Cuhra,Kempny,1998).The effects of extraction solvents in ultrasonic extraction were investigated with a spiked celery sample(0.010mg/kg pesticide).The extraction solvent was selected by considering the extraction efficiency,matrix interference,stability and other factors.The results showed that the ethyl acetate with low toxicity was the most suitable for the research.

    2.2 Optimization of GP—MSE Conditions

    The GP—MSE was used for the re-extraction in the research to realize the purification and enrichment of the target compounds.Matrix effects in vegetable samples (such as chlorophyll)were the biggest problem for a reliable quantitative analysis of pesticide residues(Lee,Law,Wong,1996).The experiment optimized the key factors in GP—MSE influencing the extraction efficiency,which included the gas flow rate,the temperature of the sample phase,the extraction time and the extraction solvent,to reduce the sample matrix interference and achieve satisfactory extraction efficiency.A spiked blank sample(0.010mg/kg)was used for the optimization of the GP—MSE conditions.

    表1 28種農(nóng)藥的保留時(shí)間及質(zhì)譜分析定性、定量離子參數(shù)Table 1 Ions selected for quantification and identification of compounds

    2.2.1 Gas Flow Rate In the GP—MSE system,the volatile and semivolatile compounds were driven to the extraction phase by gas flow,so the gas flow was the basic factor affecting the extraction efficiency(Yang,Piao,Qiu,Wang,Ren,Li,2011).To understand the effect of the gas flow rate on the extraction,the gas flow rate was set at 1.0,2.0,3.0and 4.5mL/min(1.0and 4.5mL/min are the minimum and maximum velocities of the instrument,respectively).The recoveries of 28types of organic phosphorus pesticide residues in spiked Chinese cabbage samples were studied,and the results were shown in Figure 2.Figure 2showed that the recoveries of the targets showed no obvious dependence on the gas flow rate.The targets could be completely extracted by the extraction phase over the entire gas flow range.To effectively control the volume of the extraction phase,the gas flow was set to 2.0mL/min.

    圖2 氣流速率對(duì)萃取效率的影響Figure 2 Effect of gas flow rate on the extraction efficiency

    圖3 樣品相溫度對(duì)萃取效率的影響Figure 3 Effect of sample temperatures on extraction efficiency

    2.2.2 Sample Temperature Pesticide compounds mostly belong to the volatile and semivolatile compounds.When the samples were given a certain temperature,the targets could reach the extraction phase quickly.The temperatures of the samples were set at 150,200,250and 280℃.The recoveries of the targets were shown in Figure 3.The result showed that the recoveries of the targets with low boiling points were high and had good stability at a lower temperature,but the recoveries of the targets with high boiling points were relative low.When the temperature was increased to 250℃,the recoveries of the targets with low and high boiling points could all meet the requirements.Therefore,the temperature was set at 250℃in later experiments.

    2.2.3 Extraction Time In most previous studies,the extraction time of microextraction was controlled at 15~20min(Wang,Kwok,He,Lee,1998;Wu,Xia,Chen,Hu,2008).However,a shorter extraction time was required in the GP—MSE technique.As shown in Fig.4,the extraction was finished within 3min,and the recoveries of the target compounds were higher than 85%;the recoveries did not va-ry with increasing extraction time after 2min.This result indicates that after trapping by the organic solvent,chemicals were not evaporated from the GP—MSE system.Therefore,the extraction time can be chosen to match the properties of target chemicals or experimental objectives.An extraction time of 3min was used in the following experiments,taking account of both the simplicity of operation and the reproducibility.

    圖4 萃取時(shí)間對(duì)萃取效率的影響Figure 4 Effect of extraction time on the extraction efficiency

    2.2.4 Extracting Solvent The“l(fā)ike-dissolve-like”rule is a well-established principle in extraction techniques that can also be applied in GP—MSE.Five organic solvents(dichloromethane,acetonitrile,hexane,acetone,ethyl acetate)were selected,and the results were compared.The pesticides selected have high solubilities in those organic solvents,so similar recoveries were obtained for all cases.Based on the toxicity and suitability in the GC—MS analysis,the hexane was selected as an extraction solvent in the following experiments.

    2.3 Selection of Monitoring Ions

    Twenty-eight types of pesticide mixed standard solutions were prepared for the selection of monitoring ions.In the mixed standard solutions,the concentrations of pesticides were 0.01mg/kg.A full scan was run at the instrument conditions of GC—MS.The principles of choosing the monitoring ions were as follows:larger mass-charge ratio,larger abundance and the least interference at the retention time of the analyte according to the mass spectrum and background interference.The results were shown in Table 1.Figure 5 gave the chromatograms of 28pesticides in the selected ion mode.

    圖5 28種有機(jī)磷農(nóng)藥的基質(zhì)匹配標(biāo)準(zhǔn)溶液選擇離子監(jiān)測(cè)色譜圖Figure 5 Chromatograms of quantification ions of organophosphorus pesticides(OPPs)in mixed OPPs standard(0.01mg/kg)analyzed by GC—MS with the selected ion mode

    2.4 Evaluation of Method Performance

    The minimum detection limit(LOD)and quantification limit(LOQ)of the method was calculated as three times and ten times the noise response of the blank sample(S/N=3),respectively.These values were 3μg/kg and 10μg/kg,respectively,for the 28OPPs(Table 2).Twenty-eight types of pesticide in spiked blank samples showed a good linear relationship in the range of 50~1 000μg/kg,and the correlation coefficients(R2)were greater than 0.99(Table 2).The recoveries of the OPPs ranged from 85.5%to 100.2%with RSD values of 1.6%~6.9%.

    表2 28種農(nóng)藥的線性方程、線性范圍、相關(guān)系數(shù)、檢出限和定量限Table 2 Quality Parameters of UAE—GPMSE—GC—MS analysis system for anaysis of OPPs in vegetable samples

    2.5 Analysis of Real Samples

    Five types of vegetable samples were selected randomly from the local market and were analyzed by the method in this study.The results showed that chlorpyrifos was detected from the radish sample at a content level of 0.045mg/kg,and dimethoate was detected in celery and Chinese cabbage samples at content levels of 0.037mg/kg and 0.018mg/kg,respectively.The target ingredients were not detected in all samples.Three levels of spiked samples(0.010,0.020,0.040mg/kg)were used for the quality control of the method.The recoveries were 80.2%~1 22.6%,and the RSD were 1.6%~12.1% (see Table 3).The results showed that the method had high recoveries and sensitivity and could meet the requirements of the determination of pesticide residues.The chromatography of real samples and spiked real samples were given in Figure 6.

    圖6 白菜加標(biāo)溶液選擇離子監(jiān)測(cè)色譜圖Figure 6 Chromatograms of quantification ions of organophosphorus pesticides(OPPs)in spiked Chinese cabbage sample(0.01mg/kg)analyzed by GC-MS with the selected ion mode

    表3 白菜和芹菜樣品中28種有機(jī)磷農(nóng)藥的加標(biāo)回收率及相對(duì)標(biāo)準(zhǔn)偏差Table 3 Recoveries and relative standard derives(RSDs)of OPPs at spiked real samples by UAE—GPMSE—GC—MS(in this study)and UAE—SPE—GC—MS(n=3)

    續(xù)表3

    續(xù)表3

    Solid-phase extraction was also used for analysis of the spiked real samples.Compared with this method,the method in this study achieved comparable results(Table 3)but had a shorter analysis time,less solvent consumption and the advantage of direct injection into GC—MS.

    3 Conclusions

    This study developed a rapid analysis system for detecting organophosphorus pesticides residues in vegetables and edible fungi using ultrasonic extraction,gas purge liquid phase microextraction and gas chromatography–mass spectrometry.The sample was extracted using ultrasonic techniques in ethyl acetate for 5min and was later extracted to 1 0μL of n-hexane using GP—MSE at a gas flow rate of 2 mL/min and a sample temperature of 250℃for 3min.The extract was directly injected into GC—MS.The recoveries of the 28organophosphorus pesticides reached 80.2%to 1 22.6%,with RSD values of 1.6%to 12.1%.The method exhibited a low detection limit,agood linear relationship,and comparable results with SPE.The analysis system effectively utilized the advantages of GP—MSE(less solvent consumption,short extraction time,good separation and purification function and enrichment function).This system was suitable for the rapid determination of organophosphorus pesticides residues in vegetables for food safety.

    1 Albero B,Sánchez-Brunete C,Tadeo J L.Determination of endosulfan isomers and endosulfan sulfate in tomato juice by matrix solid-phase dispersion and gas chromatography[J].J.Chromatogr.A,2003,1 007:137~143.

    2 Alcudia-León M C,Lucena R,Cárdenas S,et al.Stir membrane extraction:a useful approach for liquid sample pretreatment[J].Anal.Chem.,2009,81:8 957~8 961.

    3 ColuméA,Cárdenas S,Gallego M,et al.Semiautomatic multiresidue gas chromatographic method for the screening of vegetables for 25organochlorine and pyrethroid pesticides[J].Anal.Chim.Acta.,2001,436:153~162.

    4 Díaz A,Vàzquez L,Ventura F,et al.Estimation of measurement uncertainty for the determination of nonylphenol in water using solid-phase extraction and solid-phase microextraction procedures[J].Anal.Chim.Acta,2004,506:71~80.

    6 Hoeck E V,David F,Sandra P.Stir bar sorptive extraction for the determination of pyrethroids in water samples:A comparison between thermal desorption in a dedicated thermal desorber,in a split/splitless inlet and by liquid desorption[J].J.Chromatogr.A,2007,1 157:1~9.

    7 Kaushik G,Satya S,Naik S N.Food processing a tool to pesticide residue dissipation:a review[J].Food Research International,2009,42:26~40.

    8 Latif Y,Sherazin S T H,Bhanger M I.Assessment of pesticide residues in commonly used vegetables in Hyderabad,Pakistan[J].Ecotox.Environ.Safe,2011,74:2 299~2 303.

    9 Lee W O,Law M L M,Wong S K.Determination of methamidophos residues in food remnants[J].Food Addit Contam,1996,13:687~694.

    10 Li X,Lee H K.Solvent-bar microextraction—Using a silica monolith as the extractant phase holder[J].J.Chromatogr.A,2009,1 216:5 483~5 488.

    11 Li H,Lee H K.Application of static and dynamic liquid-phase microextraction in the determination of polycyclic aromatic hydrocarbons[J].J.Chromatogr.A,2002,976(1~2):377~385.

    12 Mekebri A,Grane D B,Blondina G J,et al.Extraction and analysis methods for the determination of pyrethroid insecticides in surface water,sediments and biological tissues at environmentally relevant concentrations[J].Bull Environ ContamToxicol.,2008,80:455~460.

    13 Nerín C,Battle R,Cacho J.Determination of pesticides in highwater-content samples by off-line supercritical fluid extractiongas chromatography-electron-capture detection[J].J.Chromatogr.A,1998,795:117~124.

    14 Ouyang G F,Zhao W N,Janusz P.Kinetic calibration for automated headspace liquid-phase microextraction [J]. Anal.Chem.,2005,77:8 122~8 128.

    15 Piao X Y,Bi J H,Yang C,et al.Automatic heating and cooling system in a gas purge microsyringe extraction[J].Talanta.,2011,86:142~147.

    16 Shinger M I,Elbashir A A,Ahmed H E,et al.Simultaneous determination of cypermethrin and fenvalerate residues in tomato by gas chromatography and their applications to kinetic studies after field treatment[J].Biomed.Chromatogr.,2012,26:589~593.

    17 Valverde-Garcia A,F(xiàn)ernández-Alba A R,Contreras M,et al.Supercritical fluid extraction of pesticides from vegetables using anhydrous magnesium sulfate for sample preparation[J].J.Agric.Food Chem.,1996,44(7):1 780~1 784.

    18 Vázquez P P,Mughari A R,Galera M M.Application of solidphase microextraction for determination of pyrethroids in groundwater using liquid chromatography with post-column photochemically induced fluorimetry derivatization and fluorescence detection[J].J.Chromatogr.A,2008,1 188:61~68.

    19 Wang J,Willis C,Daniel L.Application of ultrahigh-performance liquid chromatography and electrospray ionization quadrupole orbitrap high-resolution mass spectrometry for determination of 166pesticides in fruits and vegetables[J].J.Agric.Food Chem.,2012,60:12 088~12 104.

    20 Wang Y,Jin H Y,Ma S C,et al.Determination of 195pesticide residues in Chinese herbs by gas chromatography-mass spectrometry using analyte protectants[J].J.Chromatogr.A,2011,1 218:334~342.

    21 Wang Y,Kwok Y C,He Y,et al.Application of dynamic liquid-phase microextraction to the analysis of chlorobenzenes in water by using a conventional microsyringe[J].Anal.Chem.,1998,70:4 610~4 614.

    22 Wu Y L,Xia L B,Chen R,et al.Headspace single drop microextraction combined with HPLC for the determination of trace polycyclic aromatic hydrocarbons in environmental samples[J].Talanta.,2008,74:470~477.

    23 Yang C,Piao X Y,Qiu J X,et al.Gas purge microsyringe extraction for quantitative direct gas chromatographic-mass spectrometric analysis of volatile and semivolatile chemicals[J].J.Chromatogr.A,2011,1 218:1 549~1 555.

    猜你喜歡
    延吉續(xù)表延邊
    Analysis of hub genes in small-cell lung carcinoma by weighted gene co-expression network※
    Landslide displacement prediction based on the Genetic Simulated Annealing algorithm
    《延邊大學(xué)學(xué)報(bào)》(社科版)2020年總目錄
    羅永浩
    智族GQ(2020年10期)2020-10-26 02:22:48
    延吉冷面
    Novel analgesic targets and corresponding analgesic leading compounds
    “圖們江論壇2018”在延邊大學(xué)舉行
    ?? -?? ?? ?? ?? ????? ?????? ?? ??
    Estimation of the Ballistic Effectiveness of 3,4- and 3,5-Dinitro-1-(trinitromethyl)-1H-Pyrazoles as Oxidizers for Composite Solid Propellants
    美麗的延邊歡樂(lè)的海
    精品久久国产蜜桃| 国产乱人伦免费视频| 欧美激情久久久久久爽电影| 亚洲经典国产精华液单 | 观看美女的网站| 久久亚洲真实| 中国美女看黄片| 国产亚洲精品久久久com| 亚洲成av人片免费观看| 熟女人妻精品中文字幕| 1024手机看黄色片| 亚洲av免费高清在线观看| 好男人在线观看高清免费视频| 国产精品久久视频播放| 国产亚洲精品久久久com| 国产麻豆成人av免费视频| 亚洲人成伊人成综合网2020| 成人鲁丝片一二三区免费| 99热6这里只有精品| 成年免费大片在线观看| 内地一区二区视频在线| 天堂网av新在线| 99久久99久久久精品蜜桃| 成人永久免费在线观看视频| 精品福利观看| av在线蜜桃| 国内少妇人妻偷人精品xxx网站| 嫩草影视91久久| 久久精品国产自在天天线| 日本 av在线| 波多野结衣高清作品| 琪琪午夜伦伦电影理论片6080| 在线观看美女被高潮喷水网站 | 免费黄网站久久成人精品 | 亚洲av成人av| 在线观看美女被高潮喷水网站 | 国产色爽女视频免费观看| 午夜免费男女啪啪视频观看 | 国产亚洲欧美98| 日韩欧美国产在线观看| 中文字幕av在线有码专区| 又黄又爽又免费观看的视频| 日本黄色视频三级网站网址| 男人舔奶头视频| 最新中文字幕久久久久| 色吧在线观看| 国产亚洲欧美在线一区二区| 日本免费a在线| a在线观看视频网站| 午夜激情欧美在线| 亚洲avbb在线观看| 怎么达到女性高潮| 亚洲,欧美,日韩| 全区人妻精品视频| 神马国产精品三级电影在线观看| 国产不卡一卡二| 国产一区二区在线av高清观看| 亚洲七黄色美女视频| 麻豆国产av国片精品| 亚洲一区高清亚洲精品| 国产aⅴ精品一区二区三区波| 在线国产一区二区在线| 波野结衣二区三区在线| 日韩精品青青久久久久久| 久久亚洲精品不卡| 琪琪午夜伦伦电影理论片6080| 久久亚洲真实| 日本撒尿小便嘘嘘汇集6| 又爽又黄a免费视频| 亚洲一区二区三区不卡视频| 熟女电影av网| 此物有八面人人有两片| 国产一区二区在线观看日韩| 久久久久久久久久黄片| 波多野结衣高清作品| 久久久久久久午夜电影| 搡老妇女老女人老熟妇| 色哟哟·www| 欧美一区二区亚洲| 国产欧美日韩精品亚洲av| 深爱激情五月婷婷| 俺也久久电影网| 性欧美人与动物交配| 亚洲天堂国产精品一区在线| 91狼人影院| 亚洲精品在线美女| 日韩欧美精品v在线| 亚洲18禁久久av| 一个人免费在线观看电影| 毛片女人毛片| 一级av片app| 国产探花在线观看一区二区| 变态另类成人亚洲欧美熟女| 国产三级中文精品| 亚洲综合色惰| 最近视频中文字幕2019在线8| 97热精品久久久久久| 可以在线观看的亚洲视频| 人妻久久中文字幕网| 欧美潮喷喷水| 亚洲经典国产精华液单 | 免费av毛片视频| 亚洲18禁久久av| 制服丝袜大香蕉在线| 亚洲最大成人手机在线| 国产单亲对白刺激| 成人欧美大片| 欧美+日韩+精品| 欧美不卡视频在线免费观看| 悠悠久久av| 精品久久久久久久久亚洲 | 国产黄色小视频在线观看| 日韩 亚洲 欧美在线| 国产精品永久免费网站| 国产精品不卡视频一区二区 | 俄罗斯特黄特色一大片| 国产精品嫩草影院av在线观看 | 亚洲欧美日韩高清专用| 精品午夜福利视频在线观看一区| 可以在线观看毛片的网站| 又紧又爽又黄一区二区| 丁香欧美五月| 欧美一区二区国产精品久久精品| 国产成人影院久久av| 成熟少妇高潮喷水视频| 天堂av国产一区二区熟女人妻| 黄色日韩在线| 亚洲自拍偷在线| 精品久久国产蜜桃| 18禁裸乳无遮挡免费网站照片| 成人鲁丝片一二三区免费| 99热精品在线国产| 国产白丝娇喘喷水9色精品| 亚洲真实伦在线观看| 日韩欧美三级三区| 免费搜索国产男女视频| 国产日本99.免费观看| 怎么达到女性高潮| 老熟妇乱子伦视频在线观看| 久久久久亚洲av毛片大全| 在线免费观看的www视频| 日日干狠狠操夜夜爽| av女优亚洲男人天堂| 日本三级黄在线观看| 亚洲一区二区三区不卡视频| ponron亚洲| 国产私拍福利视频在线观看| 69人妻影院| 午夜激情欧美在线| 美女被艹到高潮喷水动态| 麻豆成人av在线观看| 久久国产乱子免费精品| 亚洲狠狠婷婷综合久久图片| 麻豆国产av国片精品| 直男gayav资源| 国产伦一二天堂av在线观看| 日韩免费av在线播放| 免费电影在线观看免费观看| 欧美激情在线99| 国产单亲对白刺激| 99久久99久久久精品蜜桃| 一区二区三区高清视频在线| 国产精品,欧美在线| 久久6这里有精品| 桃色一区二区三区在线观看| 成人欧美大片| 国产一区二区三区视频了| 久久久成人免费电影| 搡老妇女老女人老熟妇| 热99re8久久精品国产| 亚洲三级黄色毛片| 久久国产精品影院| 搡老岳熟女国产| 亚洲最大成人av| 成人av在线播放网站| 淫妇啪啪啪对白视频| 麻豆成人av在线观看| 国产主播在线观看一区二区| 国产黄色小视频在线观看| 国产日本99.免费观看| 国产高清有码在线观看视频| 亚洲自拍偷在线| 亚洲狠狠婷婷综合久久图片| 熟女人妻精品中文字幕| 啦啦啦观看免费观看视频高清| 亚洲专区国产一区二区| 日韩中字成人| 少妇裸体淫交视频免费看高清| av女优亚洲男人天堂| 午夜精品一区二区三区免费看| 欧美不卡视频在线免费观看| 国产午夜精品久久久久久一区二区三区 | 一个人看的www免费观看视频| 久久欧美精品欧美久久欧美| 国产高清视频在线观看网站| 日韩高清综合在线| 内地一区二区视频在线| 亚洲国产精品合色在线| 日韩成人在线观看一区二区三区| 99国产综合亚洲精品| 免费在线观看亚洲国产| 国产精品野战在线观看| 身体一侧抽搐| 天堂动漫精品| 性色avwww在线观看| 成熟少妇高潮喷水视频| 久久精品国产亚洲av涩爱 | 亚洲性夜色夜夜综合| 亚洲人与动物交配视频| 国产激情偷乱视频一区二区| 三级国产精品欧美在线观看| 免费高清视频大片| 男女之事视频高清在线观看| 一本一本综合久久| 久久人妻av系列| 日韩中文字幕欧美一区二区| 丰满人妻一区二区三区视频av| 制服丝袜大香蕉在线| 久久草成人影院| 国产毛片a区久久久久| 亚洲精品日韩av片在线观看| 精品久久国产蜜桃| 午夜免费激情av| 午夜久久久久精精品| 国产精品1区2区在线观看.| av中文乱码字幕在线| 亚洲av日韩精品久久久久久密| 日韩亚洲欧美综合| 天堂影院成人在线观看| 又紧又爽又黄一区二区| 色综合亚洲欧美另类图片| 毛片一级片免费看久久久久 | 中文字幕熟女人妻在线| 免费在线观看成人毛片| 欧美潮喷喷水| 波多野结衣高清无吗| 精品久久久久久久久av| 亚洲国产色片| av专区在线播放| 亚洲精品亚洲一区二区| 国产一区二区在线av高清观看| 久99久视频精品免费| 人人妻人人看人人澡| 国产男靠女视频免费网站| 国产精品女同一区二区软件 | 日韩欧美国产在线观看| 亚洲av五月六月丁香网| 九九久久精品国产亚洲av麻豆| 国模一区二区三区四区视频| 亚洲av成人精品一区久久| 老熟妇仑乱视频hdxx| 我要看日韩黄色一级片| 51国产日韩欧美| 91九色精品人成在线观看| 亚洲一区二区三区色噜噜| 日韩欧美三级三区| 久9热在线精品视频| 亚洲中文日韩欧美视频| 国内少妇人妻偷人精品xxx网站| 麻豆国产97在线/欧美| 国产人妻一区二区三区在| a级一级毛片免费在线观看| 免费在线观看影片大全网站| 国产精品日韩av在线免费观看| 日韩 亚洲 欧美在线| 中文资源天堂在线| 国产午夜精品久久久久久一区二区三区 | 美女cb高潮喷水在线观看| 国产高清三级在线| 人妻夜夜爽99麻豆av| 一级黄色大片毛片| 高清日韩中文字幕在线| 一本一本综合久久| 小蜜桃在线观看免费完整版高清| 自拍偷自拍亚洲精品老妇| 综合色av麻豆| 最新在线观看一区二区三区| 搞女人的毛片| www.色视频.com| 18美女黄网站色大片免费观看| 99久国产av精品| 内射极品少妇av片p| 久久国产乱子免费精品| 国产精品精品国产色婷婷| 又爽又黄无遮挡网站| 国产精品国产高清国产av| 久久久成人免费电影| 亚洲av免费高清在线观看| 亚洲av中文字字幕乱码综合| 人人妻,人人澡人人爽秒播| 男女之事视频高清在线观看| 国产精品久久久久久久久免 | 男女下面进入的视频免费午夜| 久久午夜福利片| 亚洲在线观看片| 久久欧美精品欧美久久欧美| 性色av乱码一区二区三区2| 亚洲国产精品久久男人天堂| 亚洲电影在线观看av| 国产精品日韩av在线免费观看| 亚洲人成伊人成综合网2020| 757午夜福利合集在线观看| 亚洲精品日韩av片在线观看| 女人十人毛片免费观看3o分钟| 亚洲avbb在线观看| 夜夜看夜夜爽夜夜摸| 麻豆国产97在线/欧美| 国产69精品久久久久777片| 国产白丝娇喘喷水9色精品| 亚洲av成人av| 欧美日韩福利视频一区二区| 午夜免费男女啪啪视频观看 | 日韩大尺度精品在线看网址| 日韩精品青青久久久久久| 成人午夜高清在线视频| 国产大屁股一区二区在线视频| 一区二区三区高清视频在线| 一个人免费在线观看电影| 色尼玛亚洲综合影院| 国产高清视频在线播放一区| 欧美性猛交╳xxx乱大交人| 亚洲男人的天堂狠狠| 久久香蕉精品热| 97超视频在线观看视频| 亚洲欧美激情综合另类| 人妻制服诱惑在线中文字幕| 免费电影在线观看免费观看| 少妇人妻精品综合一区二区 | 免费看光身美女| 国产私拍福利视频在线观看| 热99re8久久精品国产| 婷婷亚洲欧美| 欧美一区二区国产精品久久精品| 极品教师在线视频| 欧美另类亚洲清纯唯美| 黄色日韩在线| 麻豆国产97在线/欧美| 中出人妻视频一区二区| 亚洲中文字幕一区二区三区有码在线看| 我要看日韩黄色一级片| 国内久久婷婷六月综合欲色啪| 日韩欧美 国产精品| 性色av乱码一区二区三区2| av在线老鸭窝| av中文乱码字幕在线| 18美女黄网站色大片免费观看| 亚洲av中文字字幕乱码综合| avwww免费| 成人av在线播放网站| 国产精品99久久久久久久久| 91麻豆精品激情在线观看国产| 中文字幕精品亚洲无线码一区| 国产黄片美女视频| 精品久久久久久久久av| 色av中文字幕| 激情在线观看视频在线高清| 悠悠久久av| 日韩欧美免费精品| 黄色丝袜av网址大全| 欧美+亚洲+日韩+国产| 啪啪无遮挡十八禁网站| 免费在线观看日本一区| 91av网一区二区| 久久亚洲真实| 赤兔流量卡办理| 婷婷六月久久综合丁香| 免费在线观看成人毛片| 九九在线视频观看精品| 中文字幕熟女人妻在线| 高清在线国产一区| 国产高清视频在线播放一区| 日韩av在线大香蕉| 国产激情偷乱视频一区二区| 国产高清激情床上av| 精品无人区乱码1区二区| 欧美不卡视频在线免费观看| 长腿黑丝高跟| 国产精品伦人一区二区| 在线观看66精品国产| 国产一区二区三区在线臀色熟女| 国产在视频线在精品| 无遮挡黄片免费观看| 男人的好看免费观看在线视频| 国产伦在线观看视频一区| 在线免费观看的www视频| 久久精品国产99精品国产亚洲性色| 亚洲电影在线观看av| 两个人视频免费观看高清| 亚洲在线观看片| 国产不卡一卡二| 18禁黄网站禁片午夜丰满| 一级黄色大片毛片| 国产精品女同一区二区软件 | 国产精品人妻久久久久久| 久久精品国产亚洲av香蕉五月| bbb黄色大片| 亚洲,欧美,日韩| 九色成人免费人妻av| 欧美国产日韩亚洲一区| 久久欧美精品欧美久久欧美| 亚洲av免费高清在线观看| 网址你懂的国产日韩在线| 亚洲无线在线观看| 国产高清三级在线| 欧美bdsm另类| 国产日本99.免费观看| 国产一级毛片七仙女欲春2| 亚洲黑人精品在线| 99久久99久久久精品蜜桃| 美女高潮喷水抽搐中文字幕| 色综合欧美亚洲国产小说| 日韩人妻高清精品专区| 在线观看午夜福利视频| 看黄色毛片网站| 亚州av有码| 日韩欧美在线二视频| 好男人电影高清在线观看| 久久午夜福利片| 久久久久免费精品人妻一区二区| 亚洲,欧美精品.| 婷婷丁香在线五月| 波多野结衣高清无吗| 美女cb高潮喷水在线观看| 日韩精品中文字幕看吧| 舔av片在线| 日日夜夜操网爽| 免费电影在线观看免费观看| 亚洲av不卡在线观看| 日韩精品青青久久久久久| 毛片女人毛片| 亚洲人成网站在线播放欧美日韩| 亚洲av第一区精品v没综合| 国产在线男女| 88av欧美| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩无卡精品| 99热6这里只有精品| 12—13女人毛片做爰片一| 午夜福利在线观看吧| 亚洲欧美日韩东京热| 亚洲内射少妇av| 中文在线观看免费www的网站| 美女大奶头视频| 麻豆成人午夜福利视频| 亚洲色图av天堂| 亚洲av一区综合| 亚洲av中文字字幕乱码综合| 亚洲精品色激情综合| 久久伊人香网站| 一a级毛片在线观看| 国产中年淑女户外野战色| 日本成人三级电影网站| 欧美性感艳星| 欧美最黄视频在线播放免费| 91麻豆精品激情在线观看国产| 一卡2卡三卡四卡精品乱码亚洲| 99国产极品粉嫩在线观看| 成人av在线播放网站| 精品国产亚洲在线| 国产精华一区二区三区| 国产白丝娇喘喷水9色精品| 国内毛片毛片毛片毛片毛片| 脱女人内裤的视频| 国产精品,欧美在线| 日韩亚洲欧美综合| 国产精品久久久久久人妻精品电影| 两人在一起打扑克的视频| 国产乱人视频| 亚洲最大成人手机在线| 在线天堂最新版资源| 欧美在线一区亚洲| 欧美又色又爽又黄视频| 午夜老司机福利剧场| 又黄又爽又免费观看的视频| 免费观看人在逋| 91九色精品人成在线观看| 国产精品自产拍在线观看55亚洲| 国产av麻豆久久久久久久| 久久精品影院6| 日本一本二区三区精品| 欧美午夜高清在线| 亚洲久久久久久中文字幕| 国产真实伦视频高清在线观看 | 久久99热6这里只有精品| 嫩草影视91久久| 成人av在线播放网站| 两个人的视频大全免费| 国产精品嫩草影院av在线观看 | 91九色精品人成在线观看| a级毛片a级免费在线| 午夜视频国产福利| 国产成人福利小说| 国产探花在线观看一区二区| 日韩欧美三级三区| 国产色爽女视频免费观看| 九九久久精品国产亚洲av麻豆| 极品教师在线视频| 亚洲精品成人久久久久久| 久久精品国产99精品国产亚洲性色| 免费看a级黄色片| xxxwww97欧美| 亚洲精品在线观看二区| 热99re8久久精品国产| 欧美+亚洲+日韩+国产| 少妇人妻精品综合一区二区 | 日韩中字成人| 老司机午夜福利在线观看视频| 丁香欧美五月| 亚洲欧美精品综合久久99| 一级a爱片免费观看的视频| 欧美黄色淫秽网站| 日韩成人在线观看一区二区三区| 欧美丝袜亚洲另类 | 亚洲国产精品sss在线观看| 欧美3d第一页| 亚洲自拍偷在线| 国产单亲对白刺激| 搡老岳熟女国产| 特大巨黑吊av在线直播| 午夜福利欧美成人| 欧美成人免费av一区二区三区| av国产免费在线观看| 亚洲av电影不卡..在线观看| 国产一区二区在线观看日韩| 亚洲av电影不卡..在线观看| 国产精品av视频在线免费观看| 亚洲av电影不卡..在线观看| 色噜噜av男人的天堂激情| 亚洲人成网站在线播| 99久久精品热视频| 亚洲天堂国产精品一区在线| 97超视频在线观看视频| 夜夜躁狠狠躁天天躁| 精品久久久久久久久av| 看片在线看免费视频| 国产精品爽爽va在线观看网站| 久久久久久久久中文| av在线天堂中文字幕| 国产成+人综合+亚洲专区| 制服丝袜大香蕉在线| 欧美精品啪啪一区二区三区| 欧美激情在线99| av天堂中文字幕网| 国产精华一区二区三区| 免费在线观看影片大全网站| 国产成人av教育| 国产男靠女视频免费网站| 性欧美人与动物交配| 欧美bdsm另类| 亚洲第一电影网av| 一进一出好大好爽视频| 又黄又爽又刺激的免费视频.| 亚洲熟妇中文字幕五十中出| 日日夜夜操网爽| 久久久精品欧美日韩精品| 亚洲一区二区三区不卡视频| 日本a在线网址| 亚洲av二区三区四区| 日韩高清综合在线| 国内精品美女久久久久久| 亚洲成人久久爱视频| 99国产极品粉嫩在线观看| 国产单亲对白刺激| 热99在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲av美国av| 免费人成在线观看视频色| 淫秽高清视频在线观看| 欧美激情国产日韩精品一区| 一区二区三区四区激情视频 | 亚洲激情在线av| 亚洲av成人精品一区久久| 色哟哟·www| 欧美日韩国产亚洲二区| 亚洲av熟女| 三级男女做爰猛烈吃奶摸视频| 美女cb高潮喷水在线观看| 国产爱豆传媒在线观看| 桃色一区二区三区在线观看| 少妇被粗大猛烈的视频| 午夜久久久久精精品| 国产av不卡久久| 99久久99久久久精品蜜桃| 91在线精品国自产拍蜜月| 变态另类成人亚洲欧美熟女| 99在线视频只有这里精品首页| 亚洲av成人不卡在线观看播放网| 国产69精品久久久久777片| 男女下面进入的视频免费午夜| 国产大屁股一区二区在线视频| 变态另类丝袜制服| 亚洲无线观看免费| 夜夜爽天天搞| 人妻夜夜爽99麻豆av| 麻豆av噜噜一区二区三区| 国产高清激情床上av| 高潮久久久久久久久久久不卡| a级毛片a级免费在线| 亚洲国产精品合色在线| 日本一二三区视频观看| 国产精品久久久久久亚洲av鲁大| 老司机福利观看| 五月玫瑰六月丁香| 国产在线男女| 免费人成视频x8x8入口观看| 亚洲国产高清在线一区二区三| 51国产日韩欧美| 3wmmmm亚洲av在线观看| 十八禁国产超污无遮挡网站| 综合色av麻豆| 国产乱人伦免费视频| 国产欧美日韩一区二区精品| 国产真实伦视频高清在线观看 | 真人做人爱边吃奶动态| 最近中文字幕高清免费大全6 |